Analytical review of confidential artificial intelligence: methods and algorithms for deployment in cloud computing
- Authors: Shiriaev Е.М.1, Nazarov А.S.1, Kucherov N.N.1, Babenko М.G.1,2
-
Affiliations:
- North Caucasus Federal University
- Ivannikov Institute for System Programming of the Russian Academy of Sciences,
- Issue: No 4 (2024)
- Pages: 27-40
- Section: SOFTWARE ENGINEERING, TESTING AND VERIFICATION OF PROGRAMS
- URL: https://j-morphology.com/0132-3474/article/view/675688
- DOI: https://doi.org/10.31857/S0132347424040036
- EDN: https://elibrary.ru/PTIGVO
- ID: 675688
Cite item
Abstract
The technologies of artificial intelligence and cloud systems have recently been actively developed and implemented. In this regard, the issue of their joint use, which has been topical for several years, has become more acute. The problem of data privacy preservation in cloud computing acquired the status of critical long before the necessity of their joint use with artificial intelligence, which made it even more complicated. This paper presents an overview of both the artificial intelligence and cloud computing techniques themselves, as well as methods to ensure data privacy. The review considers methods that utilize differentiated privacy; secret sharing schemes; homomorphic encryption; and hybrid methods. The conducted research has shown that each considered method has its pros and cons outlined in the paper, but there is no universal solution. It was found that theoretical models of hybrid methods based on secret sharing schemes and fully homomorphic encryption can significantly improve the confidentiality of data processing using artificial intelligence.
About the authors
Е. М. Shiriaev
North Caucasus Federal University
Author for correspondence.
Email: eshiriaev@ncfu.ru
Russian Federation, Pushkin st. 1, Stavropol, 355017
А. S. Nazarov
North Caucasus Federal University
Email: anazarov@ncfu.ru
Russian Federation, Pushkin st. 1, Stavropol, 355017
N. N. Kucherov
North Caucasus Federal University
Email: nkucherov@ncfu.ru
Russian Federation, Pushkin st. 1, Stavropol, 355017
М. G. Babenko
North Caucasus Federal University; Ivannikov Institute for System Programming of the Russian Academy of Sciences,
Email: mgbabenko@ncfu.ru
Russian Federation, Pushkin st. 1, Stavropol, 355017; Alexander Solzhenitsyn st. 25, Moscow, 109004
References
- Brown T. et al. Language models are few-shot learners // Advances in neural information processing systems. 2020. V. 33. P. 1877–1901.
- OpenAI, GPT-4 Technical Report. arXiv, 27 март 2023 г. https://doi.org/10.48550/arXiv.2303.08774
- Douligeris C., Mitrokotsa A. DDoS attacks and defense mechanisms: classification and state-of-the-art // Computer networks. 2004. V. 44. № 5. P. 643–666.
- Beimel A. Secret-Sharing Schemes: A Survey // Coding and Cryptology, Y.M. Chee, Z. Guo, S. Ling, F. Shao, Y. Tang, H. Wang, and C. Xing, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer. 2011. P. 11–46. https://doi.org/10.1007/978-3-642-20901-7_2
- Mahesh B. Machine learning algorithms-a review // International Journal of Science and Research (IJSR). [Internet]. 2020. V. 9. № 1. P. 381–386.
- Kaelbling L.P., Littman M.L., Moore A.W. Reinforcement learning: A survey // Journal of artificial intelligence research. 1996. V. 4. P. 237–285.
- Srinivas M., Patnaik L.M. Genetic algorithms: A survey // Computer. 1994. V. 27. № 6. P. 17–26.
- Spragins J. Learning without a teacher // IEEE Transactions on Information Theory. 1996. V. 12. № 2. P. 223–230.
- Liu B. Supervised Learning // Web Data Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. P. 63–132. https://doi.org/10.1007/978-3-642-19460-3_3
- Wang S.-C. Artificial Neural Network // Interdisciplinary Computing in Java Programming. Boston, MA: Springer US, 2003. P. 81–100. https://doi.org/10.1007/978-1-4615-0377-4_5
- Park H., Kim S. Chapter Three – Hardware accelerator systems for artificial intelligence and machine learning // Advances in Computers. V. 122, S. Kim and G.C. Deka, Eds., in Hardware Accelerator Systems for Artificial Intelligence and Machine Learning. V. 122. Elsevier, 2021. P. 51–95. https://doi.org/10.1016/bs.adcom.2020.11.005
- Hwang D. H., Han C.Y., Oh H.W., Lee S.E. ASimOV: A Framework for Simulation and Optimization of an Embedded AI Accelerator // Micromachines. 2021. V. 12. № 7. https://doi.org/10.3390/mi12070838
- Mishra A., Yadav P., Kim S. Artificial Intelligence Accelerators // Artificial Intelligence and Hardware Accelerators, A. Mishra, J. Cha, H. Park, and S. Kim, Eds. Cham: Springer International Publishing, 2023. P. 1–52. https://doi.org/10.1007/978-3-031-22170-5_1
- Carminati M., Scandurra G. Impact and trends in embedding field programmable gate arrays and microcontrollers in scientific instrumentation // Review of Scientific Instruments. 2021. V. 92.№ 9. https://pubs.aip.org/aip/rsi/article-abstract/ 92/9/091501/1030652
- Shawash J., Selviah D.R. Real-time nonlinear parameter estimation using the Levenberg–Marquardt algorithm on field programmable gate arrays // IEEE Transactions on industrial electronics. 2012. V. 60. № 1. P. 170–176.
- Ruiz-Rosero J., Ramirez-Gonzalez G., Khanna R. Field programmable gate array applications – A scientometric review // Computation. 2019. V. 7. № 4. P. 63.
- Mellit A., Kalogirou S.A. MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives // Energy. 2014. V. 70. P. 1–21.
- Goodfellow I., Bengio Y., Courville A. Deep learning. MIT press, 2016. https://books.google.com/books?hl=ru&lr=&id=omivDQAAQBAJ&oi=fnd&pg=PR5&dq=Deep+Learning&ots=MNV5aolzSS&sig=waXAS6C-_v-48H2qbW9rMFkEhFY
- Bouvrie J. Notes on convolutional neural networks. 2006. http://web.mit.edu/jvb/www/papers/cnn_tutorial.pdf
- Rawat W., Wang Z. Deep convolutional neural networks for image classification: A comprehensive review // Neural computation. 2017. V. 29; № 9. P. 2352–2449.
- Needham R.M., Herbert A.J. The Cambridge distributed computing system, 1983.
- Adiga N.R. et al. An overview of the BlueGene/L supercomputer // SC’02: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, IEEE, 2002. P. 60–60. https://ieeexplore.ieee.org/abstract/document/1592896/
- Jacob B., Brown M., Fukui K., Trivedi N. Introduction to grid computing // IBM redbooks, 2005. P. 3–6.
- Foster I., Zhao Y., Raicu I., Lu S. Cloud computing and grid computing 360-degree compared // 2008 grid computing environments workshop, Ieee, 2008. P. 1–10. https://ieeexplore.ieee.org/abstract/document/ 4738445/?casa_token=TbNOHOEaljQAAAAA: j6MuEJKmrGL8iCvH-HzRnmI2k5UKn5y1w7hC4MNJanJXZPfiBC_XKLoTFsCImP1RYzyKfRKiCE0
- Cusumano M. Cloud computing and SaaS as new computing platforms // Commun. ACM, April, 2010. V. 53. № 4. P. 27–29. https://doi.org/10.1145/1721654.1721667
- Rodero-Merino L., Vaquero L.M., Caron E., Muresan A., Desprez F. Building safe PaaS clouds: A survey on security in multitenant software platforms // Computers & security. 2012. V. 31. № 1. P. 96–108.
- Bhardwaj S., Jain L., Jain S. Cloud computing: A study of infrastructure as a service (IAAS) // International Journal of engineering and information Technology. 2010. V. 2. № 1. P. 60–63.
- Manvi S.S., Shyam G.K. Resource management for Infrastructure as a Service (IaaS) in cloud computing: A survey // Journal of network and computer applications. 2014. V. 41. P. 424–440.
- Lehner W., Sattler K.-U. Database as a service (DBaaS) // 2010 IEEE 26th International Conference on Data Engineering (ICDE2010), IEEE, 2010. P. 1216–1217. https://ieeexplore.ieee.org/abstract/document/ 5447723/?casa_token=uaXogPZV0C0AAAAA: 4Dg_40-GvhUsuHXFKUOgxZ_ZyGlCOqjcZtpRoK6UosB-k-_Wh5wAmJIBtHYRE9OLXZ1xwVKuLAE
- Meng S., Liu L. Enhanced monitoring-as-a-service for effective cloud management // IEEE Transactions on Computers. 2012. V. 62. № 9. P. 1705–1720.
- Weng Q. et. al. {MLaaS} in the wild: Workload analysis and scheduling in {Large-Scale} heterogeneous {GPU} clusters // 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), 2022. P. 945–960. https://www.usenix.org/conference/nsdi22/presentation/weng
- Bisong E. Google Colaboratory // Building Machine Learning and Deep Learning Models on Google Cloud Platform. Berkeley, CA: Apress, 2019. P. 59–64. https://doi.org/10.1007/978-1-4842-4470-8_7
- H2O AI Cloud. https://h2o.ai/platform/ai-cloud/
- NVIDIA NGC | NVIDIA. https://www.nvidia.com/en-us/gpu-cloud/
- Tang J. Artificial intelligence-based e-commerce platform based on SaaS and neural networks // 2020 Fourth International Conference on Inventive Systems and Control (ICISC). IEEE, 2020. P. 421–424. https://ieeexplore.ieee.org/abstract/document/ 9171193/?casa_token=TmYwFdLDXq0AAAAA:8P5VVcZS_KWCXEnEm8xk2RPMV5kfWF27K9S9O9Z5fYh273EkseT7j0Jf7jZYAMOnPUX0l-5sCbs
- Yathiraju N. Investigating the use of an Artificial Intelligence Model in an ERP Cloud-Based System // International Journal of Electrical, Electronics and Computers. 2022. V. 7. № 2. P. 1–26.
- Mishra S., Tripathi A.R. AI business model: an integrative business approach // J. Innov. Entrep. Dec. 2021. V. 10. № 1. P. 18. https://doi.org/10.1186/s13731-021-00157-5
- Mishra D., Shekhar S. Artificial Intelligence Candidate Recruitment System using Software as a Service (SaaS) Architecture // International Research Journal of Engineering and Technology. 2018. V. 05. № 05. P. 3804–3808.
- Cadario R., Longoni C., Morewedge C.K. Understanding, explaining, and utilizing medical artificial intelligence // Nature human behaviour. 2021. V. 5. № 12. P. 1636–1642.
- Kim M., Song Y., Wang S., Xia Y., Xiang X. Secure logistic regression based on homomorphic encryption: Design and evaluation // JMIR medical informatics. 2018. V. 6. № 2. P. e8805.
- Klonoff D.C. Fog computing and edge computing architectures for processing data from diabetes devices connected to the medical internet of things // Journal of diabetes science and technology. 2017. V. 11. № 4. P. 647–652.
- Kocabas O., Soyata T. Utilizing homomorphic encryption to implement secure and private medical cloud computing // 2015 IEEE8th International Conference on Cloud Computing. IEEE, 2015. P. 540–547.
- Liu R., Rong Y., Peng Z. A review of medical artificial intelligence // Global Health Journal. 2020. V. 4. № 2. P. 42–45.
- Sun X., Zhang P., Sookhak M., Yu J., Xie W. Utilizing fully homomorphic encryption to implement secure medical computation in smart cities // Personal and Ubiquitous Computing. 2017. V. 21. № 5. P. 831–839.
- Kaya O., Schildbach J., AG D.B., Schneider S. Artificial intelligence in banking // Artificial intelligence. 2019. https://www.dbresearch.com/PROD/RPS_ENPROD/PROD0000000000495172/Artificial_intelligence_in_banking%3A_A_lever_for_pr.pdf
- Rahman M., Ming T.H., Baigh T.A., Sarker M. Adoption of artificial intelligence in banking services: an empirical analysis // International Journal of Emerging Markets. 2021. https://www.emerald.com/insight/content/doi/10.1108/IJOEM-06-2020-0724/full/html
- Sadok H., Sakka F., El Maknouzi M.E.H. Artificial intelligence and bank credit analysis: A review // Cogent Economics & Finance. Dec. 2022. V. 10. № 1. P. 2023262. https://doi.org/10.1080/23322039.2021.2023262
- Smith A., Nobanee H. Artificial intelligence: in banking A mini-review // Available at SSRN3539171, 2020. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3539171
- Reis J., Santo P.E., Melão N. Artificial Intelligence in Government Services: A Systematic Literature Review // New Knowledge in Information Systems and Technologies. V. 930. Á. Rocha, H. Adeli, L.P. Reis, and S. Costanzo, Eds., in Advances in Intelligent Systems and Computing. V. 930. Cham: Springer International Publishing. 2019. P. 241–252. https://doi.org/10.1007/978-3-030-16181-1_23
- Valle-Cruz D., Alejandro Ruvalcaba-Gomez E., Sandoval-Almazan R., Ignacio Criado J. A Review of Artificial Intelligence in Government and its Potential from a Public Policy Perspective // Proceedings of the 20th Annual International Conference on Digital Government Research. Dubai United Arab Emirates: ACM, June 2019. P. 91–99. https://doi.org/10.1145/3325112.3325242
- Pitts W. The linear theory of neuron networks: The dynamic problem // The bulletin of mathematical biophysics. 1943. V. 5. P. 23–31.
- Khare S.S., Gajbhiye A.R. Literature Review on Application of Artificial Neural Network (Ann) In Operation of Reservoirs // International Journal of computational Engineering research (IJCER). June 2013. V. 3. № 6. P. 63.
- Seesing A. Evotest: Test case generation using genetic programming and software analysis // Operations Research. 1954. V. 2. P. 393–410.
- Samuel A.L. Machine learning // The Technology Review. 1959. V. 62. № 1. P. 42–45.
- Evreinov Ė.V., Kosarev I. Однородные универсальные вычислительные системы высокой производительности (No Title), 1966. https://cir.nii.ac.jp/crid/1130282272859765760
- Gold E.M. Language identification in the limit // Information and control. 1967. V. 10. № 5. P. 447–474.
- Глушков В.М. Вычислительная система, 1996. https://elibrary.ru/item.asp?id=41074434
- Huang X. Deep-learning based climate downscaling using the super-resolution method, 1981. https://pdfs.semanticscholar.org/cf5c/3b29559ababba5a889444632e1c91d6b78fc.pdf
- Smarr L., Catlett C.E. Metacomputing // Grid Computing, 1st ed., F. Berman, G. Fox, and T. Hey, Eds., Wiley, 2003. P. 825–835. https://doi.org/10.1002/0470867167.ch37
- Buske D., Keith S. GIMPS Finds Another Prime! // Math Horizons. April 2000. V. 7. № 4. P. 19–21. https://doi.org/10.1080/10724117.2000.11975124
- Anderson D.P. Boinc: A system for public-resource computing and storage // Fifth IEEE/ACM international workshop on grid computing. IEEE, 2004. P. 4–10. https://ieeexplore.ieee.org/abstract/document/1382809/ ?casa_token=cjAKtADFAKwAAAAA:-WGH_xmovZAUi-kr_PA-h3nXtuizBL829DPFlC0B6pbcCoApRKDCZLwFWxzfYdT0WauFC5c6EQw1
- Du T., Shanker V. Deep learning for natural language processing // Eecis. Udel. Edu, 2009. P. 1–7.
- Davies E.R. Machine vision: theory, algorithms, practicalities. Elsevier, 2004. https://books.google.com/books?hl=ru&lr=&id=uY-Z3vORugwC&oi=fnd&pg=PP1&dq=Machine+Vision+:+Theory,+Algorithms,+Practicalities&ots=QOl9U9_MBf&sig=w0poN6d3IGeXs4oacagO4MlnxYs
- Mell P., Grance T. The NIST Definition of Cloud Computing // National Institute of Standards and Technology Special Publication. 2011. V. 53. P. 1–7.
- Finkelstein R. Analyzing Trend of Cloud Computing and it’s Enablers using Gartner Strategic Technology, 2004. https://www.researchgate.net/profile/Amol-Adamuthe/ publication/308747055_Analyzing_Trend_of_Cloud_Computing_and_it's_Enablers_using_Gartner_Strategic_Technology/links/59a929d3a6fdcc2398414d6f/Analyzing-Trend-of-Cloud-Computing-and-its-Enablers-using-Gartner-Strategic-Technology.pdf
- A history of cloud computing // Computer Weekly. https://www.computerweekly.com/feature/A-history-of-cloud-computing
- Dolui K., Datta S.K. Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing // 2017 Global Internet of Things Summit (GIoTS), IEEE. 2017. P. 1–6.
- OpenFog, OPC Foundation. https://opcfoundation.org/markets-collaboration/openfog/
- Radford A., Narasimhan K., Salimans T., Sutskever I. Improving language understanding by generative pre-training” 2018. https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
- Beaulieu-Jones B.K. et al. Privacy-Preserving Generative Deep Neural Networks Support Clinical Data Sharing // Circ: Cardiovascular Quality and Outcomes. Jul. 2019. V. 12. № 7. P. e005122. https://doi.org/10.1161/CIRCOUTCOMES.118.005122
- Shokri R., Shmatikov V. Privacy-Preserving Deep Learning // Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. Denver Colorado USA: ACM, Oct. 2015. P. 1310–1321. https://doi.org/10.1145/2810103.2813687.
- Shamir A. How to share a secret // Communications of the ACM. 1979. V. 22. № 11. P. 612–613.
- Duan J., Zhou J., Li Y. Privacy-preserving distributed deep learning based on secret sharing // Information Sciences. 2020. V. 527. P. 108–127.
- Akushsky I.A., Yuditsky D.I. Modular arithmetic in residue classes // Soviet Radio, 1968.
- Asmuth С., Bloom J. A modular approach to key safeguarding // IEEE transactions on information theory. 1983. V. 29. № 2. P. 208–210.
- Mignotte M. How to share a secret // Workshop on cryptography. Springer, 1982. P. 371–375.
- Tian T., Wang S., Xiong J., Bi R., Zhou Z., Bhuiyan M.Z.A. Robust and privacy-preserving decentralized deep federated learning training: Focusing on digital healthcare applications // IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023. https://ieeexplore.ieee.org/abstract/document/ 10058838/
- Barzu M., Ţiplea F.L., Drăgan C.C. Compact sequences of co-primes and their applications to the security of CRT-based threshold schemes // Information Sciences. 2013. V. 240. P. 161–172.
- Ge Z., Zhou Z., Guo D., Li Q. Practical Two-party Privacy-preserving Neural Network Based on Secret Sharing. http://arxiv.org/abs/2104.04709
- Paillier P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes // Advances in Cryptology – EUROCRYPT ’99. V. 1592, J. Stern, Ed., in Lecture Notes in Computer Science. V. 1592. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. P. 223–238. https://doi.org/10.1007/3–540–48910-X_16.
- Benaloh J. Dense probabilistic encryption // Proceedings of the workshop on selected areas of cryptography, 1994. P. 120–128. https://sacworkshop.org/proc/SAC_94_006.pdf
- Rivest R. L., Shamir A., Adleman L. A method for obtaining digital signatures and public-key cryptosystems // Commun. ACM. Feb. 1978. V. 21. № 2. P. 120–126. https://doi.org/10.1145/359340.359342
- ElGamal T. A public key cryptosystem and a signature scheme based on discrete logarithms // IEEE transactions on information theory. 1985. V. 31. № 4. P. 469–472.
- Chen T., Zhong S. Privacy-preserving backpropagation neural network learning // IEEE Transactions on Neural Networks. 2009. V. 20. № 10. P. 1554–1564.
- Gentry C. A fully homomorphic encryption scheme // Stanford university, 2009.
- Gentry C. Computing arbitrary functions of encrypted data // Communications of the ACM. 2010. V. 53. № 3. P. 97–105.
- Gentry C., Halevi S. Implementing gentry’s fully-homomorphic encryption scheme // Advances in Cryptology–EUROCRYPT 2011: 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Tallinn, Estonia, May 15–19, 2011. Proceedings 30, Springer, 2011. P. 129–148.
- Gentry C., Halevi S., Peikert C., Smart N.P. Ring Switching in BGV-Style Homomorphic Encryption // Security and Cryptography for Networks. V. 7485. I. Visconti and R. De Prisco, Eds. Lecture Notes in Computer Science. V. 7485. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. P. 19–37. https://doi.org/10.1007/978-3-642-32928-9_2
- Gentry C., Sahai A., Waters B. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based // Annual Cryptology Conference. Springer, 2013. P. 75–92.
- van Dijk M., Gentry C., Halevi S., Vaikuntanathan V.V. Fully homomorphic encryption over the integers // Annual international conference on the theory and applications of cryptographic techniques. Springer, 2010. P. 24–43.
- van Dijk M., Gentry C., Halevi S., Vaikuntanathan V. Fully Homomorphic Encryption over the Integers // Advances in Cryptology – EUROCRYPT 2010. V. 6110. H. Gilbert, Ed., Lecture Notes in Computer Science. V. 6110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. P. 24–43. https://doi.org/10.1007/978-3-642-13190-5_2
- Cheon J. H., Kim A., Kim M., Song Y. Homomorphic encryption for arithmetic of approximate numbers // International conference on the theory and application of cryptology and information security. Springer, 2017. P. 409–437.
- Gilad-Bachrach R., Dowlin N., Laine K., Lauter K., Naehrig M., Wernsing J. Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy // International conference on machine learning, PMLR, 2016. P. 201–210. https://proceedings.mlr.press/v48/gilad-bachrach16.html
- van Elsloo T., Patrini G., Ivey-Law H. SEALion: a Framework for Neural Network Inference on Encrypted Data. http://arxiv.org/abs/1904.12840
- TensorFlow. https://www.tensorflow.org/?hl=ru
- Microsoft SEAL. Microsoft. https://github.com/microsoft/SEAL
- Benaissa A., Retiat B., Cebere B., Belfedhal A.E. TenSEAL: A Library for Encrypted Tensor Operations Using Homomorphic Encryption. http://arxiv.org/abs/2104.03152
- Chabanne H., De Wargny A., Milgram J., Morel C., Prouff E. Privacy-preserving classification on deep neural network // Cryptology ePrint Archive, 2017. https://eprint.iacr.org/2017/035
- Brakerski Z., Gentry C., Vaikuntanathan V. (Leveled) fully homomorphic encryption without bootstrapping // ACM Transactions on Computation Theory (TOCT). 2014. V. 6. № 3. P. 1–36.
- Lee J.-W. et al. Privacy-preserving machine learning with fully homomorphic encryption for deep neural network // IEEE Access. 2022. V. 10. P. 30039–30054.
- Ryffel T., Tholoniat P., Pointcheval D., Bach F. ARIANN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing. arXiv, October 28, 2021. http://arxiv.org/abs/2006.04593
Supplementary files
