Synthesis and investigation of composite sorbents based on mixed K-Co and K-Cu ferrocyanides for cesium extraction from aqueous media

Capa

Citar

Texto integral

Resumo

A new method of creating composite sorption materials based on mixed K-Co and K-Cu ferrocyanides using polyethylene is proposed. The uniqueness of this method lies in the hydrophobisation of the material by integrating polyethylene fibres into the ferrocyanide structure. The surface morphology and structure of the obtained sorbents were investigated by scanning electron microscopy, X-ray phase analysis and low-temperature nitrogen adsorption. The peculiarities of extraction of micro- and macro concentrations of Cs+ cations and 137Cs radionuclide from sea water under static conditions were studied. The approximation of experimental sorption data using the Langmuir and Freundlich equations has been carried out, and the values of limiting sorption Gmax and adsorption equilibrium constant Kl have been calculated. It is demonstrated that the sorbents synthesised with the addition of polyethylene have the best sorption characteristics, achieving up to 99% purification of seawater from caesium ions. The average distribution coefficient of caesium in seawater is 3.8×10^4 ml/g at a solid-to-liquid phase ratio of 1000 ml/g, which indicates the prospects of their application for purification of seawater from radiocaesium.

Texto integral

Acesso é fechado

Sobre autores

А. Drankov

Far Eastern Federal University

Autor responsável pela correspondência
Email: artur.drankov@gmail.com
Rússia, Vladivostok

V. Balybina

Far Eastern Federal University

Email: artur.drankov@gmail.com
Rússia, Vladivostok

A. Zarubobo

The Joint Institute for Power and Nuclear Research–Sosny of the National Academy of Sciences of Belarus

Email: artur.drankov@gmail.com
Belarus, Minsk

V. Milutin

Institute of Physical Chemistry and Electrochemistry A.A. Frumkin, Russian Academy of Sciences

Email: artur.drankov@gmail.com
Rússia, Moscow

A. Lembikov

Far Eastern Federal University

Email: artur.drankov@gmail.com
Rússia, Vladivostok

S. Pisarev

Far Eastern Federal University

Email: artur.drankov@gmail.com
Rússia, Vladivostok

E. Ponomareva

Far Eastern Federal University

Email: artur.drankov@gmail.com
Rússia, Vladivostok

N. Savelyev

Far Eastern Federal University

Email: artur.drankov@gmail.com
Rússia, Vladivostok

N. Kokorina

Far Eastern Federal University

Email: artur.drankov@gmail.com
Rússia, Vladivostok

Bibliografia

  1. Авраменко В.А., Железнов В.В., Майоров В.Ю. и др. // Современные проблемы науки и образования. 2013. № 5.
  2. Alshuraiaan B., Pushkin S., Kurilova A. et al. // Energies. 2021. V. 14. № 12. P. 3079. https://doi.org/10.3390/en14123709
  3. Diaz-Maurin F., Sun H.C., Yu J. et al. // Mater. Res. Soc. 2019. № 4. P. 959. https://doi.org/10.1557/adv.2018.636
  4. Gupta N.K., Sengupta A., Gupta A. et al. // J. Environ. Chem. Eng. 2018. V. 6. № 2. P. 2159. https://doi.org/10.1016/j.jece.2018.03.021
  5. Avramenko V.A., Burkov I.S., Zheleznov V.V. et al. // At. Energ. 2002. V. 92. № 6. Р. 488.
  6. Avramenko V.A., Egorin A.M., Papynov E.K. et al. // Radiochem. 2017. V. 59. № 4. P. 407. https://doi.org/10.1134/S1066362217040142
  7. Милютин В.В., Гелис В.М., Козлитин Е.А. и др. // Вопросы радиационной безопасности. 2013. № 4. С. 23.
  8. Тананаев И.Г., Авраменко В.А. // Журн. Белорус. гос. ун-та. Сер. Экология. 2017. № 4. С. 33.
  9. Tananaev I.V., Seifer G.B., Kharitonov Yu.Ya. et al. // Ferrocyanide Chemistry. M.: Nauka. 1971.
  10. Sharygin L.M., Borovkova O.L., Kalyagina M.L. et al. // Radiochem. 2013. V. 55. № 1. P. 91. https://doi.org/10.1134/S1066362213010177
  11. Zemskova L.A., Egorin A.M., Tokar E.A. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1268. https://doi.org/10.1134/S0036023621090175
  12. Tokar’ E., Zemskova L., Tutov M. et al. // J. Radioanal. Nucl. Chem. 2020. V. 325. P. 567. https://doi.org/10.1007/s10967-020-07248-9
  13. Remez V.P., Zelenin V.I., Smirnov A.L. et al. // Sorbts. Khromatogr. Prots. 2009. V. 9. P. 739.
  14. Bezhin N.A., Dovhyi I.I., Milyutin V.V. et al. // J. Radioanal. Nucl. Chem. 2021. V. 327. P. 1095. https://doi.org/10.1007/s10967-020-07588-6
  15. Han F., Zhang G.H., Gu P.J. et al. // Radioanal. Nucl. Chem. 2013. V. 295. P. 369. https://doi.org/10.1007/s10967-012-1854-3
  16. Prout W.E., Russell E.R., Groh H.J. et al. // J. Inorg. Nucl. Chem. 1965. V. 27. P. 473. https://doi.org/10.1016/0022- 1902(65)80367 -0
  17. Vincent C., Hertz A., Vincent T. et al. // Chem. Eng. J. 2014. V. 236. P. 202. https://doi.org/10.1016/j.cej.2013.09.087
  18. Zheleznov V.V., Vysotskii V.L. // At. Energ. 2002. V. 92. P. 493. https://doi.org/10.1023/A:1020270300242
  19. Kosyakov V.N., Veleshko A.N., Veleshk I.E. // Radiochem. 2006. V. 48. P. 589. https://doi.org/10.1134/S1066362206060099
  20. Egorin A., Tokar E., Zemskova L. et al. // Radiochim. Acta. 2016. V. 104. P. 657. https://doi.org/10.1080/01496395.2017.1321669
  21. Papynov E.K., Dran'kov A.N., Tkachenko I.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 6. P. 820. https://doi.org/10.1134/S0036023620060157
  22. Balybina V., Dran'kov A., Tananaev I. et al. // Mater. Sci. Forum. 2021. V. 1045. P. 141. https://doi.org/10.4028/www.scientific.net/MSF.1045.141
  23. Papynov E.K., Mayorov V.Y., Palamarchuk M.S. et al. // J. Sol-Gel Sci. Technol. 2013. V. 68. P. 374. https://doi.org/10.1007/s10971-013-3039-0
  24. Svetogorov R., Dorovatovskii P., Lazarenko V. // Cryst. Res. Technol. 2020. V. 55. P. 1900184. https://doi.org/10.1002/crat.201900184
  25. Светогоров Р.Д. Dionis – Diffraction Open Integration Software. Cвидетельство о государственной регистрации программы для ЭВМ № 2018660965.
  26. Dran'kov A., Shichalin O., Papynov E. et al. // Nucl. Eng. Technol. 2022. V. 54. P. 1991. https://doi.org/10.1016/j.net.2021.12.010
  27. Momma K., Izumi, F. // J. Appl. Crystallogr. 2011. V. 44. P. 1272. http://dx.doi.org/10.1107/S0021889811038970
  28. Вольхин В.В., Зильберман М.В., Колесова С.А. и др. // Журн. прикл. химии. 1975. Т. 48. С. 54.
  29. Valsala T.P., Joseph A., Shah J.G. et al. // J. Nucl. Mater. 2009. V. 384. № 2. P. 146.
  30. Loos-Neskovic C., Ayrault S., Badillo V. et al. // J. Solid State Chem. 2004. V. 177. № 6. P. 1817.
  31. Giles C.H., MacEwan T.H., Nakhwa S.N. et al. // J. Chem. Soc. 1960. V. 14. P. 3973. http://dx.doi.org/10.1039/jr9600003973

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. X-ray diffraction patterns of FC K-Cu and FC K-Co, the composition of the samples is presented in Table 3.

Baixar (146KB)
3. Fig. 2. Crystal structure of PC K-Co (a) and PC K-Cu (b) with marked Miller planes in Vesta software [25].

Baixar (363KB)
4. Fig. 3. SEM images of the surface of mixed ferrocyanides: a – PC K-Co-PE with the addition of polyethylene, b – PC K-Cu-PE with the addition of polyethylene.

Baixar (1MB)
5. Fig. 4. Low-temperature nitrogen sorption–desorption isotherms and histograms of pore size distribution calculated by the DFT method for PC K-Co-PE (a) and PC K-Cu-PE (b).

Baixar (295KB)
6. Fig. 5. Isotherms of 133Cs sorption from distilled water solutions: a – FC K-Co-Pe, b – FC K-Cu-Pe; approximation of experimental values ​​(1), using the Freundlich equation (2).

Baixar (168KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025