Research of Memristor Effect in Crossbar Architecture for Neuromorphic Artificial Intelligence Systems

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This article presents the results of experimental studies of structures formed on the basis of the crossbar architecture of memristor structures made of various materials. TiO2 was used as a working memristor layer. The following materials were used for the contact pads: Al, Ni, Cr, Mo, Ta, Ag. In the course of experimental studies, the optimal combination of materials for the formation of crossbar memristor structures was revealed, which in the future can be used in devices of neuromorphic artificial intelligence systems.

Sobre autores

V. Polyakova

Southern Federal University

Autor responsável pela correspondência
Email: vpolyakova@sfedu.ru
Rússia, Taganrog

A. Saenko

Southern Federal University

Email: vpolyakova@sfedu.ru
Rússia, Taganrog

I. Kots

Southern Federal University

Email: vpolyakova@sfedu.ru
Rússia, Taganrog

A. Kovalev

Southern Federal University

Email: vpolyakova@sfedu.ru
Rússia, Taganrog

Bibliografia

  1. Proydakov E.M. Современное состояние исследований в области искусственного интеллекта // Digital economy. 2018. T. 3. No. 3. P. 50.
  2. Gafarov F.M. Artificial neural networks and applications. Kazan: Kazan, 2018.
  3. Zidan M.A., Strachan J.P., Lu W.D. The future of electronics based on memristive systems // Nat. Electron. 2018. V. 1. P. 22.
  4. Kozhukhov A.S., Scheglov D.V., Fedina L.I., Latyshev A.V. The initial stages of atomic force microscope based local anodic oxidation of silicon AIP Advances 8, 025113 (2018). https://doi.org/10.1063/1.5007914
  5. Colangelo F., Piazza V., Coletti С., Roddaro S., Beltram F., Pingue P. Local anodic oxidation on hydrogen-intercalated graphene layers: oxide composition analysis and role of the silicon carbide substrate. 2 May 2018. https://doi.org/10.1088/1361-6528/aa59c7.
  6. Polyakova V.V., Saenko A.V. Local Anodic Oxidation for Crossbar-Array Architecture Technical Physics. 2022. V. 92. No. 8. Р. 1159–1165.
  7. Rozanov R.Yu., Kondrashov V.A., Nevolin V.K., Chaplygin Yu. A. Development and research of memristors based on metal films of nanoscale thickness // Nanoengineering. 2014. No. 2. Р. 22–28.
  8. Choi B.J., Torrezan A.C., Norris K.J., Miao F. Electrical Performance and Scalability of Pt Dispersed SiO2 Nanometallic Resistance Switch // Nano Lett. 2013. № 13 (7). Р. 3213–3217.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Technological route of crossbar architecture formation

Baixar (317KB)
3. Fig. 2. Desktop vacuum magnetron sputtering unit VSE-PVD-DESK-PRO

Baixar (288KB)
4. Fig. 3. Solver P47 PRO probe microscope

Baixar (236KB)
5. Fig. 4. Schematic of measuring the VAC of a mockup of crossbar memristor structures

Baixar (96KB)
6. Fig. 5. Voltampere characteristics of Si/SiO2/Ti/TiO2/Al structure

Baixar (108KB)
7. Fig. 6. Voltampere characteristics of Si/SiO2/Ti/TiO2/Ni structure

Baixar (95KB)
8. Fig. 7. Voltampere characteristics of Si/SiO2/Ti/TiO2/Cr structure

Baixar (114KB)
9. Fig. 8. Voltampere characteristics of Si/SiO2/Ti/TiO2/Mo structure

Baixar (132KB)
10. Fig. 9. Voltampere characteristics of Si/SiO2/Ti/TiO2/Ta structure

Baixar (155KB)
11. Fig. 10. Voltampere characteristics of Si/SiO2/Ti/TiO2/Ag structure

Baixar (123KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024