Magnetic materials based on iron-silicon containing frameworks

详细

Polyferrophenylsiloxanes based on iron(III) chelate and polyphen-ylsiloxane with various ratios of siloxane and sodium hydroxide under mechanochemical activation conditions have been obtained. It is shown that after precipitation with petroleum ether, the yields of polymers are in the range of 37-52%. The polyferrophenylsiloxane composition closest to the given composition was obtained at a Si : Na ratio of 1. The obtained compo-sites were studied by IR spectroscopy, diffractometry, gel chromatography, and thermogravimetry. An XRD study showed the incorporation of iron at-oms into the siloxane structure. The presence of sodium ions during the course of the reaction in subsequent syntheses made it possible to bind the released acetylacetone and obtain polyferrophenylsiloxane with a given Si : Fe ratio. However, with a further increase in the hydroxide content, the Si : Fe ratio was violated. The study of the magnetic properties of polyferro-phenylsiloxanes showed that they are superparamagnets. After heating them to 600°C, the magnetization sharply increases (magnetic saturation) and hysteresis is observed.

全文:

受限制的访问

作者简介

N. Shapkin

Far Eastern Federal University

Email: d.edd@mail.ru
俄罗斯联邦, Vladivostok

I. Khal’chenko

Far Eastern Federal University

Email: d.edd@mail.ru
俄罗斯联邦, Vladivostok

E. Tokar

Far Eastern Federal University; Sakhalin State University

编辑信件的主要联系方式.
Email: d.edd@mail.ru
俄罗斯联邦, Vladivostok; Yuzhno-Sakhalinsk

A. Matskevich

Far Eastern Federal University; Sakhalin State University

Email: d.edd@mail.ru
俄罗斯联邦, Vladivostok; Yuzhno-Sakhalinsk

V. Pechnikov

Far Eastern Federal University

Email: d.edd@mail.ru
俄罗斯联邦, Vladivostok

K. Pervakov

Far Eastern Federal University

Email: d.edd@mail.ru
俄罗斯联邦, Vladivostok

V. Zubchenko

Far Eastern Federal University

Email: d.edd@mail.ru
俄罗斯联邦, Vladivostok

参考

  1. Sahoo P.K., Bose A., Mal P. // Eur. J. Org. Chem. 2015. V. 32. P. 6994. https://doi.org/10.1002/ejoc.201501039
  2. Hyatt M.G., Allenbaugh R.J. // Liq. Cryst. 2014. V. 42. № 1. Р. 113. https://doi.org/10.1080/02678292.2014.965764
  3. Balczar J., Korim T., Kovacs A., Masko E. // Ceram. Int. 2016. V. 42. № 14. P. 15367. https://doi.org/10.1016/i.ceramint.2016.06.182
  4. Ворсина И.А., Григорьева Т.Ф., Боядыров В.В., Баранова А.Е. // Неорганические материалы. 1996. Т. 32. № 2. С. 214.
  5. Landim L.B., Miranda E.O., de Araujo N.A. et al. // J. Cleaner Product. 2019. V. 238. P. 117742. https://doi.org/10.1016/j.jcle-pro.2019.117742.
  6. Душкин А.В., Метелева Е.С., Толстикова Т.Г., Хвостов М.В. // Химия в интересах устойчивого развития. 2010. № 18. C. 719.
  7. Левицкий М.И., Завин Б.Г., Биляченко А.Н. // Успехи химии. 2007. Т. 76. С. 907. https://doi.org/10.1070/RC2007v076n09ABEH003691
  8. Ponomarenko A.G., Chigarenco G.G., Bicherov B.G. // Erich and Wire. 2010. V. 5. P. 387. https://doi.org/10.3103/S1068366610050119
  9. Leontiev L.B., Shapkin N.P. // Erich and Wire. 2020. V. 41. P. 252. https://doi.org/10.3103/S1068366620030095
  10. Воронков М.Г., Аликовский А.В., Золотарь Г.Я. // Доклад АН СССР Серия химия. 1985. Т. 281. № 4. С. 858.
  11. Воронков М.Г., Малетина Е.А., Реман В.К. // Гетеросилоксаны. Наука. Новосибирск. 1984. 365 c.
  12. Сергиенко Н.В., Черкун Н.В., Мякушев В.Д. и др. // Известия АН РФ. Серия химия. 2010. №7. С. 1340. https://doi.org/10.1007/s11172-010-0248-3
  13. Shapkin N.P., Kapustina A.A., Gardionov S.V. et al. // Silicon. 2019. V. 11. № 5. P. 2261. https://doi.org/ 10.1007/s12633-017-9551-z
  14. Shapkin N.P., Kapustina A.A., Dombai N.V. et al. // Polymer Bulletin. 2020. V. 77. № 3. P. 1177. https://doi.org/10.1007/s00289-019-02790-3
  15. Shapkin N.P., Tokar E.A., Gardionov S.V. et al. // Key Engineering Materials. 2021. V. 887. P. 184. https://doi.org/ 10.4028/www.scientific.net/KEM.887.184
  16. Broun. // Polymer Sci. C. 1963.V. 1. P. 83. https://doi.org/10.1002/pi.1938
  17. Shapkin N.P., Khalchenko I.G., Papynov E.K. // IOP Conference Series: Mater. Sci. Eng. V. 889. № 1. P. 2020. https://doi.org/10.1088/1757-899X/889/1/012022
  18. Аликовский А.В., Бессонова В.И., Золотарь Г.Я. и др. // Известия Вузов. Химия и химическая технология. 2004. Т. 47. № 4. С. 62.
  19. Андрианов К.А. // Методы элементоорганической химии. Кремний. М. Наука. 1968. 699 с.
  20. Dismukis J.R., Jones L.H., Bailar J.C.J. // Phys. Chem. 1961. V. 65. P. 792. https://doi.org/10.1021/j100823a021
  21. Beech G., Lintonbon R.M. // Termochimica acta. 1971. № 3. Р. 97. https://doi.org/10.1016/0040-6031(71)85027-X
  22. Jaber M., Mieche-Brendle J., Poux M. et al. // New. J. Chem. 2002. V. 26. P. 1597. https://doi.org/10.1039/B206516A
  23. Miller R.L., Boyer R.F. // Polymer. Sci. Polym. Phys. Edition. 1984. V. 22. P. 2043. https://doi.org/10.1002/pol.1984.180221204
  24. Шапкин Н.П., Кульчин Ю.Н., Разов В.И. и др. // Известия АН СССР. 2011. Т. 60. № 8. С. 1640. https://doi.org/10.1007/s11172-011-0245-1
  25. Nakamoto K., McCarthy P.J., Martell A.E. // J. Am. Chem. Soc. V. 83. P. 1272. https://doi.org/10.1021/ja01467a003

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. TGA data of polymers 1 (a), 2 (b), 3 (c).

下载 (373KB)
3. Fig. 2. Gel chromatograms of polymers 1 (a), 2 (b), 3 (c).

下载 (80KB)
4. Fig. 3. IR spectra of polymers 1 (a), 2 (b), 3 (c).

下载 (186KB)
5. Fig. 4. Diffraction patterns of polymers 1 (a), 2 (b), 3 (c).

下载 (164KB)
6. Fig. 5. Dependence of specific magnetization on the strength of the applied field for polymers 1 (a), 2 (b) and 3 (c).

下载 (131KB)
7. Fig. 6. Dependence of the specific magnetization of the sample on temperature for polymers 1 (a), 2 (b), 3 (c).

下载 (177KB)
8. Fig. 7. Dependence of specific magnetization on the strength of the applied field for polymers 1 (a), 2 (b), 3 (c) after their calcination.

下载 (199KB)

版权所有 © Russian Academy of Sciences, 2025