Theoretical bases of mathematical apparatus of parallel computing realization in computer-aided design systems

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The purpose of the work is the development of mathematical apparatus and computational algorithms for the implementation of parallel computing in geometric modeling and computer-aided design systems. The analysis of existing approaches to the implementation of parallel computing in CAD systems has been carried out. As a result, it was found that for most information modeling and computer-aided design systems, there is no support for parallel computing at the level of the geometric kernel. A concept for the development of a CAD geometric kernel based on the invariants of parallel projection of geometric objects onto the axes of the global coordinate system is proposed, which combines the potential of constructive methods of geometric modeling capable of providing parallelization of geometric constructions by tasks (message passing) and the mathematical apparatus of “Point Calculus”, capable of implementing parallelization by data through coordinate-by-coordinate calculation (data parallel). The use of coordinate-by-coordinate calculation of point equations not only allows you to parallelize calculations along coordinate axes, but also ensures the consistency of computational operations along streams, which significantly reduces the idle time of calculations and optimizes the processor’s work to achieve the maximum effect from the use of parallel computing.

全文:

受限制的访问

作者简介

E. Konopatskiy

Nizhny Novgorod State University of Architecture and Civil Engineering

编辑信件的主要联系方式.
Email: e.v.konopatskiy@mail.ru
俄罗斯联邦, Nizhny Novgorod

参考

  1. Bakhtin, V.A., Zakharov, D.A., Kozlov, A.N., and Konovalov, V.S. Development of parallel program code for calculating radiation magnetic gas dynamics and studying plasma dynamics in the QSPA channel, Nauchn. Servis Seti Internet, 2019. No. 21, P. 105–118. https://doi.org/10.20948/abrau-2019-80
  2. Pekunov, V.V. Predicting channels in parallel programming: Possible applications in mathematical modeling of processes in continuous media, Program. Sist. Vychisl. Metody, 2019. No. 3, P. 37–48. https://doi.org/10.7256/2454-0714.2019.3.30393
  3. Vorob’ev, V.E., Murynin, A.B., and Khachatryan, K.S. High-performance recording of spatial spectra of sea waves during operational space monitoring of vast water areas, Issled. Zemli Kosmosa, 2020. No. 2, P. 56–68. https://doi.org/10.31857/S0205961420020062
  4. Goncharsky, A.V., Romanov, S.Y., and Seryozhnikov, S.Y. Implementation and performance of wave tomography algorithms on SIMD CPU and GPU computing platforms, Numer. Methods Program., 2021. V. 22. No. 4, P. 322–332. https://doi.org/10.26089/NumMet.v22r421
  5. Shmakov, I.A., Iordan, V.I., and Sokolova, I.E. Computer simulation of SH-synthesis of nickel aluminide by the molecular dynamics method in the LAMMPS package using parallel computing, Vysokoproizvod. Vychisl. Sist. Tekhnol., 2018. V. 2. No. 1, P. 48–54.
  6. Fedotov, V.L. Using a parallel computing architecture in the approach to constructing airborne complexes of control systems, Navig. Upr. Letatel’nymi Appar., 2019. V. 24. No. 1, P. 12–20.
  7. Pekunov, V.V. Improved balancing of CPU workload when numerically solving continuum mechanics problems complicated by chemical kinetics, Kibern. Program., 2021. No. 1, P. 13–19. https://doi.org/10.25136/2644-5522.2021.1.35101
  8. Ol’khovskaya, O.G., Gasilov, V.A., Kotel’nikov, A.M., and Yakobovskii, M.V. Parallel ray tracing algorithm for radiation field analysis and construction of obscurograms of radiative gas, Preprint of Inst. Prikl. Mat. Keldysha, Moscow, 2018. No. 143, P. 1–16. https://doi.org/10.20948/prepr-2018-143
  9. Chetverushkin, B.N., Chechina, A.A., Churbanova, N.G., and Trapeznikova, M.A. Development of parallel algorithms for intelligent transportation systems, Mathematics, 2022. V. 10. No. 4. https://doi.org/10.3390/math10040643
  10. Kucherov, D.P., Morgun, K.O., and Anikeenko, L.S. Parallel computing control in computer graphics problems, Naukoєmni Tekhnol., 2018. V. 38. No. 2, P. 178–186. https://doi.org/10.18372/2310-5461.38.12833
  11. Nizovskikh, A.S., Koporushkin, P.A., and Tarasenko, R.R. Problems of parametric approach in some modern CAD, Sovrem. Probl. Teor. Mash., 2016. No. 4–1, P. 83–85.
  12. Abramov, O.V. Computing environment for solving CAD problems on multiprocessor systems, Mat. Metody Tekhn. Tekhnol., 2018. V. 5, P. 28–30.
  13. Zhao, Z., et al. A large-scale parallel hybrid grid generation technique for realistic complex geometry, Int. J. Numer. Methods Fluids, 2020. V. 92. No. 10, P. 1235–1255. https://doi.org/10.1002/fld.4825
  14. Kukreja, A., Dhanda, M., and Pande, S.S. Voxelbased adaptive toolpath planning using graphics processing unit for freeform surface machining, J. Manuf. Sci. Eng. Trans. ASME, 2022. V. 144. No. 1. https://doi.org/10.1115/1.4051535
  15. de Matos Menezes, M., Viana Gomes de Magalhães, S., Aguilar de Oliveira, M., Randolph Franklin, W., and de Oliveira Bauer Chichorro, R.E. Fast parallel evaluation of exact geometric predicates on GPUs, Comput. Aided Des., 2022. https://doi.org/10.1016/j.cad.2022.103285
  16. Oshchepkov, A. Yu. and Popov, S.E. Development of an information and computing system based on Apache Hadoop for processing hyper- and multispectral Earth remote sensing data, Vestn. Voronezh. Gos. Univ. Ser.: Sist. Anal. Inf. Tekhnol., 2016. No. 3, P. 95–105.
  17. Zieg, J. and Zawada, D.G. Improving ESRI ArcGIS performance of coastal and seafloor analyses with the Python multiprocessing module, J. Coastal Res., 2021. V. 37. No. 6, P. 1288–1293. https://doi.org/10.2112/JCOASTRESD-21-00026.1
  18. Hariri, S., Weill, S., Gustedt, J., and Charpentier, I. Pairing GIS and distributed hydrological models using MATLAB, 2022. https://doi.org/10.1007/978-3-030-72543-3_103
  19. Wang, Y., Ai, B., Qin, C., and Zhu, A. A load-balancing strategy for data domain decomposition in parallel programming libraries of raster-based geocomputation, Int. J. Geogr. Inf. Sci., 2022. V. 36. No. 5, P. 968–991. https://doi.org/10.1080/13658816.2021.2004603
  20. Voloshinov, D.V. and Solomonov, K.N. Software and hardware implementation of constructive geometric models, Trudy Mezhdunarodnoi konferentsii po komp’yuternoi grafiki i zreniyu “Grafikon” (Proc. Int. Conf. Computer Graphics and Vision “Graphicon”), 2020. No. 30, P. 83–98. https://doi.org/10.51130/graphicon-2020-1-83-98
  21. Balyuba, I.G., Konopatskiy, E.V., and Bumaga, A.I. Tochechnoe ischislenie: Uchebno-metodicheskoe posobie (Point Calculus: Study Guide), Makeevka: Donbasskaya Nats. Akad. Stroit. Arkhit., 2020.
  22. Konopatskiy, E.V. and Balyuba, I.G. Contour arc modeling based on the Desargues configuration, Omsk. Nauchn. Vestn., 2022. V. 183. No. 3, P. 5–9. https://doi.org/10.25206/1813-8225-2022-183-5-9
  23. Glagolev, N.A. Proektivnaya geometriya (Projective Geometry), Moscow: Vysshaya shkola, 1963.
  24. Konopatskiy, E.V. and Bezditnyi, A.A. Geometric modeling of multifactor processes and phenomena by the multidimensional parabolic interpolation method, Proc. XIII Int. Sci. Techn. Conf. Applied Mechanics and Systems Dynamics, Omsk, 2019. https://doi.org/10.1088/1742-6596/1441/1/012063
  25. Konopatskiy, E.V. Geometric modeling of multifactor processes based on point calculus, Doctoral Dissertation, Nizhny Novgorod, 2020.
  26. Konopatskiy, E.V. Geometric foundations of parallel computing in computer-aided modeling and design systems, Trudy Mezhdunarodnoi konferentsii po komp’yuternoi grafike i zreniyu “Grafikon” (Proc. Int. Conf. Computer Graphics and Vision “Graphicon”), 2022. No. 32, P. 816–825. https://doi.org/10.20948/graphicon-2022-816-825

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Geometric interpretation of coordinate-by-coordinate calculation for a straight line segment in 3-dimensional space.

下载 (86KB)
3. Fig. 2. Geometric scheme for constructing a 2nd order curve.

下载 (63KB)
4. Fig. 3. Geometrical scheme of modeling a bypass arc based on the Desargues configuration.

下载 (131KB)
5. Fig. 4. Geometrical scheme of modeling a 9-point surface section.

下载 (95KB)
6. Fig. 5. Geometric scheme for defining a solid model of a parallelepiped.

下载 (85KB)

版权所有 © Russian Academy of Sciences, 2024