New Results on Optimal (υ, 4, 1) Binary Cyclically Permutable Constant-Weight Codes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Построены новые двоичные циклически перестановочные равновесные коды (ЦПР-коды) с параметрами (υ, 4, 1) для длин υ ⩽ 136, а также исправлено несколько табличных значений из работы авторов [1].

About the authors

T. Baicheva

Институт математики и информатики Болгарской академии наук

Email: tsonka@math.bas.bg
София, Болгария

S. Topalova

Институт математики и информатики Болгарской академии наук

Email: svetlana@math.bas.bg
София, Болгария

References

  1. Байчева Ц., Топалова С. Классификация оптимальных двоичных циклически переста- новочных равновесных (v, 4, 1)-кодов и циклических 2-(v, 4, 1)-дизайнов для v ⩽ 76 // Пробл. передачи информ. 2011. V. 47. № 3. P. 10–18. https://www.mathnet.ru/rus/ppi2051
  2. Moreno O., Zhang Z., Kumar P.V., Zinoviev V.A. New Constructions of Optimal Cyclically Permutable Constant Weight Codes // IEEE Trans. Inform. Theory. 1995. V. 41. № 2. P. 448–455. https://doi.org/10.1109/18.370146
  3. Abel R.J.R., Buratti M. Difference Families // Handbook of Combinatorial Designs. Boca Raton: Chapman & Hall/CRC, 2007. Sec. VI.16. P. 392–410.
  4. Chung F.R.K., Salehi J.A., Wei V.K. Optical Orthogonal Codes: Design, Analysis, and Applications // IEEE Trans. Inform. Theory. 1989. V. 35. № 3. P. 595–604. https://doi.org/10.1109/18.30982
  5. Bird I.C.M., Keedwell A.D. Design and Applications of Optical Orthogonal Codes—A Sur- vey // Bull. Inst. Combin. Appl. 1994. V. 11. P. 21–44.
  6. Colbourn C.J., Dinitz J.H., Stinson D.R. Applications of Combinatorial Designs to Commu- nications, Cryptography, and Networking // Surveys in Combinatorics, 1999. Cambridge: Cambridge Univ. Press, 1999. P. 37–100.
  7. Nguyen Q.A., Gyo¨fri L., Massey J.L. Constructions of Binary Constant-Weight Cyclic Codes and Cyclically Permutable Codes // IEEE Trans. Inform. Theory. 1992. V. 38. № 3. P. 940–949. https://doi.org/10.1109/18.135636
  8. Bitan S., Etzion T. Constructions for Optimal Constant Weight Cyclically Permutable Codes and Difference Families // IEEE Trans. Inform. Theory. 1995. V. 41. № 1. P. 77–87. https://doi.org/10.1109/18.370117
  9. Fuji-Hara R., Miao Y. Optical Orthogonal Codes: Their Bounds and New Optimal Con- structions // IEEE Trans. Inform. Theory. 2000. V. 46. № 7. P. 2396–2406. https: //doi.org/10.1109/18.887852
  10. Baicheva T., Topalova S. Classification of Optimal (v, k, 1) Binary Cyclically Permutable Constant Weight Codes with k = 5, 6 and 7 and Small Lengths // Des. Codes Cryptogr. 2019. V. 87. № 2–3. P. 365–374. https://doi.org/10.1007/s10623-018-0534-x
  11. Brickell E.F., Wei V.K. Optical Orthogonal Codes and Cyclic Block Designs // Congr. Numer. 1987. V. 58. P. 175–182.
  12. Chen K., Zhu L. Existence of (q, k, 1) Difference Families with q a Prime Power and k = 4, 5 // J. Combin. Des. 1999. V. 7. № 1. P. 21–30. https://doi.org/10.1002/(SICI)1520-6610(1999)7:1<21::AID-JCD4>3.0.CO;2-Y
  13. Buratti M. Cyclic Designs with Block Size 4 and Related Optimal Optical Orthogonal Codes // Des. Codes Cryptogr. 2002. V. 26. № 1–3. P. 111–125. https://doi.org/10.1023/A:1016505309092
  14. Chang Y., Fuji-Hara R., Miao Y. Combinatorial Constructions of Optimal Optical Orthog- onal Codes with Weight 4 // IEEE Trans. Inform. Theory. 2003. V. 49. № 5. P. 1283–1292. https://doi.org/10.1109/TIT.2003.810628
  15. Abel R.J.R., Buratti M. Some Progress on (v, 4, 1) Difference Families and Optical Or- thogonal Codes // J. Combin. Theory Ser. A. 2004. V. 106. № 1. P. 59–75. https: //doi.org/10.1016/j.jcta.2004.01.003
  16. Buratti M., Pasotti A. Further Progress on Difference Families with Block Size 4 or 5 // Des. Codes Cryptogr. 2010. V. 56. № 1. P. 1–20. https://doi.org/10.1007/s10623-009-9335-6
  17. Wang X., Chang Y. Further Results on (v, 4, 1)-Perfect Difference Families // Discrete Math. 2010. V. 310. № 13-14. P. 1995–2006. https://doi.org/10.1016/j.disc.2010.03.017
  18. Reid C., Rosa A. Steiner Systems S(2, 4, v)—A Survey // Electron. J. Combin., Dynamic Survey DS18. 2010. https://doi.org/10.37236/39
  19. Colbourn M.J., Mathon R.A. On Cyclic Steiner 2-Designs // Ann. Discrete Math. 1980. V. 7. P. 215–253. https://doi.org/10.1016/S0167-5060(08)70182-1
  20. Hetman I. Steiner Systems S(2, 6, 121/126) Based on Difference Families, https://arxiv. org/abs/2401.08274 [math.CO], 2024.
  21. Baicheva T., Topalova S. Classification Results for (v, k, 1) Cyclic Difference Families with Small Parameters // Mathematics of Distances and Applications. Sofia: ITHEA, 2012. P. 24–30. Available at http://www.foibg.com/ibs_isc/ibs-25/ibs-25-p02.pdf.
  22. Baicheva T., Topalova S. An Update on Optimal (v, 4, 1) Binary Cyclically Permutable Constant Weight Codes and Cyclic 2-(v, 4, 1) Designs with Small v // Probl. Inf. Transm. 2024. V. 60. № 3. P. 189–198. https://doi.org/10.1134/S0032946024030037
  23. Colbourn C.J., Rosa A. Triple Systems, Oxford: Clarendon; New York: Oxford Univ. Press, 1999.
  24. P´alfy P. Isomorphism Problem for Relational Structures with a Cyclic Automorphism // Eu- ropean J. Combin. 1987. V. 8. № 1. P. 35–43. https://doi.org/10.1016/S0195-6698(87)80018-5

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences