Research of Memristor Effect in Crossbar Architecture for Neuromorphic Artificial Intelligence Systems

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This article presents the results of experimental studies of structures formed on the basis of the crossbar architecture of memristor structures made of various materials. TiO2 was used as a working memristor layer. The following materials were used for the contact pads: Al, Ni, Cr, Mo, Ta, Ag. In the course of experimental studies, the optimal combination of materials for the formation of crossbar memristor structures was revealed, which in the future can be used in devices of neuromorphic artificial intelligence systems.

Авторлар туралы

V. Polyakova

Southern Federal University

Хат алмасуға жауапты Автор.
Email: vpolyakova@sfedu.ru
Ресей, Taganrog

A. Saenko

Southern Federal University

Email: vpolyakova@sfedu.ru
Ресей, Taganrog

I. Kots

Southern Federal University

Email: vpolyakova@sfedu.ru
Ресей, Taganrog

A. Kovalev

Southern Federal University

Email: vpolyakova@sfedu.ru
Ресей, Taganrog

Әдебиет тізімі

  1. Proydakov E.M. Современное состояние исследований в области искусственного интеллекта // Digital economy. 2018. T. 3. No. 3. P. 50.
  2. Gafarov F.M. Artificial neural networks and applications. Kazan: Kazan, 2018.
  3. Zidan M.A., Strachan J.P., Lu W.D. The future of electronics based on memristive systems // Nat. Electron. 2018. V. 1. P. 22.
  4. Kozhukhov A.S., Scheglov D.V., Fedina L.I., Latyshev A.V. The initial stages of atomic force microscope based local anodic oxidation of silicon AIP Advances 8, 025113 (2018). https://doi.org/10.1063/1.5007914
  5. Colangelo F., Piazza V., Coletti С., Roddaro S., Beltram F., Pingue P. Local anodic oxidation on hydrogen-intercalated graphene layers: oxide composition analysis and role of the silicon carbide substrate. 2 May 2018. https://doi.org/10.1088/1361-6528/aa59c7.
  6. Polyakova V.V., Saenko A.V. Local Anodic Oxidation for Crossbar-Array Architecture Technical Physics. 2022. V. 92. No. 8. Р. 1159–1165.
  7. Rozanov R.Yu., Kondrashov V.A., Nevolin V.K., Chaplygin Yu. A. Development and research of memristors based on metal films of nanoscale thickness // Nanoengineering. 2014. No. 2. Р. 22–28.
  8. Choi B.J., Torrezan A.C., Norris K.J., Miao F. Electrical Performance and Scalability of Pt Dispersed SiO2 Nanometallic Resistance Switch // Nano Lett. 2013. № 13 (7). Р. 3213–3217.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Technological route of crossbar architecture formation

Жүктеу (317KB)
3. Fig. 2. Desktop vacuum magnetron sputtering unit VSE-PVD-DESK-PRO

Жүктеу (288KB)
4. Fig. 3. Solver P47 PRO probe microscope

Жүктеу (236KB)
5. Fig. 4. Schematic of measuring the VAC of a mockup of crossbar memristor structures

Жүктеу (96KB)
6. Fig. 5. Voltampere characteristics of Si/SiO2/Ti/TiO2/Al structure

Жүктеу (108KB)
7. Fig. 6. Voltampere characteristics of Si/SiO2/Ti/TiO2/Ni structure

Жүктеу (95KB)
8. Fig. 7. Voltampere characteristics of Si/SiO2/Ti/TiO2/Cr structure

Жүктеу (114KB)
9. Fig. 8. Voltampere characteristics of Si/SiO2/Ti/TiO2/Mo structure

Жүктеу (132KB)
10. Fig. 9. Voltampere characteristics of Si/SiO2/Ti/TiO2/Ta structure

Жүктеу (155KB)
11. Fig. 10. Voltampere characteristics of Si/SiO2/Ti/TiO2/Ag structure

Жүктеу (123KB)

© Russian Academy of Sciences, 2024