Estimation of intergranular transparency of diffusive superconducting films from the shape of the density of states of the Abrikosov vortex

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A technique has been developed for the evaluation of the transparency of grain boundaries in polycrystalline superconducting films. The model is founded upon a numerical algorithm for calculating the density of states of an Abrikosov vortex located in the center of a cylindrical granule, separated from the main superconducting matrix by a boundary with finite transparency. The present study calculates the dependencies of the gap difference in the density of states on both sides of the boundary and uses this difference to estimate the transparency of the interface.

Sobre autores

M. Khapaev

Lomonosov Moscow State University

Email: vmhap@cs.msu.ru
Computational Mathematics and Cybernetics, Department of Numerical Methods Moscow, Russia

M. Kupriyanov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University; Moscow Institute of Physics and Technology

Email: vmhap@cs.msu.ru
Moscow, Russia; Dolgoprudny, Russia

A. Golubov

Moscow Institute of Physics and Technology

Email: vmhap@cs.msu.ru
Dolgoprudny, Russia

V. Stolyarov

Moscow Institute of Physics and Technology; All-Russian Research Institute of Automatics n.a. N.L. Dukhov (VNIIA)

Autor responsável pela correspondência
Email: vmhap@cs.msu.ru
Dolgoprudny, Russia; Moscow, Russia

Bibliografia

  1. C. Renner, I. Maggio-Aprile, and Ø. Fischer, Vortex lattice imaging and spectroscopic studies of flux lines by scanning tunneling microscopy, in The Superconducting State in Magnetic Fields: Special Topics and New Trends, World Scientific (1998), p. 226.
  2. Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Rev. Mod. Phys. 79(1), 353 (2007).
  3. H. Suderow, I. Guillam´on, J. G. Rodrigo, and S. Vieira, Supercond. Sci. Technol. 27(6), 063001 (2014).
  4. A. Golubov, Czechoslovak Journal of Physics 46(2), 569 (1996).
  5. V. S. Stolyarov, T. Cren, C. Brun, I. A. Golovchanskiy, O. V. Skryabina, D. I. Kasatonov, M. M. Khapaev, M. Y. Kupriyanov, A. A. Golubov, and D. Roditchev, Nat. Commun. 9(1), 2277 (2018).
  6. A. Vargunin and M. A. Silaev, Appl. Phys. Lett. 116, 092601 (2020).
  7. A. V. Bodyagin and D. Y. Vodolazov, ZhETF 167(4), 544 (2025).
  8. H. Hess, R. Robinson, R. Dynes, J. Valles Jr, and J. Waszczak, Phys. Rev. Lett. 62(2), 214 (1989).
  9. U. Klein, Phys. Rev. 41(7), 4819 (1990).
  10. H. Hess, R. Robinson, and J. Waszczak, Phys. Rev. Lett. 64(22), 2711 (1990).
  11. C. Renner, A. Kent, P. Niedermann, Ø. Fischer, and F. L´evy, Phys. Rev. Lett. 67(12), 1650 (1991).
  12. A. Golubov and U. Hartmann, Phys. Rev. Lett. 72(22), 3602 (1994).
  13. U. Hartmann, A. A. Golubov, T. Drechsler, M. Y. Kupriyanov, and C. Heiden, Physica B: Condensed Matter 194, 387 (1994).
  14. A. Volodin, A. Golubov, and J. Aarts, Zeitschrift fu¨r Physik B Condensed Matter 102, 317 (1997).
  15. A. Fente, E. Herrera, I. Guillam´on, H. Suderow, S. Manas-Valero, M. Galbiati, E. Coronado, and V. Kogan, Phys. Rev. B 94(1), 014517 (2016).
  16. A. V. Putilov, C. Di Giorgio, V. L. Vadimov, D. J. Trainer, E. M. Lechner, J. L. Curtis, M. Abdel-Hafiez, O. S. Volkova, A. N. Vasiliev, D. A. Chareev, G. Karapetrov, A. E. Koshelev, A. Yu. Aladyshkin, A. S. Mel’nikov, and M. Iavarone, Phys. Rev. B 99(14), 144514 (2019).
  17. M. Fern´andez-Lomana, P. O. Aguilera, B. Wu, E. Herrera, H. Suderow, and I. Guillam´on, J. Phys. Condens. Matter 37(2), 025604 (2024).
  18. S. Kashiwaya, M. Koyanagi, and A. Shoji, Appl. Phys. Lett. 61, 1847 (1992).
  19. M. Zehetmayer, Sci. Rep. 5(1), 9244 (2015).
  20. S. Bakurskiy, M. Kupriyanov, N. V. Klenov, I. Soloviev, Schegolev, R. Morari, Y. Khaydukov, and Sidorenko, Beilstein J. Nanotechnol. 11, 1336 (2020).
  21. R. A. Hovhannisyan, S. Yu. Grebenchuk, S. A. Larionov, G. Shishkin, A. K. Grebenko, N. E. Kupchinskaya, E. A. Dobrovolskaya, O. V. Skryabina, A. Yu. Aladyshkin, V. V. Dremov, I. A. Golovchanskiy, A. V. Samokhvalov, A. S. Mel’nikov, D. Roditchev, and V. S. Stolyarov, Commun. Mater. 6(1), 42 (2025).
  22. D. Kiselov, M. A. Skvortsov, and M. V. Feigel’man, SciPost Physics 15(1), 008 (2023).
  23. A. Mel’nikov and A. Samokhvalov, J. Low Temp. Phys. 217(1), 82 (2024).
  24. C. Chen, Y. Liu, Y. Chen, Y. N. Hu, T. Z. Zhang, D. Li, X. Wang, C. X. Wang, Z. Y. W. Lu, Y. H. Zhang, Q. L. Zhang, X. L. Dong, R. Wang, D. L. Feng, and T. Zhang, Phys. Rev. X 14(4), 041039 (2024).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025