Kinetics and mechanism of coarsening for nanoparticles of sulfur and alkaline earth metal sulfates coprecipitated from true polysulfide solutions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Alkaline-earth metal sulfate nanoparticles (ALMS) and nanocomposites of ALMS with sulfur nanoparticles (nanosulfur) are synthesized from aqueous solutions of polysulfides (ASP) of alkaline-earth metals (AEM) of calcium, strontium, and barium (CaSn, SrSn, BaSn; n>1). AEM ASP are obtained in the aqueous medium at temperatures of 70 and 90°C as a result of the reaction between metal hydroxide and sulfur. It is found that the use of sulfur mechanically activated in the disintegrator for synthesis allows obtaining higher concentrations of AEM ASP in shorter times. To establish possible mechanisms of mechanochemical recrystallization in liquid media, the method of static light scattering is used to determine the kinetics of particle aggregation as a result of reversible aggregation of sulfur and AEM sulfate nanoparticles. It is found that at first particles with sizes about 30 nm are formed, which are enlarged to tens of microns with time. The values of the rate constant of particle aggregation (agglomeration) (Q) increase with the concentration of acids, and their optimal value for the realization of the Q-mechanism is 10%. It is found that applying a surfactant (neonol; concentration 5%) reduces Q by multiple times. It is also found that the value of Q grows with the temperature, and the activation energies of S/MeSO4 particle aggregation processes are determined for the optimum interval 300÷350 K. Practical aspects of the results of the work are considered by the example of using the obtained samples to germinate wheat grains, as well as hydrophobicity of S/MeSO4 samples due to the presence of sulfur in them.

Texto integral

Acesso é fechado

Sobre autores

F. Urakaev

Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: urakaev@igm.nsc.ru
Rússia, 630090, Novosibirsk

I. Massalimov

Ufa University of Science and Technology; Technological Institute of Herbicides and Plant Growth Regulators

Email: urakaev@igm.nsc.ru
Rússia, 450076, Ufa; 450029, Ufa

B. Akhmetshin

Ufa University of Science and Technology

Email: urakaev@igm.nsc.ru
Rússia, 450076, Ufa

B. Massalimov

P. N. Lebedev Physical Institute

Email: urakaev@igm.nsc.ru
Rússia, 119333, Moscow

A. Khusainov

Ufa University of Science and Technology

Email: urakaev@igm.nsc.ru
Rússia, 450076, Ufa

M. Samsonov

Ufa University of Science and Technology

Email: urakaev@igm.nsc.ru
Rússia, 450076, Ufa

Sh. Mustafokulov

Ufa University of Science and Technology

Email: urakaev@igm.nsc.ru
Rússia, 450076, Ufa

Bibliografia

  1. Массалимов И. А., Самсонов М. Р., Ахметшин Б. С., и др. // Коллоидн. журн. 2018. Т. 80. № 4. С. 424. doi: 10.1134/S0023291218040080 [Massalimov I.A., Samsonov M.R., Akhmetshin B.S., et al. // Colloid J. 2018. V. 80. № 4. P. 407. https://doi.org/10.1134/S1061933X18040087]
  2. Массалимов И.А., Ахметшин Б.С., Массалимов Б.И., Уракаев Ф.Х. // Журн. физ. химии. 2024. Т. 98. № 1. С. 124. doi: 10.31857/S0044453724010179 [Massalimov I.A., Akhmetshin B.S., Massalimov B.I., Urakaev F. Kh. // Russ. J. Phys. Chem. A. 2024. V. 98. № 1. P. 120. https://doi.org/10.1134/S003602442401014X]
  3. Уракаев Ф.Х., Буркитбаев М.М. // Журн.физ.химии. 2023. Т. 97. № 10. С. 1471. doi: 10.31857/S0044453723100254 [Urakaev F. Kh., Burkitbaev M.M. // Russ. J. Phys. Chem. A. 2023. V. 97. № 10. P. 2231. https://doi.org/10.1134/S0036024423100254]
  4. Narayan O.P., Kumar P., Yadav B., et al. // Plant Signal. Behav. 2023. V. 18. № 1. P. e2030082 (11pp). https://doi.org/10.1080/15592324.2022.2030082
  5. Garcia A.A., Druschel G.K. // Geochem Trans. 2014. V. 15. P. e2030082 (11pp). https://doi.org/10.1186/s12932-014-0011-z
  6. Ghotekar S., Pagar T., Pansambal S., Oza R. // Adv. J. Chem. B. 2020. V. 2. № 3. P. 128. https://doi.org/10.22034/ajcb.2020.109501
  7. Jin H., Sun Y., Sun Z., Yang M., Gui R. // Coord. Chem. Rev. 2021. V. 438. P. 213913 (35pp). https://doi.org/10.1016/j.ccr.2021.213913
  8. Samrat K., Chandraprabha M.N., Krishna R.H., et al. // Mater. Technol. 2022. V. 37. № 14. P. 3025. https://doi.org/10.1080/10667857.2022.2115757
  9. Sun Y., Jiang Y., Li Y., et al. // Chem. Sci. 2024. V. 15. № 13. P. 4709. https://doi.org/10.1039/D3SC06122A
  10. Lockhart C.L.F., Hojjatie M.M., Dimitriadis A. Polysulfide compositions and processes for making same: EP 3819282 // Bull. 2021. № 19. P. 13. https://data.epo.org/publication-server/rest/v1.0/publication-dates/20210512/patents/EP3819282NWA1/document.pdf
  11. Chao J.-Y., Yue T.-J., Ren B.-H., et al. // Angew. Chem. Int. Ed. 2022. V. 61. № 16. P. e202115950 (8pp). https://doi.org/10.1002/anie.202115950
  12. Amna R., Alhassan S.M. // ACS Appl. Polym. Mater. 2024. V. 6. № 8. P. 4350. https://doi.org/10.1021/acsapm.4c00272
  13. Ибарра Ф., Мейер К., Штефан Х., Торстен Х. Способ получения наночастиц сульфатов щелочноземельных металлов: Патент RU2338690 // Б.И. 2008. № 32. С. 10. https://patentimages.storage.googleapis.com/1f/4d/bf/f9e0e5d42a5b1d/RU2338690C2.pdf [Ibarra F., Mejer K., Shtefan Kh., Torsten Kh. Method of obtaining nanoparticles of sulphates of alkali earth metals: Patent RU2338690 // Bull. 2008. № 32. P. 10. https://patents.google.com/patent/RU2338690C2/ru]
  14. Prutviraj K. Ramesh T.N. Surfactant mediated synthesis of barium sulfate, strontium sulfate and barium-strontium sulfate nanoparticles // Inor. Nano-Met. Chem. 2019. Vol. 49. № 4. P. 93—99. https://doi.org/10.1080/24701556.2019.1603162
  15. Alhseinat E., Abi J.M., Afra A., et al. // Surfaces and Interfaces. 2021. V. 22. P. 100875 (12pp). https://doi.org/10.1016/j.surfin.2020.100875
  16. Ahmad M.N., Nadeem S., Hassan S.U., et al. // Dig. J. Nanomat. Biostruct. 2021. V. 16. № 4. P. 1557. doi: 10.15251/DJNB.2021.164.1557; https://chalcogen.ro/1557_AhmadMN.pdf
  17. Lu M.Q., Cao J.J., Wang Z.Y., Wang G.Q. // Minerals. 2022. V. 12. № 10. P. 1289 (23pp). https://doi.org/10.3390/min12101289
  18. Tritschler U., Van Driessche A.E.S., Kempter A., et al. // Angew. Chem. Int. Ed. 2015. V. 54. № 13. P. 4083. https://doi.org/10.1002/anie.201409651
  19. Chen S., Jiang Y., Xu Y., et al. // Mater. Res. Express. 2019. V. 6. № 10. P. 1050b8 (9pp). doi: 10.1088/2053-1591/ab4070
  20. Barone A.W., Pringle M., Nguyen D., Dziak R. // Int J Dent Oral Health. 2020. V. 6. № 4. 7pp. https://dx.doi.org/10.16966/2378-7090.325; https://www.sciforschenonline.org/journals/dentistry/article-data/IJDOH325/IJDOH325.pdf
  21. Jia C., Wu L., Chen Q., et al. // CrystEngComm. 2020. V. 22. № 41. P. 6805. https://doi.org/10.1039/D0CE01173H
  22. Burgos-Ruiz M., Pelayo-Punzano G., Ruiz-Agudo E., et al. // Chem. Comm. 2021. V. 59. № 59. P. 7304. https://doi.org/10.1039/D1CC02014E
  23. Jia C.Y., Wu L.C., Fulton J.L., et al. // J. Phys. Chem. C. 2021. V. 125. № 6. P. 3415. https://doi.org/10.1021/acs.jpcc.0c10016
  24. Liu Y., Lu R., He L., et al. // Coatings. 2022. V. 12. № 6. P. 860 (11pp). https://doi.org/10.3390/coatings12060860
  25. Maslyk M., Dallos Z., Koziol M., et al. // Adv. Funct. Mater. 2022. V. 32. № 20. P. 2111852 (11pp). https://doi.org/10.1002/adfm.202111852
  26. Li Y.-F., Ouyang J.-H., Zhou Y., et al. // Mater. Lett. 2008. V. 62. № 29. P. 4417. https://doi.org/10.1016/j.matlet.2008.07.053
  27. Nafi A.W., Taseidifar M., Pashley R.M., Ninham B.W. // Substantia. 2020. V. 4. № 2 (Supl. 1). P. 95. https://doi.org/10.36253/Substantia-1031
  28. Bakhtiar A., Chowdhury E.H. // Asian J. Pharm. Sci. 2021. V. 16. № 2. P. 236. https://doi.org/10.1016/j.ajps.2020.11.002
  29. Lauer A.R., Hellmann R., Montes-Hernandez G., et al. // J. Chem. Phys. 2023. V. 158. № 5. P. 054501 (13pp). https://doi.org/10.1063/5.0136870
  30. Akyol E., Cedimagar M.A. // Cryst. Res. Technol. 2016. V. 51. № 6. P. 393. doi: 10.1002/crat.201600046
  31. El-Ghaffar M.A.A., Abdelwahab N.A., Fekry A.M., et al. // Prog. Org. Coat. 2020. V. 144. P. 105664 (11pp). https://doi.org/10.1016/j.porgcoat.2020.105664
  32. Reissig F., Zarschler K., Hübner R., et al. // Chemistryopen. 2020. V. 9. № 8. P. 797. https://doi.org/10.1002/open.202000126
  33. Longlade J., Delaite C., Schuller A. // Materials Sci. Appl. 2021. V.12. № 1. P. 1. doi: 10.4236/msa.2021.121001; https://www.scirp.org/pdf/msa_2021011411225115.pdf
  34. Fang L., Sun Q., Duan Y.-H., et al. // Front. Chem. Sci. Eng. 2021. V. 15. № 4. P. 902. https://doi.org/10.1007/s11705-020-1985-y
  35. Sooch B.S., Mann M.K., Sharma M. // J. Clust. Sci. 2021. V. 32. P. 1141. https://doi.org/10.1007/s10876-020-01878-5
  36. Deng W., Wang G., Tang L., et al. // J. Colloid Interface Sci. 2022. V. 608. Part 1. P. 186. https://doi.org/10.1016/j.jcis.2021.09.178
  37. Ketegenov T., Kamunur K., Batkal A., et al. // ChemEngineering. 2022. V. 6. № 2. P. 30 (18pp). https://doi.org/10.3390/chemengineering6020030
  38. Shareef A.M., Kadim A.M. // Iraqi J. Sci. 2023. V. 64. № 7. P. 3356. https://doi.org/10.24996/ijs.2023.64.7.17; https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/7184/4354
  39. Ma X., Zhou S., Cao J., et al. // J. Energy Storage. 2024. V. 84. № 18. P. 110710 (9pp). https://doi.org/10.1016/j.est.2024.110710
  40. Уракаев Ф.Х., Юсупов Т.С. Численная оценка кинематических и динамических характеристик обработки минералов в дезинтеграторе // ФТПРПИ. 2017. № 1. С. 135. https://sibran.ru/upload/iblock/1e2/1e2009c5c057dbe17f6cc88cc8690ef2.pdf Urakaev F. Kh., Yusupov T.S. // J. Mining Sci. 2017. V. 53. № 1. P. 133. https://doi.org/10.1134/S1062739117011945]
  41. Уракаев Ф.Х., Массалимов И.А., Юсупов Т.С., и др. // Вестник КазНУ. Сер. хим. 2016. Т. 83. № 3—4. С. 11. http://dx.doi.org/10.15328/cb780; https://bulletin.chemistry.kz/index.php/kaznu/article/view/780/609 [Urakaev F. Kh., Massalimov I.A., Yusupov T.S., et al. // Chem. Bull. Kazakh National Univ. 2016. V. 83. № 3—4. P. 11. http://dx.doi.org/10.15328/cb780]
  42. Массалимов И.А., Массалимов Б.И., Шаяхметов А.У., и др. // Физ. мезомех. 2024. Т. 27. № 3. С. 131. doi: 10.55652/1683-805X_2024_27_3_131-158. [Massalimov I.A., Massalimov B.I., Shayakhmetov A.U., и др. // Phys. Mesomech. 2024. V. 27. № 5. P. 592. https://doi.org/10.1134/S1029959924050084]
  43. Urakaev F. Kh., Khan N.V., Niyazbayeva A.I., et al. // Chimica Techno Acta. 2023. V. 10. № 2. P. 202310213 (8pp). https://doi.org/10.15826/chimtech.2023.10.2.13
  44. Zhang W.Q., Jin D., Liu C.X., et al. // Chem Eng J. 2024. V. 498. P. 155380 (14pp). https://doi.org/10.1016/j.cej.2024.155380
  45. Уракаев Ф.Х. // Коллоид. журн. 2024. Т. 86. № 2. С. 266. doi: 10.31857/S0023291224020119 [Urakaev F.Kh. // Colloid J. 2024. V. 86. No. 2. P. 278. https://doi.org/10.1134/S1061933X23601245]
  46. Ахметов Т.Г., Бусыгин В.М., Гайсин JI.Г., Ахметова Р.Т. Химическая технология неорганических веществ. СПб.: Издательство «Лань». 2019. 452 с. https://e.lanbook.com/book/119611
  47. Дерягина Э.Н., Леванова Е.П., Грабельных В.А., и др. // ЖОХ. 2005. Т. 75. № 2. С. 220. https://elibrary.ru/item.asp?id=9139133 [Deryagina E.N., Levanova, E.P., Grabel’nykh, et al. // Russ. J. Gen. Chem. 2005. V. 75. P. 194. https://doi.org/10.1007/s11176-005-0197-y]
  48. Козлов И.А., Кузнецов Б.Н. Способ растворения элементной серы: Патент RU2184077 // Б.И. 2002. № 7. С. 5. https://www.elibrary.ru/item.asp?id=37882247; https://www.elibrary.ru/download/elibrary_37882247_55649239.pdf
  49. Omori K. // Mineral. J. 1968. V. 5. № 5. P. 334. https://www.jstage.jst.go.jp/article/minerj1953/5/5/5_5_334/_pdf
  50. Bhushana N., Ganganagappa N., Nagabhushana B.M., Shivakumara C. // Philos. Mag. Lett. 2010. V. 90. № 4. P. 289. doi: 10.1080/09500831003636051
  51. Kloprogge J.T., Ruan H., Duong L.V., Frost R.L. // Geol. Mijnb./Neth. J. Geosci. 2001. V. 80. № 2. P. 41. doi: 10.1017/S0016774600022307
  52. Gupta A., Singh P., Shivakumara C. // Solid State Commun. 2010. V. 150. № 9—10. P. 386. https://doi.org/10.1016/j.ssc.2009.11.039
  53. Sifontes Á.B., Cañizales E., Toro-Mendoza J., et al. // J. Nanomater. 2015. V. 2015. P. 510376 (8pp). https://doi.org/10.1155/2015/510376
  54. Meenatchi B, Renuga V. // Chem Sci Trans. 2015. V. 4. № 2. P. 577. https://doi.org/10.7598/cst2015.1028
  55. Danielson L.-G., Chai X.-S., Behm M., Renberg L. // J. Pulp Pap Sci. 1996. V. 22. № 6. P. J187. https://www.researchgate.net/publication/264798173
  56. Liu G., Niu P., Yin L., Cheng H.-M. // J. Am. Chem. Soc. 2012. V. 134. № 22. P. 9070. https://doi.org/10.1021/ja302897b

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Nucleation and Q-enlargement of S/MeSO4 composite particles according to measurements of integral (1, 2, 3) and differential (1, 2, 3) size distribution functions D; S/CaSO4 (a), S/SrSO4 (b), S/BaSO4 (c).

Baixar (1MB)
3. Fig. 2. Dependences of particle sizes (D) of the S/MeSO4 composite (a, b) on the observation time (t); 1 — S/CaSO4, 2 — S/SrSO4, 3 — S/BaSO4.

Baixar (139KB)
4. Fig. 3. Dependences of ln (D, nm)–t, min for S/CaSO4 particles on the concentration of sulfuric acid, wt.%: 10 (1), 12.5 (2), 15 (3), 17.5 (4), 20% (5).

Baixar (58KB)
5. Fig. 4. Effect of neonol concentration: 0.5 (1), 0.3 (2), 0.1 (3), 0 wt. % on the lnD –t dependences for S/CaSO4 particles.

Baixar (60KB)
6. Fig. 5. Effect of temperature: 25 (1), 35 (2), 45 (3), 55 (4), 65 (5), 75 (6), 85 (7), 95°C (8); on the lnD –t dependence for S/CaSO4 particles (a); (b) — the lnQ—T-1 function constructed according to the data (a).

Baixar (128KB)
7. Fig. 6. Dependences ln D — t for individual particles of sulfur and SSZM: (a) — nanosulfur obtained by reaction (5), (b) — 1 — CaSO4, 2 — SrSO4, 3 — BaSO4; the inset (a) shows the SRS data for the initial distribution of sulfur particles by size.

Baixar (142KB)
8. Fig. P1. IR spectra of MeSO4 nanoparticles: (a) – CaSO4; (b) – SrSO4; (c) – BaSO4.

Baixar (182KB)
9. Fig. P2. Images of sulfur and SSZM nanoparticle samples at SEM resolutions of 3÷5 μm (a–g) and 100 μm (d–g): S — (a); CaSO4 — (b, d); SrSO4 — (c, e); BaSO4 — (d, g).

Baixar (465KB)
10. Fig. P3. X-ray phase analysis of samples of SSZM nanoparticles: (a) — CaSO4; (b) — SrSO4; (c) — BaSO4.

Baixar (639KB)
11. Fig. P4. Lengths of roots and shoots (L, %) for nanosulfur and S/CaCO3 and S/CaSO4 nanocomposites compared to the control (watering only).

Baixar (148KB)
12. Fig. P5. Hydrophobic properties of S/CaSO4 using the example of the behavior of a drop of water on their surface.

Baixar (217KB)
13. Supplement
Baixar (2MB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025