Влияние природы растворителя на спиновое равновесие в растворах фенилборатного гекса-н-бутилсульфидного клатрохелата кобальта(II) по данным парамагнитной спектроскопии ЯМР

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Методом парамагнитной ЯМР-спектроскопии изучено спиновое состояние фенилборатного гекса-н-бутилсульфидного клатрохелата кобальта(II) в его растворах. Показано, что этот клеточный комплекс претерпевает температурно-индуцированный спиновый переход в растворителях различной природы (ацетонитриле, хлороформе, хлористом метилене и бензоле). Разработанный нами ранее метод анализа парамагнитных сдвигов в ЯМР-спектрах позволил определить термодинамические параметры (энтальпию и энтропию) спинового равновесия в этих растворах. Показано, что, несмотря на конформационную жесткость макробициклических трис-диоксиматных молекул, наблюдаются существенные изменения в их электронной структуре и параметрах спинового равновесия в зависимости от полярности используемого растворителя. Это открывает возможности для тонкой настройки характеристик спинового переключателя путем изменения этой характеристики среды.

Полный текст

Доступ закрыт

Об авторах

Д. Ю. Алешин

Институт общей и неорганической химии им. Н. С. Курнакова РАН; Московский государственный технический университет им. Н. Э. Баумана

Email: a.pavlov@emtc.ru
Россия, Москва; Москва

В. В. Злобина

Московский физико-технический институт

Email: a.pavlov@emtc.ru
Россия, Долгопрудный

А. С. Белов

Институт элементоорганических соединений им. А. Н. Несмеянова РАН

Email: a.pavlov@emtc.ru
Россия, Москва

Я. З. Волошин

Институт элементоорганических соединений им. А. Н. Несмеянова РАН

Email: a.pavlov@emtc.ru
Россия, Москва

А. А. Павлов

Московский государственный технический университет им. Н. Э. Баумана; Институт элементоорганических соединений им. А. Н. Несмеянова РАН

Автор, ответственный за переписку.
Email: a.pavlov@emtc.ru
Россия, Москва; Москва

Список литературы

  1. Gamez P., Costa J. S., Quesada M. et al. // Dalton Trans. 2009. № 38. P. 7845.
  2. Kumar K. S., Ruben M. // Angew. Chem. Int. Ed. 2021. V. 60. № 14. P. 7502.
  3. Lefter C., Davesne V., Salmon L. et al. // Magnetochemistry. 2016. V. 2. № 1. P. 18.
  4. Manrique-Juarez M.D., Rat S., Salmon L. et al. // Coord. Chem. Rev. 2016. V. 308. P. 395.
  5. Jeon I.-R., Park J. G., Haney C. R. et al. // Chem. Sci. 2014. V. 5. № 6. C. 2461.
  6. Gentili D., Demitri N., Schäfer B. et al. // J. Mater. Chem. C. 2015. V. 3. № 30. P. 7836.
  7. Tissot A., Kesse X., Giannopoulou S. et al. // Chem. Commun. 2019. V. 55. № 2. P. 194.
  8. Wei R.-J., Tao J., Huang R.-B. et al. // Inorg. Chem. 2011. V. 50. № 17. P. 8553.
  9. Lada Z. G., Andrikopoulos K. S., Mathioudakis G. N. et al. // Magnetochemistry. 2022. V. 8. № 2. P. 16.
  10. Clemente-Juan J.M., Coronado E., Gaita-Ariño A. // Chem. Soc. Rev. 2012. V. 41. № 22. P. 7464.
  11. Bousseksou A., Boukheddaden K., Goiran M. et al. // Phys. Rev. B. 2002. V. 65. № 17. P. 172412.
  12. Gütlich P., Ksenofontov V., Gaspar A. B. // Coord. Chem. Rev. 2005. V. 249. № 17–18. P. 1811.
  13. Ohkoshi S.-i., Hashimoto K. // J. Photochem. Photobiol. 2001. V. 2. № 1. P. 71.
  14. Hosokawa H., Funasako Y., Mochida T. // Chem. Eur. J. 2014. V. 20. № 46. P. 15014.
  15. Halcrow M. A. // Coord. Chem. Rev. 2009. V. 253. № 21–22. P. 2493.
  16. Halcrow M. A. // Crystals. 2016. V. 6. № 5. P. 58.
  17. Krivokapic I., Zerara M., Daku M. L. et al. // Coord. Chem. Rev. 2007. V. 251. № 3–4. P. 364.
  18. Hayami S., Komatsu Y., Shimizu T. et al. // Coord. Chem. Rev. 2011. V. 255. № 17–18. P. 1981.
  19. Voloshin Y. Z., Kostromina N. A., Krämer R. Clathrochelates: Synthesis, Structure and Properties. Elsevier, 2002. 419 p.
  20. Voloshin Y., Belaya I., Krämer R. Cage Metal Complexes: Clathrochelates Revisited. Springer, 2017. 467 p.
  21. Novikov V. V., Pavlov A. A., Belov A. S. et al.// J. Phys. Chem. Lett. 2014. V. 5. № 21. P. 3799–3803.
  22. Voloshin Y. Z., Novikov V. V., Nelyubina Y. V. // RSC Adv. 2015. V. 5. № 89. P. 72621.
  23. Novikov V. V., Pavlov A. A., Nelyubina Y. V. et al. // J. Am. Chem. Soc. 2015. V. 137. № 31. P. 9792.
  24. Novikov V. V., Ananyev I. V., Pavlov A. A. et al. // J. Phys. Chem. Lett. 2014. V. 5. № 3. P. 496.
  25. Pavlov A. A., Nelyubina Y. V., Kats S. V. et al. // J. Phys. Chem. Lett. 2016. V. 7. № 20. P. 4111.
  26. Novikov V. V., Pavlov A. A., Nehrkorn J. et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 756. https://doi.org/10.1134/S1070328420110056
  27. Voloshin Y. Z., Varzatskii O. A., Novikov V. V. et al. // Eur. J. Inorg. Chem. 2010. P. 5401.
  28. Pavlov A. A., Denisov G. L., Kiskin M. A. et al // Inorg. Chem. 2017. V. 56. № 24. P. 14759.
  29. Pavlov A. A., Aleshin D., Nikovskiy I. A. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 23. P. 2819.
  30. Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. V. 2. № 1. P. 73.
  31. Perdew J. P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. C. 3865.
  32. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. T. 7. № 18. P. 3297.
  33. Kossmann S., Neese F. // Chem. Phys. Lett. 2009. T. 481. № 4–6. P. 240.
  34. Adamo C., Barone V. // J. Chem. Phys. 1999. V. 110. № 13. P. 6158.
  35. Rodriguez‐Castañeda F., Haberz P., Leonov A. et al.// Magn Reson Chem. 2006. V. 44. № S1. P. S10.
  36. Pavlov A. A., Novikov V. V., Nikovskiy I. A. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. № 2. P. 1167.
  37. Pavlov A. A., Nehrkorn J., Zubkevich S. V. et al. // Inorg. Chem. 2020. V. 59. № 15. P. 10746–10755.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Схема 1.

Скачать (109KB)
3. Рис. 1. Спектры ЯМР 1Н раствора комплекса I в CDCl3, зарегистрированные в температурном диапазоне 225–330 K.

Скачать (108KB)
4. Рис. 2. Температурная зависимость химических сдвигов в спектрах ЯМР 1Н комплекса I в различных растворителях: CDCl3 (а), CD3CN (б), C6D6 (в) и CD2Cl2 (г). Показаны данные для следующих протонов его макробициклической молекулы: орто-Ph (●), мета-Ph (■) и пара-Ph (▲). Сплошные линии соответствуют аппроксимации с использованием уравнения (9).

Скачать (138KB)
5. Рис. 3. Зависимость заселенности высокоспинового состояния комплекса I в CDCl3 (черный цвет), CD3CN (красный цвет), C6D6 (зеленый цвет) и CD2Cl2 (синий цвет).

Скачать (87KB)
6. Рис. 4. Влияние диэлектрической проницаемости растворителя на энтальпию ΔH и температуру полуперехода T1/2 спинового равновесия в растворах комплекса I в CDCl3 (▲), CD3CN (▼), C6D6 (■) и CD2Cl2 (●).

Скачать (40KB)

© Российская академия наук, 2024