Magnetic materials based on iron-silicon containing frameworks

Abstract

Polyferrophenylsiloxanes based on iron(III) chelate and polyphen-ylsiloxane with various ratios of siloxane and sodium hydroxide under mechanochemical activation conditions have been obtained. It is shown that after precipitation with petroleum ether, the yields of polymers are in the range of 37-52%. The polyferrophenylsiloxane composition closest to the given composition was obtained at a Si : Na ratio of 1. The obtained compo-sites were studied by IR spectroscopy, diffractometry, gel chromatography, and thermogravimetry. An XRD study showed the incorporation of iron at-oms into the siloxane structure. The presence of sodium ions during the course of the reaction in subsequent syntheses made it possible to bind the released acetylacetone and obtain polyferrophenylsiloxane with a given Si : Fe ratio. However, with a further increase in the hydroxide content, the Si : Fe ratio was violated. The study of the magnetic properties of polyferro-phenylsiloxanes showed that they are superparamagnets. After heating them to 600°C, the magnetization sharply increases (magnetic saturation) and hysteresis is observed.

Full Text

Restricted Access

About the authors

N. P. Shapkin

Far Eastern Federal University

Email: d.edd@mail.ru
Russian Federation, Vladivostok

I. G. Khal’chenko

Far Eastern Federal University

Email: d.edd@mail.ru
Russian Federation, Vladivostok

E. A. Tokar

Far Eastern Federal University; Sakhalin State University

Author for correspondence.
Email: d.edd@mail.ru
Russian Federation, Vladivostok; Yuzhno-Sakhalinsk

A. I. Matskevich

Far Eastern Federal University; Sakhalin State University

Email: d.edd@mail.ru
Russian Federation, Vladivostok; Yuzhno-Sakhalinsk

V. S. Pechnikov

Far Eastern Federal University

Email: d.edd@mail.ru
Russian Federation, Vladivostok

K. A. Pervakov

Far Eastern Federal University

Email: d.edd@mail.ru
Russian Federation, Vladivostok

V. B. Zubchenko

Far Eastern Federal University

Email: d.edd@mail.ru
Russian Federation, Vladivostok

References

  1. Sahoo P.K., Bose A., Mal P. // Eur. J. Org. Chem. 2015. V. 32. P. 6994. https://doi.org/10.1002/ejoc.201501039
  2. Hyatt M.G., Allenbaugh R.J. // Liq. Cryst. 2014. V. 42. № 1. Р. 113. https://doi.org/10.1080/02678292.2014.965764
  3. Balczar J., Korim T., Kovacs A., Masko E. // Ceram. Int. 2016. V. 42. № 14. P. 15367. https://doi.org/10.1016/i.ceramint.2016.06.182
  4. Ворсина И.А., Григорьева Т.Ф., Боядыров В.В., Баранова А.Е. // Неорганические материалы. 1996. Т. 32. № 2. С. 214.
  5. Landim L.B., Miranda E.O., de Araujo N.A. et al. // J. Cleaner Product. 2019. V. 238. P. 117742. https://doi.org/10.1016/j.jcle-pro.2019.117742.
  6. Душкин А.В., Метелева Е.С., Толстикова Т.Г., Хвостов М.В. // Химия в интересах устойчивого развития. 2010. № 18. C. 719.
  7. Левицкий М.И., Завин Б.Г., Биляченко А.Н. // Успехи химии. 2007. Т. 76. С. 907. https://doi.org/10.1070/RC2007v076n09ABEH003691
  8. Ponomarenko A.G., Chigarenco G.G., Bicherov B.G. // Erich and Wire. 2010. V. 5. P. 387. https://doi.org/10.3103/S1068366610050119
  9. Leontiev L.B., Shapkin N.P. // Erich and Wire. 2020. V. 41. P. 252. https://doi.org/10.3103/S1068366620030095
  10. Воронков М.Г., Аликовский А.В., Золотарь Г.Я. // Доклад АН СССР Серия химия. 1985. Т. 281. № 4. С. 858.
  11. Воронков М.Г., Малетина Е.А., Реман В.К. // Гетеросилоксаны. Наука. Новосибирск. 1984. 365 c.
  12. Сергиенко Н.В., Черкун Н.В., Мякушев В.Д. и др. // Известия АН РФ. Серия химия. 2010. №7. С. 1340. https://doi.org/10.1007/s11172-010-0248-3
  13. Shapkin N.P., Kapustina A.A., Gardionov S.V. et al. // Silicon. 2019. V. 11. № 5. P. 2261. https://doi.org/ 10.1007/s12633-017-9551-z
  14. Shapkin N.P., Kapustina A.A., Dombai N.V. et al. // Polymer Bulletin. 2020. V. 77. № 3. P. 1177. https://doi.org/10.1007/s00289-019-02790-3
  15. Shapkin N.P., Tokar E.A., Gardionov S.V. et al. // Key Engineering Materials. 2021. V. 887. P. 184. https://doi.org/ 10.4028/www.scientific.net/KEM.887.184
  16. Broun. // Polymer Sci. C. 1963.V. 1. P. 83. https://doi.org/10.1002/pi.1938
  17. Shapkin N.P., Khalchenko I.G., Papynov E.K. // IOP Conference Series: Mater. Sci. Eng. V. 889. № 1. P. 2020. https://doi.org/10.1088/1757-899X/889/1/012022
  18. Аликовский А.В., Бессонова В.И., Золотарь Г.Я. и др. // Известия Вузов. Химия и химическая технология. 2004. Т. 47. № 4. С. 62.
  19. Андрианов К.А. // Методы элементоорганической химии. Кремний. М. Наука. 1968. 699 с.
  20. Dismukis J.R., Jones L.H., Bailar J.C.J. // Phys. Chem. 1961. V. 65. P. 792. https://doi.org/10.1021/j100823a021
  21. Beech G., Lintonbon R.M. // Termochimica acta. 1971. № 3. Р. 97. https://doi.org/10.1016/0040-6031(71)85027-X
  22. Jaber M., Mieche-Brendle J., Poux M. et al. // New. J. Chem. 2002. V. 26. P. 1597. https://doi.org/10.1039/B206516A
  23. Miller R.L., Boyer R.F. // Polymer. Sci. Polym. Phys. Edition. 1984. V. 22. P. 2043. https://doi.org/10.1002/pol.1984.180221204
  24. Шапкин Н.П., Кульчин Ю.Н., Разов В.И. и др. // Известия АН СССР. 2011. Т. 60. № 8. С. 1640. https://doi.org/10.1007/s11172-011-0245-1
  25. Nakamoto K., McCarthy P.J., Martell A.E. // J. Am. Chem. Soc. V. 83. P. 1272. https://doi.org/10.1021/ja01467a003

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. TGA data of polymers 1 (a), 2 (b), 3 (c).

Download (373KB)
3. Fig. 2. Gel chromatograms of polymers 1 (a), 2 (b), 3 (c).

Download (80KB)
4. Fig. 3. IR spectra of polymers 1 (a), 2 (b), 3 (c).

Download (186KB)
5. Fig. 4. Diffraction patterns of polymers 1 (a), 2 (b), 3 (c).

Download (164KB)
6. Fig. 5. Dependence of specific magnetization on the strength of the applied field for polymers 1 (a), 2 (b) and 3 (c).

Download (131KB)
7. Fig. 6. Dependence of the specific magnetization of the sample on temperature for polymers 1 (a), 2 (b), 3 (c).

Download (177KB)
8. Fig. 7. Dependence of specific magnetization on the strength of the applied field for polymers 1 (a), 2 (b), 3 (c) after their calcination.

Download (199KB)

Copyright (c) 2025 Russian Academy of Sciences