Research Progress on Antiviral Activity of Heparin
- Authors: Wang Y.1, Zhang Y.2, Wang P.1, Jing T.3, Hu Y.3, Chen X.4
-
Affiliations:
- Chinese Materia Medica Pharmacology, Shandong Academy of Chinese Medicine
- , Shandong VeriSign Test Detection Co., LTD
- School of Pharmaceutical Sciences,, Shandong University of Traditional Chinese Medicine
- , Zhenjiang Runjing High Purity Chemical Technology Co., Ltd.
- Issue: Vol 31, No 1 (2024)
- Pages: 7-24
- Section: Anti-Infectives and Infectious Diseases
- URL: https://j-morphology.com/0929-8673/article/view/644108
- DOI: https://doi.org/10.2174/0929867330666230203124032
- ID: 644108
Cite item
Full Text
Abstract
Heparin, as a glycosaminoglycan, is known for its anticoagulant and antithrombotic properties for several decades. Heparin is a life-saving drug and is widely used for anticoagulation in medical practice. In recent years, there have been extensive studies that heparin plays an important role in non-anticoagulant diseases, such as anti-inflammatory, anti-viral, anti-angiogenesis, anti-neoplastic, anti-metastatic effects, and so on. Clinical observation and in vitro experiments indicate that heparin displays a potential multitarget effect. In this brief review, we will summarize heparin and its derivative's recently studied progress for the treatment of various viral infections. The aim is to maximize the benefits of drugs through medically targeted development, to meet the unmet clinical needs of serious viral diseases
Keywords
About the authors
Yi Wang
Chinese Materia Medica Pharmacology, Shandong Academy of Chinese Medicine
Email: info@benthamscience.net
Yanqing Zhang
, Shandong VeriSign Test Detection Co., LTD
Email: info@benthamscience.net
Ping Wang
Chinese Materia Medica Pharmacology, Shandong Academy of Chinese Medicine
Author for correspondence.
Email: info@benthamscience.net
Tianyuan Jing
School of Pharmaceutical Sciences,, Shandong University of Traditional Chinese Medicine
Email: info@benthamscience.net
Yanan Hu
School of Pharmaceutical Sciences,, Shandong University of Traditional Chinese Medicine
Email: info@benthamscience.net
Xiushan Chen
, Zhenjiang Runjing High Purity Chemical Technology Co., Ltd.
Email: info@benthamscience.net
References
- Saikrushna, J.; Ram, S. Isolation, synthesis, and medicinal applications of heparin. Chem. Biol. Lett., 2021, 8(2), 59-66.
- Page, C. Heparin and related drugs: beyond anticoagulant activity. ISRN Pharmacol., 2013, 2013, 910743. doi: 10.1155/2013/910743 PMID: 23984092
- Lima, M.; Rudd, T.; Yates, E. New applications of heparin and other glycosaminoglycans. Molecules, 2017, 22(5), 749-759. doi: 10.3390/molecules22050749 PMID: 28481236
- Zhang, F.; Yang, B.; Ly, M.; Solakyildirim, K.; Xiao, Z.; Wang, Z.; Beaudet, J.M.; Torelli, A.Y.; Dordick, J.S.; Linhardt, R.J. Structural characterization of heparins from different commercial sources. Anal. Bioanal. Chem., 2011, 401(9), 2793-2803. doi: 10.1007/s00216-011-5367-7 PMID: 21931955
- Kamhi, E.; Joo, E.J.; Dordick, J.S.; Linhardt, R.J. Glycosaminoglycans in infectious disease. Biol. Rev. Camb. Philos. Soc., 2013, 88(4), 928-943. doi: 10.1111/brv.12034 PMID: 23551941
- Mohamed, S.; Coombe, D. Heparin Mimetics: Their therapeutic potential. Pharmaceuticals (Basel), 2017, 10(4), 78-110. doi: 10.3390/ph10040078 PMID: 28974047
- Perlin, A.S.; Mackie, D.M.; Dietrich, C.P. Evidence for a (1→4)-linked 4-O-(α-L-idopyranosyluronic acid 2-sulfate)-(2-deoxy-2-sulfoamino-D-glucopyranosyl 6-sulfate) sequence in heparin. Carbohydr. Res, 1971, 18(2), 185-194. doi: 10.1016/S0008-6215(00)80341-9 PMID: 5151386
- Vilanova, E.; Vairo, B.C.; Oliveira, S.N.M.C.G.; Glauser, B.F.; Capillé, N.V.; Santos, G.R.C.; Tovar, A.M.F.; Pereira, M.S.; Mourão, P.A.S. Heparins sourced from bovine and porcine mucosa gain exclusive monographs in the brazilian pharmacopeia. Front. Med. (Lausanne), 2019, 6, 16. doi: 10.3389/fmed.2019.00016 PMID: 30805341
- Zhang, Z. The structural characterization of low molecular weight heparin. Chin. J. New Drugs, 2014, 23(8), 901-905+939.
- Hao, C.; Sun, M.; Wang, H.; Zhang, L.; Wang, W. Low molecular weight heparins and their clinical applications. Prog. Mol. Biol. Transl. Sci., 2019, 163, 21-39. doi: 10.1016/bs.pmbts.2019.02.003 PMID: 31030749
- Fu, L.; Li, G.; Yang, B.; Onishi, A.; Li, L.; Sun, P.; Zhang, F.; Linhardt, R.J. Structural characterization of pharmaceutical heparins prepared from different animal tissues. J. Pharm. Sci., 2013, 102(5), 1447-1457. doi: 10.1002/jps.23501 PMID: 23526651
- Wardrop, D.; Keeling, D. The story of the discovery of heparin and warfarin. Br. J. Haematol, 2008, 141(6), 757-763. doi: 10.1111/j.1365-2141.2008.07119.x PMID: 18355382
- Linhardt, R.J. Claude, S. Hudson award address in carbohydrate chemistry. Heparin: Structure and activity. J. Med. Chem., 2003, 46(13), 2551-2564. doi: 10.1021/jm030176m PMID: 12801218
- Oduah, E.; Linhardt, R.; Sharfstein, S. Heparin: Past, present, and future. Pharmaceuticals (Basel), 2016, 9(3), 38-49. doi: 10.3390/ph9030038 PMID: 27384570
- Spillmann, D. Heparan sulfate: Anchor for viral intruders? Biochimie, 2001, 83(8), 811-817. doi: 10.1016/S0300-9084(01)01290-1 PMID: 11530214
- Liu, J.; Thorp, S.C. Cell surface heparan sulfate and its roles in assisting viral infections. Med. Res. Rev., 2002, 22(1), 1-25. doi: 10.1002/med.1026 PMID: 11746174
- Hendricks, G.L.; Velazquez, L.; Pham, S.; Qaisar, N.; Delaney, J.C.; Viswanathan, K.; Albers, L.; Comolli, J.C.; Shriver, Z.; Knipe, D.M.; Kurt-Jones, E.A.; Fygenson, D.K.; Trevejo, J.M.; Wang, J.P.; Finberg, R.W. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses. Antiviral Res., 2015, 116, 34-44. doi: 10.1016/j.antiviral.2015.01.008 PMID: 25637710
- Lee, E.; Pavy, M.; Young, N.; Freeman, C.; Lobigs, M. Antiviral effect of the heparan sulfate mimetic, PI-88, against dengue and encephalitic flaviviruses. Antiviral Res., 2006, 69(1), 31-38. doi: 10.1016/j.antiviral.2005.08.006 PMID: 16309754
- Vervaeke, P.; Alen, M.; Noppen, S.; Schols, D.; Oreste, P.; Liekens, S. Sulfated Escherichia coli K5 polysaccharide derivatives inhibit dengue virus infection of human microvascular endothelial cells by interacting with the viral envelope protein E domain III. PLoS One, 2013, 8(8), e74035-e74047. doi: 10.1371/journal.pone.0074035 PMID: 24015314
- Kuhn, R.J.; Zhang, W.; Rossmann, M.G.; Pletnev, S.V.; Corver, J.; Lenches, E.; Jones, C.T.; Mukhopadhyay, S.; Chipman, P.R.; Strauss, E.G.; Baker, T.S.; Strauss, J.H. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 2002, 108(5), 717-725. doi: 10.1016/S0092-8674(02)00660-8 PMID: 11893341
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; Myers, M.F.; George, D.B.; Jaenisch, T.; Wint, G.R.W.; Simmons, C.P.; Scott, T.W.; Farrar, J.J.; Hay, S.I. The global distribution and burden of dengue. Nature, 2013, 496(7446), 504-507. doi: 10.1038/nature12060 PMID: 23563266
- Chen, Y.; Maguire, T.; Hileman, R.E.; Fromm, J.R.; Esko, J.D.; Linhardt, R.J.; Marks, R.M. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat. Med., 1997, 3(8), 866-871. doi: 10.1038/nm0897-866 PMID: 9256277
- Marks, R.M.; Lu, H.; Sundaresan, R.; Toida, T.; Suzuki, A.; Imanari, T.; Hernáiz, M.J.; Linhardt, R.J. Probing the interaction of dengue virus envelope protein with heparin: assessment of glycosaminoglycan-derived inhibitors. J. Med. Chem., 2001, 44(13), 2178-2187. doi: 10.1021/jm000412i PMID: 11405655
- Lin, Y.L.; Lei, H.Y.; Lin, Y.S.; Yeh, T.M.; Chen, S.H.; Liu, H.S. Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antiviral Res., 2002, 56(1), 93-96. doi: 10.1016/S0166-3542(02)00095-5 PMID: 12323403
- Talarico, L.; Pujol, C.; Zibetti, R.; Faría, P.; Noseda, M.; Duarte, M.; Damonte, E. The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell. Antiviral Res., 2005, 66(2-3), 103-110. doi: 10.1016/j.antiviral.2005.02.001 PMID: 15911027
- Dalrymple, N.; Mackow, E.R. Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors. J. Virol., 2011, 85(18), 9478-9485. doi: 10.1128/JVI.05008-11 PMID: 21734047
- Modhiran, N.; Gandhi, N.S.; Wimmer, N.; Cheung, S.; Stacey, K.; Young, P.R.; Ferro, V.; Watterson, D. Dual targeting of dengue virus virions and NS1 protein with the heparan sulfate mimic PG545. Antiviral Res., 2019, 168, 121-127. doi: 10.1016/j.antiviral.2019.05.004 PMID: 31085206
- de Almeida, M. M. C. S. The crab heparin-like compound exhibits a strong inhibitory effect on infections by dengue virus-2. Anti-Infective Agents, 2021, 19(1), 12-18. doi: 10.2174/2211352518999200429105342
- Dick, G.W.A.; Kitchen, S.F.; Haddow, A.J. Zika Virus (I). Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg., 1952, 46(5), 509-520. doi: 10.1016/0035-9203(52)90042-4 PMID: 12995440
- Dick, G.W.A. Paper: Epidemiological notes on some viruses isolated in Uganda (Yellow fever, Rift Valley fever, Bwamba fever, West Nile, Mengo, Semliki forest, Bunyamwera, Ntaya, Uganda S and Zika viruses). Trans. R. Soc. Trop. Med. Hyg., 1953, 47(1), 13-48. doi: 10.1016/0035-9203(53)90021-2 PMID: 13077697
- Sirohi, D.; Chen, Z.; Sun, L.; Klose, T.; Pierson, T.C.; Rossmann, M.G.; Kuhn, R.J. The 3.8 Å resolution cryo-EM structure of Zika virus. Science, 2016, 352(6284), 467-470. doi: 10.1126/science.aaf5316 PMID: 27033547
- DOrtenzio, E.; Matheron, S.; de Lamballerie, X.; Hubert, B.; Piorkowski, G.; Maquart, M.; Descamps, D.; Damond, F.; Yazdanpanah, Y.; Leparc-Goffart, I. Evidence of sexual transmission of zika virus. N. Engl. J. Med., 2016, 374(22), 2195-2198. doi: 10.1056/NEJMc1604449 PMID: 27074370
- Gao, H.; Lin, Y.; He, J.; Zhou, S.; Liang, M.; Huang, C.; Li, X.; Liu, C.; Zhang, P. Role of heparan sulfate in the Zika virus entry, replication, and cell death. Virology, 2019, 529, 91-100. doi: 10.1016/j.virol.2019.01.019 PMID: 30684694
- Maslow, J.N. Vaccines for emerging infectious diseases: Lessons from MERS coronavirus and Zika virus. Hum. Vaccin. Immunother., 2017, 13(12), 2918-2930. doi: 10.1080/21645515.2017.1358325 PMID: 28846484
- Pierson, T.C.; Diamond, M.S. The emergence of Zika virus and its new clinical syndromes. Nature, 2018, 560(7720), 573-581. doi: 10.1038/s41586-018-0446-y PMID: 30158602
- Kim, S.Y.; Zhao, J.; Liu, X.; Fraser, K.; Lin, L.; Zhang, X.; Zhang, F.; Dordick, J.S.; Linhardt, R.J. Interaction of Zika Virus envelope protein with glycosaminoglycans. Biochemistry, 2017, 56(8), 1151-1162. doi: 10.1021/acs.biochem.6b01056 PMID: 28151637
- Tan, C.W.; Sam, I.C.; Chong, W.L.; Lee, V.S.; Chan, Y.F. Polysulfonate suramin inhibits Zika virus infection. Antiviral Res., 2017, 143, 186-194. doi: 10.1016/j.antiviral.2017.04.017 PMID: 28457855
- Ghezzi, S.; Cooper, L.; Rubio, A.; Pagani, I.; Capobianchi, M.R.; Ippolito, G.; Pelletier, J.; Meneghetti, M.C.Z.; Lima, M.A.; Skidmore, M.A.; Broccoli, V.; Yates, E.A.; Vicenzi, E. Heparin prevents Zika virus induced-cytopathic effects in human neural progenitor cells. Antiviral Res., 2017, 140, 13-17. doi: 10.1016/j.antiviral.2016.12.023 PMID: 28063994
- Kim, S.Y.; Koetzner, C.A.; Payne, A.F.; Nierode, G.J.; Yu, Y.; Wang, R.; Barr, E.; Dordick, J.S.; Kramer, L.D.; Zhang, F.; Linhardt, R.J. Glycosaminoglycan compositional analysis of relevant tissues in zika virus pathogenesis and in vitro evaluation of heparin as an antiviral against zika virus infection. Biochemistry, 2019, 58(8), 1155-1166. doi: 10.1021/acs.biochem.8b01267 PMID: 30698412
- Pagani, I.; Ottoboni, L.; Podini, P.; Ghezzi, S.; Brambilla, E.; Bezukladova, S.; Corti, D.; Bianchi, M.E.; Capobianchi, M.R.; Yates, E.A.; Martino, G.; Vicenzi, E. Heparin protects human neural progenitor cells from Zika Virus-induced cell death and preserves their differentiation into mature neural-glia cells. bioRxiv, 2021, 2021, 442746. doi: 10.1101/2021.05.05.442746
- Kleymann, G. Agents and strategies in development for improved management of herpes simplex virus infection and disease. Expert Opin. Investig. Drugs, 2005, 14(2), 135-161. doi: 10.1517/13543784.14.2.135 PMID: 15757392
- Jiang, Y.C.; Feng, H.; Lin, Y.C.; Guo, X.R. New strategies against drug resistance to herpes simplex virus. Int. J. Oral Sci., 2016, 8(1), 1-6. doi: 10.1038/ijos.2016.3 PMID: 27025259
- Looker, K.J.; Welton, N.J.; Sabin, K.M.; Dalal, S.; Vickerman, P.; Turner, K.M.E.; Boily, M.C.; Gottlieb, S.L. Global and regional estimates of the contribution of herpes simplex virus type 2 infection to HIV incidence: a population attributable fraction analysis using published epidemiological data. Lancet Infect. Dis., 2020, 20(2), 240-249. doi: 10.1016/S1473-3099(19)30470-0 PMID: 31753763
- Chou, S. Cytomegalovirus UL97 mutations in the era of ganciclovir and maribavir. Rev. Med. Virol., 2008, 18(4), 233-246. doi: 10.1002/rmv.574 PMID: 18383425
- Pouyan, P.; Nie, C.; Bhatia, S.; Wedepohl, S.; Achazi, K.; Osterrieder, N.; Haag, R. Inhibition of herpes simplex virus type 1 attachment and infection by sulfated polyglycerols with different architectures. Biomacromolecules, 2021, 22(4), 1545-1554. doi: 10.1021/acs.biomac.0c01789 PMID: 33706509
- Lischka, P.; Zimmermann, H. Antiviral strategies to combat cytomegalovirus infections in transplant recipients. Curr. Opin. Pharmacol., 2008, 8(5), 541-548. doi: 10.1016/j.coph.2008.07.002 PMID: 18662804
- Andrei, G.; De Clercq, E.; Snoeck, R. Drug targets in cytomegalovirus infection. Infect. Disord. Drug Targets, 2009, 9(2), 201-222. doi: 10.2174/187152609787847758 PMID: 19275707
- WuDunn, D.; Spear, P.G. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J. Virol., 1989, 63(1), 52-58. doi: 10.1128/jvi.63.1.52-58.1989 PMID: 2535752
- Trybala, E.; Liljeqvist, J.A.; Svennerholm, B.; Bergström, T. Herpes simplex virus types 1 and 2 differ in their interaction with heparan sulfate. J. Virol., 2000, 74(19), 9106-9114. doi: 10.1128/JVI.74.19.9106-9114.2000 PMID: 10982357
- Herold, B.C.; Gerber, S.I.; Polonsky, T.; Belval, B.J.; Shaklee, P.N.; Holme, K. Identification of structural features of heparin required for inhibition of herpes simplex virus type 1 binding. Virology, 1995, 206(2), 1108-1116. doi: 10.1006/viro.1995.1034 PMID: 7856085
- Copeland, R.; Balasubramaniam, A.; Tiwari, V.; Zhang, F.; Bridges, A.; Linhardt, R.J.; Shukla, D.; Liu, J. Using a 3-O-sulfated heparin octasaccharide to inhibit the entry of herpes simplex virus type 1. Biochemistry, 2008, 47(21), 5774-5783. doi: 10.1021/bi800205t PMID: 18457417
- Shukla, D.; Liu, J.; Blaiklock, P.; Shworak, N.W.; Bai, X.; Esko, J.D.; Cohen, G.H.; Eisenberg, R.J.; Rosenberg, R.D.; Spear, P.G. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell, 1999, 99(1), 13-22. doi: 10.1016/S0092-8674(00)80058-6 PMID: 10520990
- Hu, Y.P.; Lin, S.Y.; Huang, C.Y.; Zulueta, M.M.L.; Liu, J.Y.; Chang, W.; Hung, S.C. Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 hostcell interaction. Nat. Chem., 2011, 3(7), 557-563. doi: 10.1038/nchem.1073 PMID: 21697878
- Lembo, D.; Donalisio, M.; Laine, C.; Cagno, V.; Civra, A.; Bianchini, E.P.; Zeghbib, N.; Bouchemal, K. Auto-associative heparin nanoassemblies: A biomimetic platform against the heparan sulfate-dependent viruses HSV-1, HSV-2, HPV-16 and RSV. Eur. J. Pharm. Biopharm., 2014, 88(1), 275-282. doi: 10.1016/j.ejpb.2014.05.007 PMID: 24835150
- Mese, K.; Bunz, O.; Volkwein, W.; Vemulapalli, S.P.B.; Zhang, W.; Schellhorn, S.; Heenemann, K.; Rueckner, A.; Sing, A.; Vahlenkamp, T.W.; Severing, A.L.; Gao, J.; Aydin, M.; Jung, D.; Bachmann, H.S.; Zänker, K.S.; Busch, U.; Baiker, A.; Griesinger, C.; Ehrhardt, A. Enhanced antiviral function of magnesium chloride-modified heparin on a broad spectrum of viruses. Int. J. Mol. Sci., 2021, 22(18), 10075-10088. doi: 10.3390/ijms221810075 PMID: 34576237
- Ahmadi, V.; Nie, C.; Mohammadifar, E.; Achazi, K.; Wedepohl, S.; Kerkhoff, Y.; Block, S.; Osterrieder, K.; Haag, R. One-pot gram-scale synthesis of virucidal heparin-mimicking polymers as HSV-1 inhibitors. Chem. Commun. (Camb.), 2021, 57(90), 11948-11951. doi: 10.1039/D1CC04703E PMID: 34671786
- Jana, S.; Mukherjee, S.; Ribelato, E.V.; Darido, M.L.; Faccin-Galhardi, L.C.; Ray, B.; Ray, S. The heparin-mimicking arabinogalactan sulfates from Anogeissus latifolia gum: Production, structures, and anti-herpes simplex virus activity. Int. J. Biol. Macromol., 2021, 183, 1419-1426. doi: 10.1016/j.ijbiomac.2021.05.107 PMID: 34022307
- Bergeron, H.C.; Murray, J.; Nuñez Castrejon, A.M.; DuBois, R.M.; Tripp, R.A. Respiratory syncytial virus (RSV) G protein vaccines with central conserved domain mutations induce CX3C-CX3CR1 blocking antibodies. Viruses, 2021, 13(2), 352-368. doi: 10.3390/v13020352 PMID: 33672319
- Chatzis, O.; Darbre, S.; Pasquier, J.; Meylan, P.; Manuel, O.; Aubert, J.D.; Beck-Popovic, M.; Masouridi-Levrat, S.; Ansari, M.; Kaiser, L.; Posfay-Barbe, K.M.; Asner, S.A. Burden of severe RSV disease among immunocompromised children and adults: a 10 year retrospective study. BMC Infect. Dis., 2018, 18(1), 111. doi: 10.1186/s12879-018-3002-3 PMID: 29510663
- Piedimonte, G.; Perez, M.K. Respiratory syncytial virus infection and bronchiolitis. Pediatr. Rev., 2014, 35(12), 519-530. doi: 10.1542/pir.35.12.519 PMID: 25452661
- Cagno, V.; Donalisio, M.; Civra, A.; Volante, M.; Veccelli, E.; Oreste, P.; Rusnati, M.; Lembo, D. Highly sulfated K5 Escherichia coli polysaccharide derivatives inhibit respiratory syncytial virus infectivity in cell lines and human tracheal-bronchial histocultures. Antimicrob. Agents Chemother., 2014, 58(8), 4782-4794. doi: 10.1128/AAC.02594-14 PMID: 24914125
- Cagno, V.; Tseligka, E.D.; Jones, S.T.; Tapparel, C. Heparan sulfate proteoglycans and viral attachment: True receptors or adaptation bias? Viruses, 2019, 11(7), 596. doi: 10.3390/v11070596 PMID: 31266258
- Feldman, S.A.; Hendry, R.M.; Beeler, J.A. Identification of a linear heparin binding domain for human respiratory syncytial virus attachment glycoprotein G. J. Virol., 1999, 73(8), 6610-6617. doi: 10.1128/JVI.73.8.6610-6617.1999 PMID: 10400758
- Feldman, S.A.; Audet, S.; Beeler, J.A. The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate. J. Virol., 2000, 74(14), 6442-6447. doi: 10.1128/JVI.74.14.6442-6447.2000 PMID: 10864656
- Donalisio, M.; Rusnati, M.; Cagno, V.; Civra, A.; Bugatti, A.; Giuliani, A.; Pirri, G.; Volante, M.; Papotti, M.; Landolfo, S.; Lembo, D. Inhibition of human respiratory syncytial virus infectivity by a dendrimeric heparan sulfate-binding peptide. Antimicrob. Agents Chemother., 2012, 56(10), 5278-5288. doi: 10.1128/AAC.00771-12 PMID: 22850525
- Krusat, T.; Streckert, H.J. Heparin-dependent attachment ofrespiratory syncytial virus (RSV) to host cells. Arch. Virol., 1997, 142(6), 1247-1254. doi: 10.1007/s007050050156 PMID: 9229012
- Hallak, L.K.; Spillmann, D.; Collins, P.L.; Peeples, M.E. Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. J. Virol., 2000, 74(22), 10508-10513. doi: 10.1128/JVI.74.22.10508-10513.2000 PMID: 11044095
- Guo, Y.; Wang, Z.; Dong, L.; Wu, J.; Zhai, S.; Liu, D. Ability of low-molecular-weight heparin to alleviate proteinuria by inhibiting respiratory syncytial virus infection. Nephrology (Carlton), 2008, 13(7), 545-553. doi: 10.1111/j.1440-1797.2008.01012.x PMID: 19161362
- Johnson, S.M.; McNally, B.A.; Ioannidis, I.; Flano, E.; Teng, M.N.; Oomens, A.G.; Walsh, E.E.; Peeples, M.E. Respiratory syncytial virus Uses CX3CR1 as a receptor on primary human airway epithelial cultures. PLoS Pathog., 2015, 11(12), e1005318-e1005333. doi: 10.1371/journal.ppat.1005318 PMID: 26658574
- Chirkova, T.; Lin, S.; Oomens, A.G.P.; Gaston, K.A.; Boyoglu-Barnum, S.; Meng, J.; Stobart, C.C.; Cotton, C.U.; Hartert, T.V.; Moore, M.L.; Ziady, A.G.; Anderson, L.J. CX3CR1 is an important surface molecule for respiratory syncytial virus infection in human airway epithelial cells. J. Gen. Virol., 2015, 96(9), 2543-2556. doi: 10.1099/vir.0.000218 PMID: 26297201
- Zhang, L.; Bukreyev, A.; Thompson, C.I.; Watson, B.; Peeples, M.E.; Collins, P.L.; Pickles, R.J. Infection of ciliated cells by human parainfluenza virus type 3 in an in vitro model of human airway epithelium. J. Virol., 2005, 79(2), 1113-1124. doi: 10.1128/JVI.79.2.1113-1124.2005 PMID: 15613339
- William, D.; James, M.D.; Dirk, M.; Elston, M.D.; James, R.; Treat, M.D.; Misha, A.; Rosenbach, M.D.; Isaac, M.; Neuhaus, M.D. Viral Diseases. In: Andrews' Diseases of the Skin; Elsevier, Amsterdam, 2020; 19, pp. 362-420.
- Walker, S.L.; Grayson, W. Human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS)-associated cutaneous diseases. In: McKee's Pathology of the Skin, 5th ed.; Elsevier, Amsterdam, 2020; pp. 976-989.e5.
- Patel, M.; Yanagishita, M.; Roderiquez, G.; Bou-Habib, D.C.; Oravecz, T.; Hascall, V.C.; Norcross, M.A. Cell-surface heparan sulfate proteoglycan mediates HIV-1 infection of T-cell lines. AIDS Res. Hum. Retroviruses, 1993, 9(2), 167-174. doi: 10.1089/aid.1993.9.167 PMID: 8096145
- Mbemba, E.; Czyrski, J.A.; Gattegno, L. The interaction of a glycosaminoglycan heparin, with HIV-1 major envelope glycoprotein. Biochim. Biophys. Acta Mol. Basis Dis., 1992, 1180(2), 123-129. doi: 10.1016/0925-4439(92)90060-Z PMID: 1281430
- Howell, A.L.; Taylor, T.H.; Miller, J.D.; Groveman, D.S.; Eccles, E.H.; Zacharski, L.R. Inhibition of HIV-1 infectivity by low molecular weight heparin. Int. J. Clin. Lab. Res., 1996, 26(2), 124-131. doi: 10.1007/BF02592355 PMID: 8856366
- Harrop, H.A.; Rider, C.C. Heparin and its derivatives bind to HIV-1 recombinant envelope glycoproteins, rather than to recombinant HIV-1 receptor, CD4. Glycobiology, 1998, 8(2), 131-137. doi: 10.1093/glycob/8.2.131 PMID: 9451022
- Vivès, R.R.; Imberty, A.; Sattentau, Q.J.; Lortat-Jacob, H. Heparan sulfate targets the HIV-1 envelope glycoprotein gp120 coreceptor binding site. J. Biol. Chem., 2005, 280(22), 21353-21357. doi: 10.1074/jbc.M500911200 PMID: 15797855
- Mohan, P.; Schols, D.; Baba, M.; De Clercq, E. Sulfonic acid polymers as a new class of human immunodeficiency virus inhibitors. Antiviral Res., 1992, 18(2), 139-150. doi: 10.1016/0166-3542(92)90034-3 PMID: 1384428
- Bugatti, A.; Urbinati, C.; Ravelli, C.; De Clercq, E.; Liekens, S.; Rusnati, M. Heparin-mimicking sulfonic acid polymers as multitarget inhibitors of human immunodeficiency virus type 1 Tat and gp120 proteins. Antimicrob. Agents Chemother., 2007, 51(7), 2337-2345. doi: 10.1128/AAC.01362-06 PMID: 17452490
- Nassar, R.A.; Browne, E.P.; Chen, J.; Klibanov, A.M. Removing human immunodeficiency virus (HIV) from human blood using immobilized heparin. Biotechnol. Lett., 2012, 34(5), 853-856. doi: 10.1007/s10529-011-0840-0 PMID: 22207147
- Pasquato, A.; Dettin, M.; Basak, A.; Gambaretto, R.; Tonin, L.; Seidah, N.G.; Di Bello, C. Heparin enhances the furin cleavage of HIV-1 gp160 peptides. FEBS Lett., 2007, 581(30), 5807-5813. doi: 10.1016/j.febslet.2007.11.050 PMID: 18037384
- Crublet, E.; Andrieu, J.P.; Vivès, R.R.; Lortat-Jacob, H. The HIV-1 envelope glycoprotein gp120 features four heparan sulfate binding domains, including the co-receptor binding site. J. Biol. Chem., 2008, 283(22), 15193-15200. doi: 10.1074/jbc.M800066200 PMID: 18378683
- Plotnik, D.; Guo, W.; Cleveland, B.; von Haller, P.; Eng, J.K.; Guttman, M.; Lee, K.K.; Arthos, J.; Hu, S.L. Extracellular matrix proteins mediate HIV-1 gp120 interactions with α 4 β 7. J. Virol., 2017, 91(21), e01005-17. doi: 10.1128/JVI.01005-17 PMID: 28814519
- Bugatti, A.; Paiardi, G.; Urbinati, C.; Chiodelli, P.; Orro, A.; Uggeri, M.; Milanesi, L.; Caruso, A.; Caccuri, F.; DUrsi, P.; Rusnati, M. Heparin and heparan sulfate proteoglycans promote HIV-1 p17 matrix protein oligomerization: computational, biochemical and biological implications. Sci. Rep., 2019, 9(1), 15768-15779. doi: 10.1038/s41598-019-52201-w PMID: 31673058
- Meselson, M. Droplets and aerosols in the transmission of SARS-CoV-2. N. Engl. J. Med., 2020, 382(21), 2063. doi: 10.1056/NEJMc2009324 PMID: 32294374
- Wadman, M.; Couzin-Frankel, J.; Kaiser, J.; Matacic, C. A rampage through the body. Science, 2020, 368(6489), 356-360. doi: 10.1126/science.368.6489.356 PMID: 32327580
- Conzelmann, C.; Müller, J.A.; Perkhofer, L.; Sparrer, K.M.J.; Zelikin, A.N.; Münch, J.; Kleger, A. Inhaled and systemic heparin as a repurposed direct antiviral drug for prevention and treatment of COVID-19. Clin. Med. (Lond.), 2020, 20(6), e218-e221. doi: 10.7861/clinmed.2020-0351 PMID: 32863274
- Tandon, R.; Sharp, J.S.; Zhang, F.; Pomin, V.H.; Ashpole, N.M.; Mitra, D.; McCandless, M.G.; Jin, W.; Liu, H.; Sharma, P.; Linhardt, R.J. Effective inhibition of SARS-CoV-2 entry by heparin and enoxaparin derivatives. J. Virol., 2021, 95(3), e01987-20. doi: 10.1128/JVI.01987-20 PMID: 33173010
- Clausen, T.M.; Sandoval, D.R.; Spliid, C.B.; Pihl, J.; Perrett, H.R.; Painter, C.D.; Narayanan, A.; Majowicz, S.A.; Kwong, E.M.; McVicar, R.N.; Thacker, B.E.; Glass, C.A.; Yang, Z.; Torres, J.L.; Golden, G.J.; Bartels, P.L.; Porell, R.N.; Garretson, A.F.; Laubach, L.; Feldman, J.; Yin, X.; Pu, Y.; Hauser, B.M.; Caradonna, T.M.; Kellman, B.P.; Martino, C.; Gordts, P.L.S.M.; Chanda, S.K.; Schmidt, A.G.; Godula, K.; Leibel, S.L.; Jose, J.; Corbett, K.D.; Ward, A.B.; Carlin, A.F.; Esko, J.D. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell, 2020, 183(4), 1043-1057.e15. doi: 10.1016/j.cell.2020.09.033 PMID: 32970989
- Oppenheimer, S. Covid-19 pandemic, glycobiology, glycan shields, vaccine strategies, heparin sulfate: A mini review. Am. J. Appl. Sci. Res., 2020, 6(2), 46-48. doi: 10.11648/j.ajasr.20200602.14
- Vicenzi, E.; Canducci, F.; Pinna, D.; Mancini, N.; Carletti, S.; Lazzarin, A.; Bordignon, C.; Poli, G.; Clementi, M. Coronaviridae and SARS-associated coronavirus strain HSR1. Emerg. Infect. Dis., 2004, 10(3), 413-418. doi: 10.3201/eid1003.030683 PMID: 15109406
- Mycroft-West, C.; Su, D.; Elli, S.; Li, Y.; Guimond, S.; Miller, G.; Turnbull, J.; Yates, E.; Guerrini, M.; Fernig, D.; Lima, M.; Skidmore, M. The 2019 coronavirus (SARS-CoV-2) surface protein (Spike) S1Receptor Binding Domain undergoes conformational change upon heparin binding. bioRxiv, 2020, 2020, 971093v2.
- Mycroft-West, C.J.; Su, D.; Pagani, I.; Rudd, T.R.; Elli, S.; Guimond, S.E.; Miller, G.; Meneghetti, M.C.Z.; Nader, H.B.; Li, Y.; Nunes, Q.M.; Procter, P.; Mancini, N.; Clementi, M.; Bisio, A.; Forsyth, N.R.; Turnbull, J.E.; Guerrini, M.; Fernig, D.G.; Vicenzi, E.; Yates, E.A.; Lima, M.A.; Skidmore, M.A. Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the surface protein (spike) S1 receptor binding domain with heparin. bioRxiv, 2020, 2020, 066761. doi: 10.1101/2020.04.28.066761
- Kim, S.Y.; Jin, W.; Sood, A.; Montgomery, D.W.; Grant, O.C.; Fuster, M.M.; Fu, L.; Dordick, J.S.; Woods, R.J.; Zhang, F.; Linhardt, R.J. Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Antiviral Res., 2020, 181, 104873. doi: 10.1016/j.antiviral.2020.104873 PMID: 32653452
- Liu, L.; Chopra, P.; Li, X.R.; Wolfert, M.A.; Tompkins, S.M.; Boons, G-J. SARS-CoV-2 spike protein binds heparan sulfate in a length- and sequence-dependent manner. bioRxiv, 2020, 2020, 087288.
- Paiardi, G.; Richter, S.; Oreste, P.; Urbinati, C.; Rusnati, M.; Wade, R.C. Three-fold mechanism of inhibition of SARS-CoV-2 infection by the interaction of the spike glycoprotein with heparin. arXiv, 2021, 2103, 07722.
- Gupta, Y.; Maciorowski, D.; Zak, S.E.; Kulkarni, C.V.; Herbert, A.S.; Durvasula, R.; Fareed, J.; Dye, J.M.; Kempaiah, P. Heparin: A simplistic repurposing to prevent SARS-CoV-2 transmission in light of its in-vitro nanomolar efficacy. Int. J. Biol. Macromol., 2021, 183, 203-212. doi: 10.1016/j.ijbiomac.2021.04.148 PMID: 33915212
- Li, J.; Zhang, Y.; Pang, H.; Li, S.J. Heparin interacts with the main protease of SARS-CoV-2 and inhibits its activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 267(Pt 2), 120595. doi: 10.1016/j.saa.2021.120595 PMID: 34815178
- Paiardi, G.; Richter, S.; Oreste, P.; Urbinati, C.; Rusnati, M.; Wade, R.C. The binding of heparin to spike glycoprotein inhibits SARS-CoV-2 infection by three mechanisms. J. Biol. Chem., 2022, 298(2), 101507. doi: 10.1016/j.jbc.2021.101507 PMID: 34929169
- Partridge, L.J.; Urwin, L.; Nicklin, M.J.H.; James, D.C.; Green, L.R.; Monk, P.N. ACE2-independent interaction of SARS-CoV-2 spike protein with human epithelial cells is inhibited by unfractionated heparin. Cells, 2021, 10(6), 1419. doi: 10.3390/cells10061419 PMID: 34200372
- Tree, J.A.; Turnbull, J.E.; Buttigieg, K.R.; Elmore, M.J.; Coombes, N.; Hogwood, J.; Mycroft-West, C.J.; Lima, M.A.; Skidmore, M.A.; Karlsson, R.; Chen, Y.H.; Yang, Z.; Spalluto, C.M.; Staples, K.J.; Yates, E.A.; Gray, E.; Singh, D.; Wilkinson, T.; Page, C.P.; Carroll, M.W. Unfractionated heparin inhibits live wild type SARS-CoV-2 cell infectivity at therapeutically relevant concentrations. Br. J. Pharmacol., 2021, 178(3), 626-635. doi: 10.1111/bph.15304 PMID: 33125711
- Yang, Y.; Du, Y.; Kaltashov, I.A. The utility of native ms for understanding the mechanism of action of repurposed therapeutics in COVID-19: Heparin as a disruptor of the SARS-CoV-2 interaction with its host cell receptor. Anal. Chem., 2020, 92(16), 10930-10934. doi: 10.1021/acs.analchem.0c02449 PMID: 32678978
- Guimond, S.E.; Mycroft-West, C.J.; Gandhi, N.S.; Tree, J.A.; Le, T.T.; Spalluto, C.M.; Humbert, M.V.; Buttigieg, K.R.; Coombes, N.; Elmore, M.J.; Nyström, K.; Said, J.; Setoh, Y.X.; Amarilla, A.A.; Modhiran, N.; Sng, J.D.J.; Chhabra, M.; Young, P.R.; Lima, M.A.; Yates, A.E; Karlsson, R; Miller, R.L; Chen, Y.-H; Bagdonaite, I.; Yang, Z.; Stewart, J.; Hammond, E.; Dredge, K.; Wilkinson, T.M.A.; Watterson, D.; Khromykh, A.A.; Suhrbier, A.; Carroll, M.W.; Trybala, E.; Bergström, T.; Ferro, V.; Skidmore, M.A.; Turnbull, J.E. Pixatimod (PG545), a clinical-stage heparan sulfate mimetic, is a potent inhibitor of the SARS1-CoV-2 virus. bioRxiv, 2021, 2021, 169334.
- Guimond, S.E.; Mycroft-West, C.J.; Gandhi, N.S.; Tree, J.A.; Le, T.T.; Spalluto, C.M.; Humbert, M.V.; Buttigieg, K.R.; Coombes, N.; Elmore, M.J.; Nyström, K.; Said, J.; Setoh, Y.X.; Amarilla, A.A.; Modhiran, N.; Sng, J.D.J.; Chhabra, M.; Young, P.R.; Lima, M.A.; Yates, A.; Karlsson, R; Miller, R.L; Chen, Y.-H; Bagdonaite, I.; Yang, Z.; Stewart, J.; Hammond, E.; Dredge, K.; Wilkinson, T.M.A.; Watterson, D.; Khromykh, A.A.; Suhrbier, A.; Carroll, M.W.; Trybala, E.; Bergström, T.; Ferro, V.; Skidmore, M.A.; Turnbull, J.E. Synthetic heparan sulfate mimetic pixatimod (PG545) potently inhibits SARS-CoV-2 by disrupting the spike-ACE2 interaction. bioRxiv, 2020, 2020, 169334.
- Tavassoly, O.; Safavi, F.; Tavassoly, I. Heparin-binding peptides as novel therapies to stop SARS-CoV-2 cellular entry and infection. Mol. Pharmacol., 2020, 98(5), 612-619. doi: 10.1124/molpharm.120.000098 PMID: 32913137
- Liu, J.; Li, J.; Arnold, K.; Pawlinski, R.; Key, N.S. Using heparin molecules to manage COVID-2019. Res. Pract. Thromb. Haemost., 2020, 4(4), 518-523. doi: 10.1002/rth2.12353 PMID: 32542212
- van Haren, F.M.P.; Page, C.; Laffey, J.G.; Artigas, A.; Camprubi-Rimblas, M.; Nunes, Q.; Smith, R.; Shute, J.; Carroll, M.; Tree, J.; Carroll, M.; Singh, D.; Wilkinson, T.; Dixon, B. Nebulised heparin as a treatment for COVID-19: scientific rationale and a call for randomised evidence. Crit. Care, 2020, 24(1), 454. doi: 10.1186/s13054-020-03148-2 PMID: 32698853
- Doorbar, J.; Quint, W.; Banks, L.; Bravo, I.G.; Stoler, M.; Broker, T.R.; Stanley, M.A. The biology and life-cycle of human papillomaviruses. Vaccine, 2012, 30(5)(Suppl. 5), F55-F70. doi: 10.1016/j.vaccine.2012.06.083 PMID: 23199966
- Gonzalez, D.; Ragusa, J.; Angeletti, P.C.; Larsen, G. Preparation and characterization of functionalized heparin-loaded poly-Ɛ-caprolactone fibrous mats to prevent infection with human papillomaviruses. PLoS One, 2018, 13(7), e0199925. doi: 10.1371/journal.pone.0199925 PMID: 29966006
- Surviladze, Z.; Dziduszko, A.; Ozbun, M.A. Essential roles for soluble virion-associated heparan sulfonated proteoglycans and growth factors in human papillomavirus infections. PLoS Pathog., 2012, 8(2), e1002519. doi: 10.1371/journal.ppat.1002519 PMID: 22346752
- Sun, J.; Yu, J.S.; Jin, S.; Zha, X.; Wu, Y.; Yu, Z. Interaction of synthetic HPV-16 capsid peptides with heparin: thermodynamic parameters and binding mechanism. J. Phys. Chem. B, 2010, 114(30), 9854-9861. doi: 10.1021/jp1009719 PMID: 20666526
- Joyce, J.G.; Tung, J.S.; Przysiecki, C.T.; Cook, J.C.; Lehman, E.D.; Sands, J.A.; Jansen, K.U.; Keller, P.M. The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J. Biol. Chem., 1999, 274(9), 5810-5822. doi: 10.1074/jbc.274.9.5810 PMID: 10026203
- Donalisio, M.; Rusnati, M.; Civra, A.; Bugatti, A.; Allemand, D.; Pirri, G.; Giuliani, A.; Landolfo, S.; Lembo, D. Identification of a dendrimeric heparan sulfate-binding peptide that inhibits infectivity of genital types of human papillomaviruses. Antimicrob. Agents Chemother., 2010, 54(10), 4290-4299. doi: 10.1128/AAC.00471-10 PMID: 20643894
- Giroglou, T.; Florin, L.; Schäfer, F.; Streeck, R.E.; Sapp, M. Human papillomavirus infection requires cell surface heparan sulfate. J. Virol., 2001, 75(3), 1565-1570. doi: 10.1128/JVI.75.3.1565-1570.2001 PMID: 11152531
- Johnson, K.M.; Kines, R.C.; Roberts, J.N.; Lowy, D.R.; Schiller, J.T.; Day, P.M. Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J. Virol., 2009, 83(5), 2067-2074. doi: 10.1128/JVI.02190-08 PMID: 19073722
- Richards, K. F.; Bienkowska-Haba, M.; Dasgupta, J.; Chen, X. S.; Sapp, M. Multiple heparan sulfate binding site engagements are required for the infectious entry of human papillomavirus type 16. J. Virol., 2013, 87(21), 11426-37.
- Guan, J.; Bywaters, S.M.; Brendle, S.A.; Ashley, R.E.; Makhov, A.M.; Conway, J.F.; Christensen, N.D.; Hafenstein, S. Cryoelectron microscopy maps of human papillomavirus 16 reveal L2 densities and heparin binding site. Structure, 2017, 25(2), 253-263. doi: 10.1016/j.str.2016.12.001 PMID: 28065506
- Gao, Y.; Liu, W.; Wang, W.; Zhang, X.; Zhao, X. The inhibitory effects and mechanisms of 3,6-O-sulfated chitosan against human papillomavirus infection. Carbohydr. Polym., 2018, 198, 329-338. doi: 10.1016/j.carbpol.2018.06.096 PMID: 30093007
- Leistner, C.M.; Gruen-Bernhard, S.; Glebe, D. Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell. Microbiol., 2008, 10(1), 122-133. doi: 10.1111/j.1462-5822.2007.01023.x PMID: 18086046
- Lamas Longarela, O.; Schmidt, T.T.; Schöneweis, K.; Romeo, R.; Wedemeyer, H.; Urban, S.; Schulze, A. Proteoglycans act as cellular hepatitis delta virus attachment receptors. PLoS One, 2013, 8(3), e58340. doi: 10.1371/journal.pone.0058340 PMID: 23505490
- Ying, C.; Van Pelt, J.F.; Van Lommel, A.; Van Ranst, M.; Leyssen, P.; De Clercq, E.; Neyts, J. Sulphated and sulphonated polymers inhibit the initial interaction of hepatitis B virus with hepatocytes. Antivir. Chem. Chemother., 2002, 13(3), 157-164. doi: 10.1177/095632020201300302 PMID: 12448688
- Zahn, A.; Allain, J.P. Hepatitis C virus and hepatitis B virus bind to heparin: purification of largely IgG-free virions from infected plasma by heparin chromatography. J. Gen. Virol., 2005, 86(3), 677-685. doi: 10.1099/vir.0.80614-0 PMID: 15722528
- Schulze, A.; Gripon, P.; Urban, S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology, 2007, 46(6), 1759-1768. doi: 10.1002/hep.21896 PMID: 18046710
- Choijilsuren, G.; Jhou, R.S.; Chou, S.F.; Chang, C.J.; Yang, H.I.; Chen, Y.Y.; Chuang, W.L.; Yu, M.L.; Shih, C. Heparin at physiological concentration can enhance PEG-free in vitro infection with human hepatitis B virus. Sci. Rep., 2017, 7(1), 14461. doi: 10.1038/s41598-017-14573-9 PMID: 29089529
- Liu, Q.; Somiya, M.; Iijima, M.; Tatematsu, K.; Kuroda, S. A hepatitis B virus-derived human hepatic cell-specific heparin-binding peptide: identification and application to a drug delivery system. Biomater. Sci., 2019, 7(1), 322-335. doi: 10.1039/C8BM01134F PMID: 30474653
- Vieyres, G.; Thomas, X.; Descamps, V.; Duverlie, G.; Patel, A.H.; Dubuisson, J. Characterization of the envelope glycoproteins associated with infectious hepatitis C virus. J. Virol., 2010, 84(19), 10159-10168. doi: 10.1128/JVI.01180-10 PMID: 20668082
- Morikawa, K.; Zhao, Z.; Date, T.; Miyamoto, M.; Murayama, A.; Akazawa, D.; Tanabe, J.; Sone, S.; Wakita, T. The roles of CD81 and glycosaminoglycans in the adsorption and uptake of infectious HCV particles. J. Med. Virol., 2007, 79(6), 714-723. doi: 10.1002/jmv.20842 PMID: 17457918
- LeBlanc, E.V.; Kim, Y.; Capicciotti, C.J.; Colpitts, C.C.; Hepatitis, C. Hepatitis C virus glycan-dependent interactions and the potential for novel preventative strategies. Pathogens, 2021, 10(6), 685. doi: 10.3390/pathogens10060685 PMID: 34205894
- Germi, R.; Crance, J.M.; Garin, D.; Guimet, J.; Lortat-Jacob, H.; Ruigrok, R.W.H.; Zarski, J.P.; Drouet, E. Cellular glycosaminoglycans and low density lipoprotein receptor are involved in hepatitis C virus adsorption. J. Med. Virol., 2002, 68(2), 206-215. doi: 10.1002/jmv.10196 PMID: 12210409
- Barth, H.; Schäfer, C.; Adah, M.I.; Zhang, F.; Linhardt, R.J.; Toyoda, H.; Kinoshita-Toyoda, A.; Toida, T.; van Kuppevelt, T.H.; Depla, E.; von Weizsäcker, F.; Blum, H.E.; Baumert, T.F. Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J. Biol. Chem., 2003, 278(42), 41003-41012. doi: 10.1074/jbc.M302267200 PMID: 12867431
- Olenina, L.V.; Kuzmina, T.I.; Sobolev, B.N.; Kuraeva, T.E.; Kolesanova, E.F.; Archakov, A.I. Identification of glycosaminoglycan-binding sites within hepatitis C virus envelope glycoprotein E2*. J. Viral Hepat., 2005, 12(6), 584-593. doi: 10.1111/j.1365-2893.2005.00647.x PMID: 16255759
- Barth, H.; Schnober, E.K.; Zhang, F.; Linhardt, R.J.; Depla, E.; Boson, B.; Cosset, F.L.; Patel, A.H.; Blum, H.E.; Baumert, T.F. Viral and cellular determinants of the hepatitis C virus envelope-heparan sulfate interaction. J. Virol., 2006, 80(21), 10579-10590. doi: 10.1128/JVI.00941-06 PMID: 16928753
- Basu, A.; Kanda, T.; Beyene, A.; Saito, K.; Meyer, K.; Ray, R. Sulfated homologues of heparin inhibit hepatitis C virus entry into mammalian cells. J. Virol., 2007, 81(8), 3933-3941. doi: 10.1128/JVI.02622-06 PMID: 17287282
- Kobayashi, F.; Yamada, S.; Taguwa, S.; Kataoka, C.; Naito, S.; Hama, Y.; Tani, H.; Matsuura, Y.; Sugahara, K. Specific interaction of the envelope glycoproteins E1 and E2 with liver heparan sulfate involved in the tissue tropismatic infection by hepatitis C virus. Glycoconj. J., 2012, 29(4), 211-220. doi: 10.1007/s10719-012-9388-z PMID: 22660965
- Jiang, J.; Cun, W.; Wu, X.; Shi, Q.; Tang, H.; Luo, G. Hepatitis C virus attachment mediated by apolipoprotein E binding to cell surface heparan sulfate. J. Virol., 2012, 86(13), 7256-7267. doi: 10.1128/JVI.07222-11 PMID: 22532692
- Jiang, J.; Wu, X.; Tang, H.; Luo, G. Apolipoprotein E mediates attachment of clinical hepatitis C virus to hepatocytes by binding to cell surface heparan sulfate proteoglycan receptors. PLoS One, 2013, 8(7), e67982. doi: 10.1371/journal.pone.0067982 PMID: 23844141
- Xu, Y.; Martinez, P.; Séron, K.; Luo, G.; Allain, F.; Dubuisson, J.; Belouzard, S. Characterization of hepatitis C virus interaction with heparan sulfate proteoglycans. J. Virol., 2015, 89(7), 3846-3858. doi: 10.1128/JVI.03647-14 PMID: 25609801
- Chavas, L.M.G.; Kato, R.; Suzuki, N.; von Itzstein, M.; Mann, M.C.; Thomson, R.J.; Dyason, J.C.; McKimm-Breschkin, J.; Fusi, P.; Tringali, C.; Venerando, B.; Tettamanti, G.; Monti, E.; Wakatsuki, S. Complexity in influenza virus targeted drug design: interaction with human sialidases. J. Med. Chem., 2010, 53(7), 2998-3002. doi: 10.1021/jm100078r PMID: 20222714
- Foni, E.; Chiapponi, C.; Baioni, L.; Zanni, I.; Merenda, M.; Rosignoli, C.; Kyriakis, C. S.; Luini, M. V.; Mandola, M. L.; Bolzoni, L.; Nigrelli, A. D.; Faccini, S. Influenza D in Italy: towards a better understanding of an emerging viral infection in swine. Sci. Rep.-Uk, 2017, 7(1), 11660. doi: 10.1038/s41598-017-12012-3
- Skidmore, M.A.; Kajaste-Rudnitski, A.; Wells, N.M.; Guimond, S.E.; Rudd, T.R.; Yates, E.A.; Vicenzi, E. Inhibition of influenza H5N1 invasion by modified heparin derivatives. MedChemComm, 2015, 6(4), 640-646. doi: 10.1039/C4MD00516C
- Lai, K.M.; Goh, B.H.; Lee, W.L. Attenuating influenza a virus infection by heparin binding EGF-like growth factor. Growth Factors, 2020, 38(3-4), 167-176. doi: 10.1080/08977194.2021.1895144 PMID: 33719806
- Levy, H.C.; Bowman, V.D.; Govindasamy, L.; McKenna, R.; Nash, K.; Warrington, K.; Chen, W.; Muzyczka, N.; Yan, X.; Baker, T.S.; Agbandje-McKenna, M. Heparin binding induces conformational changes in Adeno-associated virus serotype 2. J. Struct. Biol., 2009, 165(3), 146-156. doi: 10.1016/j.jsb.2008.12.002 PMID: 19121398
- Walker, S.J.; Pizzato, M.; Takeuchi, Y.; Devereux, S. Heparin binds to murine leukemia virus and inhibits Env-independent attachment and infection. J. Virol., 2002, 76(14), 6909-6918. doi: 10.1128/JVI.76.14.6909-6918.2002 PMID: 12072492
- Tanaka, A.; Tumkosit, U.; Nakamura, S.; Motooka, D.; Kishishita, N.; Priengprom, T.; Sa-ngasang, A.; Kinoshita, T.; Takeda, N.; Maeda, Y. Genome-wide screening uncovers the significance of N-sulfation of heparan sulfate as a host cell factor for chikungunya virus infection. J. Virol., 2017, 91(13), e00432-17. doi: 10.1128/JVI.00432-17 PMID: 28404855
- Sahoo, B.; Chowdary, T.K. Conformational changes in Chikungunya virus E2 protein upon heparan sulfate receptor binding explain mechanism of E2E1 dissociation during viral entry. Biosci. Rep., 2019, 39(6), BSR20191077. doi: 10.1042/BSR20191077 PMID: 31167876
- McAllister, N.; Liu, Y.; Silva, L.M.; Lentscher, A.J.; Chai, W.; Wu, N.; Griswold, K.A.; Raghunathan, K.; Vang, L.; Alexander, J.; Warfield, K.L.; Diamond, M.S.; Feizi, T.; Silva, L.A.; Dermody, T.S. Chikungunya virus strains from each genetic clade bind sulfated glycosaminoglycans as attachment factors. J. Virol., 2020, 94(24), e01500-20. doi: 10.1128/JVI.01500-20 PMID: 32999033
- Wu, S.; Wu, Z.; Wu, Y.; Wang, T.; Wang, M.; Jia, R.; Zhu, D.; Liu, M.; Zhao, X.; Yang, Q.; Wu, Y.; Zhang, S.; Liu, Y.; Zhang, L.; Yu, Y.; Pan, L.; Chen, S.; Cheng, A. Heparin sulfate is the attachment factor of duck Tembus virus on both BHK21 and DEF cells. Virol. J., 2019, 16(1), 134. doi: 10.1186/s12985-019-1246-1 PMID: 31718685
- Salvador, B.; Sexton, N.R.; Carrion, R., Jr; Nunneley, J.; Patterson, J.L.; Steffen, I.; Lu, K.; Muench, M.O.; Lembo, D.; Simmons, G. Filoviruses utilize glycosaminoglycans for their attachment to target cells. J. Virol., 2013, 87(6), 3295-3304. doi: 10.1128/JVI.01621-12 PMID: 23302881
- Tamhankar, M.; Gerhardt, D.M.; Bennett, R.S.; Murphy, N.; Jahrling, P.B.; Patterson, J.L. Heparan sulfate is an important mediator of Ebola virus infection in polarized epithelial cells. Virol. J., 2018, 15(1), 135. doi: 10.1186/s12985-018-1045-0 PMID: 30165875
- Su, C.M.; Liao, C.L.; Lee, Y.L.; Lin, Y.L. Highly sulfated forms of heparin sulfate are involved in japanese encephalitis virus infection. Virology, 2001, 286(1), 206-215. doi: 10.1006/viro.2001.0986 PMID: 11448173
- Terao-Muto, Y.; Yoneda, M.; Seki, T.; Watanabe, A.; Tsukiyama-Kohara, K.; Fujita, K.; Kai, C. Heparin-like glycosaminoglycans prevent the infection of measles virus in SLAM-negative cell lines. Antiviral Res., 2008, 80(3), 370-376. doi: 10.1016/j.antiviral.2008.08.006 PMID: 18812191
- Huan, C.; Wang, Y.; Ni, B.; Wang, R.; Huang, L.; Ren, X.; Tong, G.; Ding, C.; Fan, H.; Mao, X. Porcine epidemic diarrhea virus uses cell-surface heparan sulfate as an attachment factor. Arch. Virol., 2015, 160(7), 1621-1628. doi: 10.1007/s00705-015-2408-0 PMID: 25896095
- Sasaki, M.; Anindita, P.D.; Ito, N.; Sugiyama, M.; Carr, M.; Fukuhara, H.; Ose, T.; Maenaka, K.; Takada, A.; Hall, W.W.; Orba, Y.; Sawa, H. The role of heparan sulfate proteoglycans as an attachment factor for rabies virus entry and infection. J. Infect. Dis., 2018, 217(11), 1740-1749. doi: 10.1093/infdis/jiy081 PMID: 29529215
- Ke, F.; Wang, Z.H.; Ming, C.Y.; Zhang, Q.Y. Ranaviruses bind cells from different species through interaction with heparan sulfate. Viruses, 2019, 11(7), 593. doi: 10.3390/v11070593 PMID: 31261956
- Bear, J.S.; Byrnes, A.P.; Griffin, D.E. Heparin-binding and patterns of virulence for two recombinant strains of Sindbis virus. Virology, 2006, 347(1), 183-190. doi: 10.1016/j.virol.2005.11.034 PMID: 16380143
- Montanuy, I.; Alejo, A.; Alcami, A. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. FASEB J., 2011, 25(6), 1960-1971. doi: 10.1096/fj.10-177188 PMID: 21372110
- Banik, N.; Yang, S.B.; Kang, T.B.; Lim, J.H.; Park, J. Heparin and its derivatives: challenges and advances in therapeutic biomolecules. Int. J. Mol. Sci., 2021, 22(19), 10524. doi: 10.3390/ijms221910524 PMID: 34638867
- Torres, F.G.; Troncoso, O.P.; Pisani, A.; Gatto, F.; Bardi, G. Natural polysaccharide nanomaterials: an overview of their immunological properties. Int. J. Mol. Sci., 2019, 20(20), 5092. doi: 10.3390/ijms20205092 PMID: 31615111
- Qiu, X.L.; Fan, Z.R.; Liu, Y.Y.; Wang, D.F.; Wang, S.X.; Li, C.X. Preparation and evaluation of a self-nanoemulsifying drug delivery system loaded with heparin phospholipid complex. Int. J. Mol. Sci., 2021, 22(8), 4077. doi: 10.3390/ijms22084077 PMID: 33920853
- Wan, X.; Li, P.; Jin, X.; Su, F.; Shen, J.; Yuan, J. Poly(ε- caprolactone)/keratin/heparin/VEGF biocomposite mats for vascular tissue engineering. J. Biomed. Mater. Res. A, 2020, 108(2), 292-300. doi: 10.1002/jbm.a.36815 PMID: 31606923
- Pitt, E.A.; Dogra, P.; Patel, R.S.; Williams, A.; Wall, J.S.; Sparer, T.E. The D-form of a novel heparan binding peptide decreases cytomegalovirus infection in vivo and in vitro. Antiviral Res., 2016, 135, 15-23. doi: 10.1016/j.antiviral.2016.09.012 PMID: 27678155
- Hondermarck, H.; Bartlett, N.W.; Nurcombe, V. The role of growth factor receptors in viral infections: An opportunity for drug repurposing against emerging viral diseases such as COVID-19? FASEB Bioadv., 2020, 2(5), 296-303. doi: 10.1096/fba.2020-00015 PMID: 32395702
- Häcker, U.; Nybakken, K.; Perrimon, N. Heparan sulphate proteoglycans: the sweet side of development. Nat. Rev. Mol. Cell Biol., 2005, 6(7), 530-541. doi: 10.1038/nrm1681 PMID: 16072037
- Chen, D. Heparin beyond anti-coagulation. Curr. Res. Transl. Med., 2021, 69(4), 103300-103303. doi: 10.1016/j.retram.2021.103300 PMID: 34237474
- Goldberg, M.; Gomez-Orellana, I. Challenges for the oral delivery of macromolecules. Nat. Rev. Drug Discov., 2003, 2(4), 289-295. doi: 10.1038/nrd1067 PMID: 12669028
- Schlüter, A.; Lamprecht, A. Current developments for the oral delivery of heparin. Curr. Pharm. Biotechnol., 2014, 15(7), 640-649. doi: 10.2174/1389201015666140915151649 PMID: 25219865
- Fang, G.; Tang, B. Advanced delivery strategies facilitating oral absorption of heparins. Asian J. Pharmaceut. Sci., 2020, 15(4), 449-460. doi: 10.1016/j.ajps.2019.11.006 PMID: 32952668
- Wat, J.M.; Hawrylyshyn, K.; Baczyk, D.; Greig, I.R.; Kingdom, J.C. Effects of glycol-split low molecular weight heparin on placental, endothelial, and anti-inflammatory pathways relevant to preeclampsia. Biol. Reprod., 2018, 99(5), 1082-1090. doi: 10.1093/biolre/ioy127 PMID: 29860275
- Yu, M.; Zhang, T.; Zhang, W.; Sun, Q.; Li, H.; Li, J. Elucidating the interactions between heparin/heparan sulfate and SARS-CoV-2-related proteinsan important strategy for developing novel therapeutics for the COVID-19 pandemic. Front. Mol. Biosci., 2021, 7, 628551-628563. doi: 10.3389/fmolb.2020.628551 PMID: 33569392
Supplementary files
