The use of a li-ion battery recycling product for the synthesis of the manganese based max-phase

Cover Page

Cite item

Full Text

Abstract

In recent years, with the growing popularity of electric vehicles and other battery-powered devices, there has been a significant increase in demand for lithium-ion batteries (LIBs). These batteries have become the main power source for most portable devices and electric vehicles, such as the Nissan Leaf. However, with the increase in LIB production and consumption, there is not only the question of ensuring their efficient production but also the need for environmentally safe recycling. The recycling process of used LIBs involves extracting valuable components such as lithium, cobalt, nickel, and manganese. Efficient recycling of cathode materials becomes particularly important as it allows both the reuse of these metals in new battery production and reduces the need for resource mining. Manganese (Mn), which can be extracted during LIB recycling, not only plays a crucial role in battery production but can also serve as a basis for synthesizing new materials, such as the Mn3AlC MAX phase. Manganese MAX phases represent a class of two-dimensional materials that are attracting increasing attention from researchers due to their unique properties. Thus, lithium-ion battery recycling not only solves the waste disposal problem but also creates opportunities for developing new materials.

Full Text

Restricted Access

About the authors

O. O. Shichalin

Sakhalin State University; Far Eastern Federal University

Author for correspondence.
Email: oleg_shich@mail.ru
Russian Federation, Yuzhno-Sakhalinsk; Vladivostok

Z. E. Kornakova

Sakhalin State University; Far Eastern Federal University

Email: oleg_shich@mail.ru
Russian Federation, Yuzhno-Sakhalinsk; Yuzhno-Sakhalinsk

N. P. Ivanov

Far Eastern Federal University

Email: oleg_shich@mail.ru
Russian Federation, Vladivostok

A. I. Seroshtan

Sakhalin State University

Email: oleg_shich@mail.ru
Russian Federation, Yuzhno-Sakhalinsk

P. A. Marmaza

Sakhalin State University

Email: oleg_shich@mail.ru
Russian Federation, Yuzhno-Sakhalinsk

K. V. Barkhudarov

Far Eastern Federal University

Email: oleg_shich@mail.ru
Russian Federation, Far Eastern Federal University

D. K. Tsygankov

Far Eastern Federal University

Email: oleg_shich@mail.ru
Russian Federation, Vladivostok

E. A. Shramkov

National Research Center "Kurchatov Institute"; Moscow Institute of Physics and Technology (National Research University)

Email: oleg_shich@mail.ru
Russian Federation, Moscow; Dolgoprudny

I. A. Likhachev

National Research Center "Kurchatov Institute"

Email: oleg_shich@mail.ru
Russian Federation, Moscow

E. K. Papynov

Far Eastern Federal University

Email: oleg_shich@mail.ru
Russian Federation, Vladivostok

References

  1. Zhao P., Li Y., Wang X. et al. // Separation and Purification Technology. 2025. V. 357. P. 129988. https://doi.org/10.1016/j.seppur.2024.129988.
  2. Fan Х., Song С., Lu X. et al. // J. Alloys. Compd. 2021. V. 863. P. 158775. https://doi.org/10.1016/j.jallcom.2021.158775
  3. Li P., Luo S., Zhang L. et al. // J. Energy Chem. 2024. V. 89. P. 144. https://doi.org/10.1016/j.jechem.2023.10.012
  4. Golmohammadzadeh R., Faraji F., Jong B. et al. // Renew. Sustain. Energy Rev. 2022. V. 159. Р. 112202. https://doi.org/10.1016/j.rser.2022.112202
  5. Xu C., Dai Q., Gaines L. et al. // Commun. Mater. 2020. V. 1. Р. 99. https://doi.org/10.1038/s43246-020-00095-x
  6. Wang J., Liang Z., Zhao Y. et al. // Energy S. 2022. V. 45. P. 768. https://doi.org/10.1016/j.ensm.2021.12.013
  7. Lin J., Zhang X., Fan E. // Energ. Environ. Sci. 2023. V. 16. P. 745. https://doi.org/10.1039/d2ee03257k
  8. Zhang B., Chen S., Yang L. et al. // ACS Nano. 2024. V. 18. P. 23773. https://doi.org/10.1021/acsnano.4c08968
  9. Medvedeva A.E., Pechen L.S., Makhonina E.V. et al. // Russ. J. Inorg. Chem. 2019. V. 64. P. 829. https://doi.org/10.1134/S003602361907012X
  10. Xing C., Meng Y., Linfeng Fei F. // Energy Storage Materials. 2024. V. 71. P. 103636. https://doi.org/10.1016/j.ensm.2024.103636
  11. Qu X., Zhang B., Zhao J. et al. // Green Chem. 2023. V. 25. P. 29925. https://doi.org/10.1039/d2gc04620b
  12. Belmesov A., Glukh A., Kayumo R. et al. // Coatings. 2023. V. 13. P. 2075. https://doi.org/10.3390/coatings13122075
  13. Belmesov A., Glukhov A., Tsvetkov M. et al. // J. Comp. Cos. Sci. V. 7. P.454. https://doi.org/10.3390/jcs7110454
  14. Buravlev I., Vornovskikh A., Shichalin O. et al. // Ceram. Int. V. 50. P. 14445. https://doi.org/10.1016/j.ceramint.2024.01.357
  15. Wang J.X., Ma J., Zhuang Z.F. et al. // Chem. Rev. 2024. V. 124. P. 2839. https://doi.org/10.1021/acs.chemrev.3c00884
  16. Zhang X., Li L., Fan E. et al. // Chem. Soc. Rev. 2018. V. 47. P. 7239. https://doi.org/10.1039/c8cs00297e
  17. Yu W., Guo Y., Shang Z. et al. // eTransportation. 2022. V. 11. P. 100155. https://doi.org/10.1016/j.etran.2022.100155
  18. Gao Z., Huang M., Yang L. et al. // J. Energy Chem.. 2023. V. 78. P. 253. https://doi.org/10.1016/j.jechem.2022.11.061
  19. Shichalin O.O., Ivanov N.P., Seroshtan A.I. et al. // Ceramics International. 2024. V. 50. № 24. P. 53120. https://doi.org/10.1016/j.ceramint.2024.10.161
  20. Mahmood A., Gill R., Raffi M. et al. // Diamond Related Mater. 2023. V. 303. P. 110387. https://doi.org/10.1016/j.diamond.2023.110387
  21. Kalmár J., Karlický F. // Phys. Chem. Chem. Phys. 2024. V. 29. https://doi.org/10.1039/D4CP02264E
  22. Eklund P., Rosen J., Persson P. // J. Phys. D: Appl. Phys. 2017. P. 113001. https://doi.org/10.1088/1361-6463/aa57bc
  23. Jiahe P., Xingzhu C., Wee-Jun O. et al. // Chem. 2019. V. 5. № 1. P. 18. https://doi.org/10.1016/j.chempr.2018.08.037
  24. Yang X., Zhang Y., Meng Q. et al. // RSC Adv. 2021. V. 11. P. 268. https://doi.org/10.1039/d0ra09297e
  25. Eraky M.S., El-Sadek M., Shenouda A.Y. et al. // Monatshefte fur Chemie – Chem. Monthly. 2024. V. 155. P. 289. https://doi.org/10.1007/s00706-024-03173-9

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of recycling of LIB from Nissan Leaf.

Download (417KB)
3. Fig. 2. X-ray phase and structural analysis of isolated MnO2 from the Nissan Leaf LIB: a) diffraction pattern of isolated MnO2; b) SEM images.

Download (324KB)
4. Fig. 3. X-ray phase analysis of the obtained MAX-phase Mn3AlC.

Download (134KB)
5. Fig. 4. Distribution of elements and SEM images of the obtained MAX-phase Mn3AlC.

Download (996KB)
6. Fig. 5. TEM images of the MAX phase of Mn3AlC. XRD of the obtained MAX phase of Mn3AlC.

Download (220KB)
7. Fig. 6. X-ray phase analysis of the obtained Mn7C3 and Mn5C2 MXene.

Download (129KB)
8. Fig. 7. SEM images of the obtained MXene.

Download (515KB)

Copyright (c) 2025 Russian Academy of Sciences