Targeting Cysteine Proteases and their Inhibitors to Combat Trypanosomiasis
- Authors: Saha A.1, Pushpa 1, Moitra S.1, Basak D.2, Brahma S.1, Mondal D.3, Molla S.4, Samadder A.5, Nandi S.6
-
Affiliations:
- Cell and Developmental Biology Special, Department of Zoology,, University of Kalyani
- Endocrinology Special, Department of Zoology, University of Kalyani
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani
- Parasitology Laboratory, Department of Zoology,, University of Kalyani
- Cytogenetics and Molecular Biology Lab., Department of Zoology,, University of Kalyani
- , Global Institute of Pharmaceutical Education and Research (Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University)
- Issue: Vol 31, No 16 (2024)
- Pages: 2135-2169
- Section: Anti-Infectives and Infectious Diseases
- URL: https://j-morphology.com/0929-8673/article/view/644436
- DOI: https://doi.org/10.2174/0929867330666230619160509
- ID: 644436
Cite item
Full Text
Abstract
Background:Trypanosomiasis, caused by protozoan parasites of the Trypanosoma genus, remains a significant health burden in several regions of the world. Cysteine proteases play a crucial role in the pathogenesis of Trypanosoma parasites and have emerged as potential therapeutic targets for the development of novel antiparasitic drugs.
Introduction:This review article aims to provide a comprehensive overview of the role of cysteine proteases in trypanosomiasis and their potential as therapeutic targets. We discuss the biological significance of cysteine proteases in Trypanosoma parasites and their involvement in essential processes, such as host immune evasion, cell invasion, and nutrient acquisition.
Methods:A comprehensive literature search was conducted to identify relevant studies and research articles on the role of cysteine proteases and their inhibitors in trypanosomiasis. The selected studies were critically analyzed to extract key findings and provide a comprehensive overview of the topic.
Results:Cysteine proteases, such as cruzipain, TbCatB and TbCatL, have been identified as promising therapeutic targets due to their essential roles in Trypanosoma pathogenesis. Several small molecule inhibitors and peptidomimetics have been developed to target these proteases and have shown promising activity in preclinical studies.
Conclusion:Targeting cysteine proteases and their inhibitors holds great potential for the development of novel antiparasitic drugs against trypanosomiasis. The identification of potent and selective cysteine protease inhibitors could significantly contribute to the combat against trypanosomiasis and improve the prospects for the treatment of this neglected tropical disease.
About the authors
Aloke Saha
Cell and Developmental Biology Special, Department of Zoology,, University of Kalyani
Email: info@benthamscience.net
Pushpa
Cell and Developmental Biology Special, Department of Zoology,, University of Kalyani
Email: info@benthamscience.net
Susmita Moitra
Cell and Developmental Biology Special, Department of Zoology,, University of Kalyani
Email: info@benthamscience.net
Deblina Basak
Endocrinology Special, Department of Zoology, University of Kalyani
Email: info@benthamscience.net
Sayandeep Brahma
Cell and Developmental Biology Special, Department of Zoology,, University of Kalyani
Email: info@benthamscience.net
Dipu Mondal
Cell and Developmental Biology Special, Department of Zoology, University of Kalyani
Email: info@benthamscience.net
Sabir Molla
Parasitology Laboratory, Department of Zoology,, University of Kalyani
Author for correspondence.
Email: info@benthamscience.net
Asmita Samadder
Cytogenetics and Molecular Biology Lab., Department of Zoology,, University of Kalyani
Author for correspondence.
Email: info@benthamscience.net
Sisir Nandi
, Global Institute of Pharmaceutical Education and Research (Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University)
Author for correspondence.
Email: info@benthamscience.net
References
- Weng, H.B.; Chen, H.X.; Wang, M.W. Innovation in neglected tropical disease drug discovery and development. Infect. Dis. Poverty, 2018, 7(1), 67. doi: 10.1186/s40249-018-0444-1 PMID: 29950174
- Kirchhoff, L.V.; Gam, A.A.; Gilliam, F.C. American trypanosomiasis (Chagas disease) in central American immigrants. Am. J. Med., 1987, 82(5), 915-920. doi: 10.1016/0002-9343(87)90152-5 PMID: 3107385
- Geerts, M.; Van Reet, N.; Leyten, S.; Berghmans, R.; Rock, K.S.; Coetzer, T.H.T.; Eyssen, L.E.A.; Büscher, P. Trypanosoma brucei gambiense-iELISA: A promising new test for the post-elimination monitoring of human African trypanosomiasis. Clin. Infect. Dis., 2021, 73(9), e2477-e2483. doi: 10.1093/cid/ciaa1264 PMID: 32856049
- Franco, J.R.; Simarro, P.P.; Diarra, A.; Jannin, J.G. Epidemiology of human African trypanosomiasis. Clin. Epidemiol., 2014, 6, 257-275. PMID: 25125985
- Steverding, D. The history of African trypanosomiasis. Parasit. Vectors, 2008, 1(1), 3. doi: 10.1186/1756-3305-1-3 PMID: 18275594
- Maxfield, L.; Bermudez, R. Trypanosomiasis. StatPearls; StatPearls Publishing: Treasure Island, FL, 2022.
- Gao, J.M.; Qian, Z.Y.; Hide, G.; Lai, D.H.; Lun, Z.R.; Wu, Z.D. Human African trypanosomiasis: The current situation in endemic regions and the risks for non-endemic regions from imported cases. Parasitology, 2020, 147(9), 922-931. doi: 10.1017/S0031182020000645 PMID: 32338232
- Aksoy, S.; Buscher, P.; Lehane, M.; Solano, P.; Van Den Abbeele, J. Human African trypanosomiasis control: Achievements and challenges. PLoS Negl. Trop. Dis., 2017, 11(4), e0005454. doi: 10.1371/journal.pntd.0005454 PMID: 28426685
- Franco, J.R.; Cecchi, G.; Paone, M.; Diarra, A.; Grout, L.; Kadima Ebeja, A.; Simarro, P.P.; Zhao, W.; Argaw, D. The elimination of human African trypanosomiasis: Achievements in relation to WHO road map targets for 2020. PLoS Negl. Trop. Dis., 2022, 16(1), e0010047. doi: 10.1371/journal.pntd.0010047 PMID: 35041668
- Trypanosomiasis, human African. 2023. Available From: https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness)
- Bern, C.; Kjos, S.; Yabsley, M.J.; Montgomery, S.P. Trypanosoma cruzi and Chagas disease in the United States. Clin. Microbiol. Rev., 2011, 24(4), 655-681. doi: 10.1128/CMR.00005-11 PMID: 21976603
- Dario, M.A.; Rodrigues, M.S.; Barros, J.H.S.; Xavier, S.C.C.; DAndrea, P.S.; Roque, A.L.R.; Jansen, A.M. Ecological scenario and Trypanosoma cruzi DTU characterization of a fatal acute Chagas disease case transmitted orally (Espírito Santo state, Brazil). Parasit. Vectors, 2016, 9(1), 477. doi: 10.1186/s13071-016-1754-4 PMID: 27580853
- Lidani, K.C.F.; Andrade, F.A.; Bavia, L.; Damasceno, F.S.; Beltrame, M.H.; Messias-Reason, I.J.; Sandri, T.L. Chagas disease: From discovery to a worldwide health problem. Front. Public Health, 2019, 7, 166. doi: 10.3389/fpubh.2019.00166 PMID: 31312626
- Bern, C.; Messenger, L.A.; Whitman, J.D.; Maguire, J.H. Chagas disease in the United States: A public health approach. Clin. Microbiol. Rev., 2019, 33(1), e00023-e19. doi: 10.1128/CMR.00023-19 PMID: 31776135
- Schmunis, G.A.; Yadon, Z.E. Chagas disease: A Latin American health problem becoming a world health problem. Acta Trop., 2010, 115(1-2), 14-21. doi: 10.1016/j.actatropica.2009.11.003 PMID: 19932071
- Solomon Ngutor, K.; Idris, L.A.; Oluseyi Oluyinka, O. Silent human Trypanosoma brucei gambiense infections around the old gboko sleeping sickness focus in Nigeria. J. Parasitol. Res., 2016, 2016, 1-5. doi: 10.1155/2016/2656121 PMID: 26941995
- Kasozi, K.I.; Zirintunda, G.; Ssempijja, F.; Buyinza, B.; Alzahrani, K.J.; Matama, K.; Nakimbugwe, H.N.; Alkazmi, L.; Onanyang, D.; Bogere, P.; Ochieng, J.J.; Islam, S.; Matovu, W.; Nalumenya, D.P.; Batiha, G.E.S.; Osuwat, L.O.; Abdelhamid, M.; Shen, T.; Omadang, L.; Welburn, S.C. Epidemiology of trypanosomiasis in wildlife-implications for humans at the wildlife interface in Africa. Front. Vet. Sci., 2021, 8, 621699. doi: 10.3389/fvets.2021.621699 PMID: 34222391
- Meisner, J.; Kato, A.; Lemerani, M.M.; Mwamba Miaka, E.; Ismail Taban, A.; Wakefield, J.; Rowhani-Rahbar, A.; Pigott, D.M.; Mayer, J.D.; Rabinowitz, P.M. The effect of livestock density on Trypanosoma brucei gambiense and T. b. rhodesiense: A causal inference-based approach. PLoS Negl. Trop. Dis., 2022, 16(8), e0010155. doi: 10.1371/journal.pntd.0010155 PMID: 36037205
- Greenwood, B.M.; Whittle, H.C. The pathogenesis of sleeping sickness. Trans. R. Soc. Trop. Med. Hyg., 1980, 74(6), 716-725. doi: 10.1016/0035-9203(80)90184-4 PMID: 7010694
- Schuster, S.; Lisack, J.; Subota, I.; Zimmermann, H.; Reuter, C.; Mueller, T.; Morriswood, B.; Engstler, M. Unexpected plasticity in the life cycle of Trypanosoma brucei. eLife, 2021, 10, e66028. doi: 10.7554/eLife.66028 PMID: 34355698
- Lindner, A.K.; Priotto, G. The unknown risk of vertical transmission in sleeping sickness-a literature review. PLoS Negl. Trop. Dis., 2010, 4(12), e783. doi: 10.1371/journal.pntd.0000783 PMID: 21200416
- Laperchia, C.; Palomba, M.; Seke Etet, P.F.; Rodgers, J.; Bradley, B.; Montague, P.; Grassi-Zucconi, G.; Kennedy, P.G.E.; Bentivoglio, M. Trypanosoma brucei invasion and T-cell infiltration of the brain parenchyma in experimental sleeping sickness: Timing and correlation with functional changes. PLoS Negl. Trop. Dis., 2016, 10(12), e0005242. doi: 10.1371/journal.pntd.0005242 PMID: 28002454
- Rijo-Ferreira, F.; Takahashi, J.S. Sleeping sickness: A tale of two clocks. Front. Cell. Infect. Microbiol., 2020, 10, 525097. doi: 10.3389/fcimb.2020.525097 PMID: 33134186
- Lundkvist, G.B.; Kristensson, K.; Bentivoglio, M. Why trypanosomes cause sleeping sickness. Physiology, 2004, 19(4), 198-206. doi: 10.1152/physiol.00006.2004 PMID: 15304634
- Barrett, M.P.; Croft, S.L. Management of trypanosomiasis and leishmaniasis. Br. Med. Bull., 2012, 104(1), 175-196. doi: 10.1093/bmb/lds031 PMID: 23137768
- Palmer, J.J. Sensing sleeping sickness: Local symptom-making in South Sudan. Med. Anthropol., 2020, 39(6), 457-473. doi: 10.1080/01459740.2019.1689976 PMID: 31852244
- Boatin, B.A.; Wyatt, G.B.; Wurapa, F.K.; Bulsara, M.K. Use of symptoms and signs for diagnosis of Trypanosoma brucei rhodesiense trypanosomiasis by rural health personnel. Bull. World Health Organ., 1986, 64(3), 389-395. PMID: 3490318
- Kennedy, P.G.E. Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol., 2013, 12(2), 186-194. doi: 10.1016/S1474-4422(12)70296-X PMID: 23260189
- Caffrey, C.; Scory, S.; Steverding, D. Cysteine proteinases of trypanosome parasites: Novel targets for chemotherapy. Curr. Drug Targets, 2000, 1(2), 155-162. doi: 10.2174/1389450003349290 PMID: 11465068
- Vago, A.R.; Silva, D.M.; Adad, S.J.; Correa-Oliveira, R.; Reis, D.Á. Chronic Chagas disease: Presence of parasite DNA in the oesophagus of patients without megaoesophagus. Trans. R. Soc. Trop. Med. Hyg., 2003, 97(3), 308-309. doi: 10.1016/S0035-9203(03)90155-6 PMID: 15228249
- de Meis, J.; Barreto de Albuquerque, J.; Silva dos Santos, D.; Farias-de-Oliveira, D.A.; Berbert, L.R.; Cotta-de-Almeida, V.; Savino, W. Trypanosoma cruzi entrance through systemic or mucosal infection sites differentially modulates regional immune response following acute infection in mice. Front. Immunol., 2013, 4, 216. doi: 10.3389/fimmu.2013.00216 PMID: 23898334
- Tarleton, R.L. Trypanosoma cruzi and Chagas disease: Cause and effect. American Trypanosomiasis; Tyler, K.M; Miles, M.A., Ed.; Springer US: Boston, MA, 2003, Vol. 7, pp. 107-115. doi: 10.1007/978-1-4419-9206-2_10
- Siklos, M.; BenAissa, M.; Thatcher, G.R.J. Cysteine proteases as therapeutic targets: Does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm. Sin. B, 2015, 5(6), 506-519. doi: 10.1016/j.apsb.2015.08.001 PMID: 26713267
- Beatriz Vermelho, A. Trypanosoma cruzi peptidases: An overview. Open Parasitol. J., 2010, 4(1), 120-131. doi: 10.2174/1874421401004010120
- Bossard, G.; Cuny, G.; Geiger, A. Secreted proteases of Trypanosoma brucei gambiense: Possible targets for sleeping sickness control? Biofactors, 2013, 39(4), 407-414. doi: 10.1002/biof.1100 PMID: 23553721
- Troeberg, L.; Pike, R.N.; Morty, R.E.; Berry, R.K.; Coetzer, T.H.T.; Lonsdale-Eccles, J.D. Proteases from Trypanosoma brucei brucei. Purification, characterisation and interactions with host regulatory molecules. Eur. J. Biochem., 1996, 238(3), 728-736. doi: 10.1111/j.1432-1033.1996.0728w.x PMID: 8706674
- Verma, S.; Dixit, R.; Pandey, K.C. Cysteine proteases: Modes of activation and future prospects as pharmacological targets. Front. Pharmacol., 2016, 7, 107. doi: 10.3389/fphar.2016.00107 PMID: 27199750
- Coulombe, R.; Grochulski, P.; Sivaraman, J.; Ménard, R.; Mort, J.S.; Cygler, M. Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. EMBO J., 1996, 15(20), 5492-5503. doi: 10.1002/j.1460-2075.1996.tb00934.x PMID: 8896443
- Yan, H.B.; Lou, Z.Z.; Li, L.; Brindley, P.J.; Zheng, Y.; Luo, X.; Hou, J.; Guo, A.; Jia, W.Z.; Cai, X. Genome-wide analysis of regulatory proteases sequences identified through bioinformatics data mining in Taenia solium. BMC Genomics, 2014, 15(1), 428. doi: 10.1186/1471-2164-15-428 PMID: 24899069
- Puente, X.S.; Sánchez, L.M.; Overall, C.M.; López-Otín, C. Human and mouse proteases: A comparative genomic approach. Nat. Rev. Genet., 2003, 4(7), 544-558. doi: 10.1038/nrg1111 PMID: 12838346
- Santos, C.C.; Santanna, C.; Terres, A.; Cunha-e-Silva, N.L.; Scharfstein, J. de A Lima, A.P. Chagasin, the endogenous cysteine-protease inhibitor of Trypanosoma cruzi, modulates parasite differentiation and invasion of mammalian cells. J. Cell Sci., 2005, 118(Pt 5), 901-915. doi: 10.1242/jcs.01677 PMID: 15713748
- Erez, E.; Fass, D.; Bibi, E. How intramembrane proteases bury hydrolytic reactions in the membrane. Nature, 2009, 459(7245), 371-378. doi: 10.1038/nature08146 PMID: 19458713
- Schechter, I.; Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun., 1967, 27(2), 157-162. doi: 10.1016/S0006-291X(67)80055-X PMID: 6035483
- Rosenthal, P.; Sijwali, P.; Singh, A.; Shenai, B. Cysteine proteases of malaria parasites: Targets for chemotherapy. Curr. Pharm. Des., 2002, 8(18), 1659-1672. doi: 10.2174/1381612023394197 PMID: 12132997
- Pandey, K.C.; Dixit, R. Structure-function of falcipains: Malarial cysteine proteases. J. Trop. Med., 2012, 2012, 1-11. doi: 10.1155/2012/345195 PMID: 22529862
- Pilar, A. Mitrović A.; Sabotič J.; Pečar Fonović U.; Periić Nanut, M.; Jako, T.; Senjor, E.; Kos, J. The role of cysteine peptidases in coronavirus cell entry and replication: The therapeutic potential of cathepsin inhibitors. PLoS Pathog., 2020, 16(11), e1009013. doi: 10.1371/journal.ppat.1009013 PMID: 33137165
- Osipiuk, J.; Azizi, S.A.; Dvorkin, S.; Endres, M.; Jedrzejczak, R.; Jones, K.A.; Kang, S.; Kathayat, R.S.; Kim, Y.; Lisnyak, V.G.; Maki, S.L.; Nicolaescu, V.; Taylor, C.A.; Tesar, C.; Zhang, Y.A.; Zhou, Z.; Randall, G.; Michalska, K.; Snyder, S.A.; Dickinson, B.C.; Joachimiak, A. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun., 2021, 12(1), 743. doi: 10.1038/s41467-021-21060-3 PMID: 33531496
- Cho, C.C.; Li, S.G.; Lalonde, T.J.; Yang, K.S.; Yu, G.; Qiao, Y.; Xu, S.; Ray Liu, W. Drug repurposing for the SARS-CoV-2 papain-like protease. ChemMedChem, 2022, 17(1), e202100455. doi: 10.1002/cmdc.202100455 PMID: 34423563
- Sajid, M.; McKerrow, J.H. Cysteine proteases of parasitic organisms. Mol. Biochem. Parasitol., 2002, 120(1), 1-21. doi: 10.1016/S0166-6851(01)00438-8 PMID: 11849701
- Steverding, D.; Sexton, D.W.; Wang, X.; Gehrke, S.S.; Wagner, G.K.; Caffrey, C.R. Trypanosoma brucei: Chemical evidence that cathepsin L is essential for survival and a relevant drug target. Int. J. Parasitol., 2012, 42(5), 481-488. doi: 10.1016/j.ijpara.2012.03.009 PMID: 22549023
- Rosas-Jimenez, J.G.; Garcia-Revilla, M.A.; Madariaga-Mazon, A.; Martinez-Mayorga, K. Predictive global models of Cruzain inhibitors with large chemical coverage. ACS Omega, 2021, 6(10), 6722-6735. doi: 10.1021/acsomega.0c05645 PMID: 33748586
- Barbosa da Silva, E.; Dall, E.; Briza, P.; Brandstetter, H.; Ferreira, R.S. Cruzain structures: Apocruzain and cruzain bound to S-methyl thiomethanesulfonate and implications for drug design. Acta Crystallogr. F Struct. Biol. Commun., 2019, 75(6), 419-427. doi: 10.1107/S2053230X19006320 PMID: 31204688
- Turk, V.; Stoka, V.; Vasiljeva, O.; Renko, M.; Sun, T.; Turk, B.; Turk, D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta. Proteins Proteomics, 2012, 1824(1), 68-88. doi: 10.1016/j.bbapap.2011.10.002 PMID: 22024571
- Kerr, I.D.; Wu, P.; Marion-Tsukamaki, R.; Mackey, Z.B.; Brinen, L.S. Crystal Structures of TbCatB and rhodesain, potential chemotherapeutic targets and major cysteine proteases of Trypanosoma brucei. PLoS Negl. Trop. Dis., 2010, 4(6), e701. doi: 10.1371/journal.pntd.0000701 PMID: 20544024
- Martinez-Mayorga, K.; Byler, K.G.; Ramirez-Hernandez, A.I.; Terrazas-Alvares, D.E. Cruzain inhibitors: Efforts made, current leads and a structural outlook of new hits. Drug Discov. Today, 2015, 20(7), 890-898. doi: 10.1016/j.drudis.2015.02.004 PMID: 25697479
- Nicoll-Griffith, D.A. Use of cysteine-reactive small molecules in drug discovery for trypanosomal disease. Expert Opin. Drug Discov., 2012, 7(4), 353-366. doi: 10.1517/17460441.2012.668520 PMID: 22458506
- Grab, D.J.; Garcia-Garcia, J.C.; Nikolskaia, O.V.; Kim, Y.V.; Brown, A.; Pardo, C.A.; Zhang, Y.; Becker, K.G.; Wilson, B.A. de A Lima, A.P.; Scharfstein, J.; Dumler, J.S. Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells. PLoS Negl. Trop. Dis., 2009, 3(7), e479. doi: 10.1371/journal.pntd.0000479 PMID: 19621073
- Johé, P.; Jaenicke, E.; Neuweiler, H.; Schirmeister, T.; Kersten, C.; Hellmich, U.A. Structure, interdomain dynamics, and pH-dependent autoactivation of pro-rhodesain, the main lysosomal cysteine protease from African trypanosomes. J. Biol. Chem., 2021, 296, 100565. doi: 10.1016/j.jbc.2021.100565 PMID: 33745969
- Kamphuis, I.G.; Kalk, K.H.; Swarte, M.B.A.; Drenth, J. Structure of papain refined at 1.65 Å resolution. J. Mol. Biol., 1984, 179(2), 233-256. doi: 10.1016/0022-2836(84)90467-4 PMID: 6502713
- Roy, S.; Choudhury, D.; Aich, P.; Dattagupta, J.K.; Biswas, S. The structure of a thermostable mutant of pro-papain reveals its activation mechanism. Acta Crystallogr. D Biol. Crystallogr., 2012, 68(12), 1591-1603. doi: 10.1107/S0907444912038607 PMID: 23151624
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res., 2018, 46(D1), D624-D632. doi: 10.1093/nar/gkx1134 PMID: 29145643
- Vernet, T.; Berti, P.J.; de Montigny, C.; Musil, R.; Tessier, D.C.; Ménard, R.; Magny, M.C.; Storer, A.C.; Thomas, D.Y. Processing of the papain precursor. The ionization state of a conserved amino acid motif within the Pro region participates in the regulation of intramolecular processing. J. Biol. Chem., 1995, 270(18), 10838-10846. doi: 10.1074/jbc.270.18.10838 PMID: 7738022
- Troeberg, L.; Morty, R.E.; Pike, R.N.; Lonsdale-Eccles, J.D.; Palmer, J.T.; McKerrow, J.H.; Coetzer, T.H.T. Cysteine proteinase inhibitors kill cultured bloodstream forms of Trypanosoma brucei brucei. Exp. Parasitol., 1999, 91(4), 349-355. doi: 10.1006/expr.1998.4386 PMID: 10092479
- Scharfstein, J.; Schmitz, V.; Morandi, V.; Capella, M.M.A.; Lima, A.P.C.A.; Morrot, A.; Juliano, L.; Müller-Esterl, W. Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B(2) receptors. J. Exp. Med., 2000, 192(9), 1289-1300. doi: 10.1084/jem.192.9.1289 PMID: 11067878
- Mackey, Z.B.; OBrien, T.C.; Greenbaum, D.C.; Blank, R.B.; McKerrow, J.H. A cathepsin B-like protease is required for host protein degradation in Trypanosoma brucei. J. Biol. Chem., 2004, 279(46), 48426-48433. doi: 10.1074/jbc.M402470200 PMID: 15326171
- Girard, M.; Giraud, S.; Courtioux, B.; Jauberteau-Marchan, M.O.; Bouteille, B. Endothelial cell activation in the presence of African trypanosomes. Mol. Biochem. Parasitol., 2005, 139(1), 41-49. doi: 10.1016/j.molbiopara.2004.09.008 PMID: 15610818
- Aparicio, I.M.; Scharfstein, J.; Lima, A.P.C.A. A new cruzipain-mediated pathway of human cell invasion by Trypanosoma cruzi requires trypomastigote membranes. Infect. Immun., 2004, 72(10), 5892-5902. doi: 10.1128/IAI.72.10.5892-5902.2004 PMID: 15385491
- Caffrey, C.R.; Hansell, E.; Lucas, K.D.; Brinen, L.S.; Alvarez Hernandez, A.; Cheng, J.; Gwaltney, S.L., II; Roush, W.R.; Stierhof, Y.D.; Bogyo, M.; Steverding, D.; McKerrow, J.H. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol. Biochem. Parasitol., 2001, 118(1), 61-73. doi: 10.1016/S0166-6851(01)00368-1 PMID: 11704274
- Grab, D.J.; Nikolskaia, O.; Kim, Y.V.; Lonsdale-Eccles, J.D.; Ito, S.; Hara, T.; Fukuma, T.; Nyarko, E.; Kim, K.J.; Stins, M.F.; Delannoy, M.J.; Rodgers, J.; Kim, K.S. African trypanosome interactions with an in vitro model of the human blood-brain barrier. J. Parasitol., 2004, 90(5), 970-979. doi: 10.1645/GE-287R PMID: 15562595
- Meirelles, M.N.L.; Juliano, L.; Carmona, E.; Silva, S.G.; Costa, E.M.; Murta, A.C.M.; Scharfstein, J. Inhibitors of the major cysteinyl proteinase (GP57/51) impair host cell invasion and arrest the intracellular development of Trypanosoma cruzi in vitro. Mol. Biochem. Parasitol., 1992, 52(2), 175-184. doi: 10.1016/0166-6851(92)90050-T PMID: 1620157
- Bonaldo, M.C.; dEscoffier, L.N.; Salles, J.M.; Goldenberg, S. Characterization and expression of proteases during Trypanosoma cruzi metacyclogenesis. Exp. Parasitol., 1991, 73(1), 44-51. doi: 10.1016/0014-4894(91)90006-I PMID: 2055300
- Gazzinelli, R.T.; Leme, V.M.; Cancado, J.R.; Gazzinelli, G.; Scharfstein, J. Identification and partial characterization of Trypanosoma cruzi antigens recognized by T cells and immune sera from patients with Chagas disease. Infect. Immun., 1990, 58(5), 1437-1444. doi: 10.1128/iai.58.5.1437-1444.1990 PMID: 2108932
- Carbonetto, C.H.; Malchiodi, E.L.; Chiaramonte, M.; De Isola, D.; Fossati, C.A.; Margni, R.A. Isolation of a Trypanosoma cruzi antigen by affinity chromatography with a monoclonal antibody. Preliminary evaluation of its possible applications in serological tests. Clin. Exp. Immunol., 2008, 82(1), 93-96. doi: 10.1111/j.1365-2249.1990.tb05409.x PMID: 2119921
- Duschak, V.G.; Riarte, A.; Segura, E.L.; Laucella, S.A. Humoral immune response to cruzipain and cardiac dysfunction in chronic Chagas disease. Immunol. Lett., 2001, 78(3), 135-142. doi: 10.1016/S0165-2478(01)00255-3 PMID: 11578687
- Martínez, J.; Campetella, O.; Frasch, A.C.C.; Cazzulo, J.J. The reactivity of sera from chagasic patients against different fragments of cruzipain, the major cysteine proteinase from Trypanosoma cruzi, suggests the presence of defined antigenic and catalytic domains. Immunol. Lett., 1993, 35(2), 191-196. doi: 10.1016/0165-2478(93)90090-O PMID: 7685319
- Murta, A.C.M.; Persechini, P.M.; Padron, T.S.; de Souza, W.; Guimarães, J.A.; Scharfstein, J. Structural and functional identification of GP57/51 antigen of Trypanosoma cruzi as a cysteine proteinase. Mol. Biochem. Parasitol., 1990, 43(1), 27-38. doi: 10.1016/0166-6851(90)90127-8 PMID: 1705310
- Lima, A.P.C.; Tessier, D.C.; Thomas, D.Y.; Scharfstein, J.; Storer, A.C.; Vernet, T. Identification of new cysteine protease gene isoforms in Trypanosoma cruzi. Mol. Biochem. Parasitol., 1994, 67(2), 333-338. doi: 10.1016/0166-6851(94)00144-8 PMID: 7870137
- Eakin, A.E.; Mills, A.A.; Harth, G.; McKerrow, J.H.; Craik, C.S. The sequence, organization, and expression of the major cysteine protease (cruzain) from Trypanosoma cruzi. J. Biol. Chem., 1992, 267(11), 7411-7420. 7411. 7420 doi: 10.1016/S0021-9258(18)42533-1 PMID: 1559982
- Gillmor, S.A.; Craik, C.S.; Fletterick, R.J. Structural determinants of specificity in the cysteine protease cruzain. Protein Sci., 1997, 6(8), 1603-1611. doi: 10.1002/pro.5560060801 PMID: 9260273
- Santos, V.C.; Oliveira, A.E.R.; Campos, A.C.B.; Reis-Cunha, J.L.; Bartholomeu, D.C.; Teixeira, S.M.R.; Lima, A.P.C.A.; Ferreira, R.S. The gene repertoire of the main cysteine protease of Trypanosoma cruzi, cruzipain, reveals four sub-types with distinct active sites. Sci. Rep., 2021, 11(1), 18231. doi: 10.1038/s41598-021-97490-2 PMID: 34521898
- Judice, W.A.S.; Cezari, M.H.S.; Lima, A.P.C.A.; Scharfstein, J.; Chagas, J.R.; Tersariol, I.L.S.; Juliano, M.A.; Juliano, L. Comparison of the specificity, stability and individual rate constants with respective activation parameters for the peptidase activity of cruzipain and its recombinant form, cruzain, from Trypanosoma cruzi. Eur. J. Biochem., 2001, 268(24), 6578-6586. doi: 10.1046/j.0014-2956.2001.02612.x PMID: 11737212
- McGrath, M.E.; Eakin, A.E.; Engel, J.C.; McKerrow, J.H.; Craik, C.S.; Fletterick, R.J. The crystal structure of cruzain: A therapeutic target for Chagas disease. J. Mol. Biol., 1995, 247(2), 251-259. doi: 10.1006/jmbi.1994.0137 PMID: 7707373
- Barbosa Da Silva, E.; Sharma, V.; Hernandez-Alvarez, L.; Tang, A.H.; Stoye, A.; ODonoghue, A.J.; Gerwick, W.H.; Payne, R.J.; McKerrow, J.H.; Podust, L.M. Intramolecular interactions enhance the potency of gallinamide a analogues against Trypanosoma cruzi. J. Med. Chem., 2022, 65(5), 4255-4269. doi: 10.1021/acs.jmedchem.1c02063 PMID: 35188371
- Lima, A.P.C.A.; dos Reis, F.C.G.; Serveau, C.; Lalmanach, G.; Juliano, L.; Ménard, R.; Vernet, T.; Thomas, D.Y.; Storer, A.C.; Scharfstein, J. Cysteine protease isoforms from Trypanosoma cruzi, cruzipain 2 and cruzain, present different substrate preference and susceptibility to inhibitors. Mol. Biochem. Parasitol., 2001, 114(1), 41-52. doi: 10.1016/S0166-6851(01)00236-5 PMID: 11356512
- Lima, A.P.C.A.; Almeida, P.C.; Tersariol, I.L.S.; Schmitz, V.; Schmaier, A.H.; Juliano, L.; Hirata, I.Y.; Müller-Esterl, W.; Chagas, J.R.; Scharfstein, J. Heparan sulfate modulates kinin release by Trypanosoma cruzi through the activity of cruzipain. J. Biol. Chem., 2002, 277(8), 5875-5881. doi: 10.1074/jbc.M108518200 PMID: 11726662
- Talavera-López, C.; Messenger, L.A.; Lewis, M.D.; Yeo, M.; Reis-Cunha, J.L.; Matos, G.M.; Bartholomeu, D.C.; Calzada, J.E.; Saldaña, A.; Ramírez, J.D.; Guhl, F.; Ocaña-Mayorga, S.; Costales, J.A.; Gorchakov, R.; Jones, K.; Nolan, M.S.; Teixeira, S.M.R.; Carrasco, H.J.; Bottazzi, M.E.; Hotez, P.J.; Murray, K.O.; Grijalva, M.J.; Burleigh, B.; Grisard, E.C.; Miles, M.A.; Andersson, B. Repeat-driven generation of antigenic diversity in a major human pathogen, Trypanosoma cruzi. Front. Cell. Infect. Microbiol., 2021, 11, 614665. doi: 10.3389/fcimb.2021.614665 PMID: 33747978
- Weatherly, D.B.; Peng, D.; Tarleton, R.L. Recombination-driven generation of the largest pathogen repository of antigen variants in the protozoan Trypanosoma cruzi. BMC Genomics, 2016, 17(1), 729. doi: 10.1186/s12864-016-3037-z PMID: 27619017
- Campetella, O.; Henriksson, J.; Åslund, U.; Frasch, A.C.C.; Pettersson, U.; Cazzulo, J.J. The major cysteine proteinase (cruzipain) from Trypanosoma cruzi is encoded by multiple polymorphic tandemly organized genes located on different chromosomes. Mol. Biochem. Parasitol., 1992, 50(2), 225-234. doi: 10.1016/0166-6851(92)90219-A PMID: 1311053
- Denise, H.; Barrett, M.P. Uptake and mode of action of drugs used against sleeping sickness. Biochem. Pharmacol., 2001, 61(1), 1-5. doi: 10.1016/S0006-2952(00)00477-9 PMID: 11137702
- Coura, J.R.; Abreu, L.L.; Willcox, H.P.F.; Petana, W. Estudo comparativo controlado com emprego de benznidazole, nifurtimox e placebo, na forma crônica da doença de Chagas, em uma área de campo com transmissão interrompida. I. Avaliação preliminar. Rev. Soc. Bras. Med. Trop., 1997, 30(2), 139-144. doi: 10.1590/S0037-86821997000200009 PMID: 9148337
- Pollastri, M.P. Fexinidazole: A new drug for african sleeping sickness on the horizon. Trends Parasitol., 2018, 34(3), 178-179. doi: 10.1016/j.pt.2017.12.002 PMID: 29275007
- Bahia, M.T.; Andrade, I.M.; Martins, T.A.F.; Nascimento, Á.F.S.; Diniz, L.F.; Caldas, I.S.; Talvani, A.; Trunz, B.B.; Torreele, E.; Ribeiro, I. Fexinidazole: A potential new drug candidate for Chagas disease. PLoS Negl. Trop. Dis., 2012, 6(11), e1870. doi: 10.1371/journal.pntd.0001870 PMID: 23133682
- Wéry, M. Drug used in the treatment of sleeping sickness (human African trypanosomiasis: HAT). Int. J. Antimicrob. Agents, 1994, 4(3), 227-238. doi: 10.1016/0924-8579(94)90012-4 PMID: 18611614
- Voogd, T.E.; Vansterkenburg, E.L.; Wilting, J.; Janssen, L.H. Recent research on the biological activity of suramin. Pharmacol. Rev., 1993, 45(2), 177-203. PMID: 8396782
- Steverding, D. The development of drugs for treatment of sleeping sickness: A historical review. Parasit. Vectors, 2010, 3(1), 15. doi: 10.1186/1756-3305-3-15 PMID: 20219092
- Fairlamb, A.H. Chemotherapy of human African trypanosomiasis: Current and future prospects. Trends Parasitol., 2003, 19(11), 488-494. doi: 10.1016/j.pt.2003.09.002 PMID: 14580959
- Barrett, S.V.; Barrett, M.P. Anti-sleeping sickness drugs and cancer chemotherapy. Parasitol. Today, 2000, 16(1), 7-9. doi: 10.1016/S0169-4758(99)01560-4 PMID: 10637579
- Barrett, M.P.; Boykin, D.W.; Brun, R.; Tidwell, R.R. Human African trypanosomiasis: Pharmacological reengagement with a neglected disease. Br. J. Pharmacol., 2007, 152(8), 1155-1171. doi: 10.1038/sj.bjp.0707354 PMID: 17618313
- Paine, M.F.; Wang, M.Z.; Generaux, C.N.; Boykin, D.W.; Wilson, W.D.; De Koning, H.P.; Olson, C.A.; Pohlig, G.; Burri, C.; Brun, R.; Murilla, G.A.; Thuita, J.K.; Barrett, M.P.; Tidwell, R.R. Diamidines for human African trypanosomiasis. Curr. Opin. Investig. Drugs, 2010, 11(8), 876-883. PMID: 20721830
- Shapiro, T.A.; Englund, P.T. Selective cleavage of kinetoplast DNA minicircles promoted by anti trypanosomal drugs. Proc. Natl. Acad. Sci. USA, 1990, 87(3), 950-954. doi: 10.1073/pnas.87.3.950 PMID: 2153980
- Bosch, F.; Rosich, L. The contributions of Paul Ehrlich to pharmacology: A tribute on the occasion of the centenary of his Nobel Prize. Pharmacology, 2008, 82(3), 171-179. doi: 10.1159/000149583 PMID: 18679046
- Carter, N.S.; Fairlamb, A.H. Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature, 1993, 361(6408), 173-176. doi: 10.1038/361173a0 PMID: 8421523
- Barrett, M.P.; Fairlamb, A.H. The biochemical basis of arsenical-diamidine crossresistance in African trypanosomes. Parasitol. Today, 1999, 15(4), 136-140. doi: 10.1016/S0169-4758(99)01414-3 PMID: 10322334
- Schaftingen, E.; Opperdoes, F.R.; Hers, H.G. Effects of various metabolic conditions and of the trivalent arsenical melarsen oxide on the intracellular levels of fructose 2,6-bisphosphate and of glycolytic intermediates in Trypanosoma brucei. Eur. J. Biochem., 1987, 166(3), 653-661. doi: 10.1111/j.1432-1033.1987.tb13563.x PMID: 3038548
- Brun, R.; Don, R.; Jacobs, R.T.; Wang, M.Z.; Barrett, M.P. Development of novel drugs for human African trypanosomiasis. Future Microbiol., 2011, 6(6), 677-691. doi: 10.2217/fmb.11.44 PMID: 21707314
- Bacchi, C.J.; Nathan, H.C.; Hutner, S.H.; McCann, P.P.; Sjoerdsma, A. Polyamine metabolism: A potential therapeutic target in trypanosomes. Science, 1980, 210(4467), 332-334. doi: 10.1126/science.6775372 PMID: 6775372
- Docampo, R.; Moreno, S.N.J.; Stoppani, A.O.M.; Leon, W.; Cruz, F.S.; Villalta, F.; Muniz, R.F.A. Mechanism of nifurtimox toxicity in different forms of Trypanosoma cruzi. Biochem. Pharmacol., 1981, 30(14), 1947-1951. doi: 10.1016/0006-2952(81)90204-5 PMID: 7023488
- Tsuhako, M.H.; Alves, M.J.M.; Colli, W.; Filardi, L.S.; Brener, Z.; Augusto, O. Comparative studies of nifurtimox uptake and metabolism by drug-resistant and susceptible strains of Trypanosoma cruzi. Comp. Biochem. Physiol. C Comp. Pharmacol., 1991, 99(3), 317-321. doi: 10.1016/0742-8413(91)90248-R PMID: 1685402
- Pépin, J.; Milord, F.; Meurice, F.; Ethier, L.; Loko, L.; Mpia, B. High-dose nifurtimox for arseno-resistant Trypanosoma brucei gambiense sleeping sickness: An open trial in central Zaire. Trans. R. Soc. Trop. Med. Hyg., 1992, 86(3), 254-256. doi: 10.1016/0035-9203(92)90298-Q PMID: 1412646
- Dias, J.C.P.; Coura, J.R.; Yasuda, M.A.S. The present situation, challenges, and perspectives regarding the production and utilization of effective drugs against human Chagas disease. Rev. Soc. Bras. Med. Trop., 2014, 47(1), 123-125. doi: 10.1590/0037-8682-0248-2013 PMID: 24603750
- Pinazo, M.J.; Guerrero, L.; Posada, E.; Rodríguez, E.; Soy, D.; Gascon, J. Benznidazole-related adverse drug reactions and their relationship to serum drug concentrations in patients with chronic chagas disease. Antimicrob. Agents Chemother., 2013, 57(1), 390-395. doi: 10.1128/AAC.01401-12 PMID: 23114763
- Kaiser, M.; Bray, M.A.; Cal, M.; Bourdin Trunz, B.; Torreele, E.; Brun, R. Anti trypanosomal activity of fexinidazole, a new oral nitroimidazole drug candidate for treatment of sleeping sickness. Antimicrob. Agents Chemother., 2011, 55(12), 5602-5608. doi: 10.1128/AAC.00246-11 PMID: 21911566
- Torreele, E.; Bourdin Trunz, B.; Tweats, D.; Kaiser, M.; Brun, R.; Mazué, G.; Bray, M.A.; Pécoul, B. Fexinidazole--a new oral nitroimidazole drug candidate entering clinical development for the treatment of sleeping sickness. PLoS Negl. Trop. Dis., 2010, 4(12), e923. doi: 10.1371/journal.pntd.0000923 PMID: 21200426
- Ding, D.; Zhao, Y.; Meng, Q.; Xie, D.; Nare, B.; Chen, D.; Bacchi, C.J.; Yarlett, N.; Zhang, Y.K.; Hernandez, V.; Xia, Y.; Freund, Y.; Abdulla, M.; Ang, K.H.; Ratnam, J.; McKerrow, J.H.; Jacobs, R.T.; Zhou, H.; Plattner, J.J. Discovery of novel benzoxaborole-based potent anti trypanosomal agents. ACS Med. Chem. Lett., 2010, 1(4), 165-169. doi: 10.1021/ml100013s PMID: 24900190
- Jones, D.C.; Foth, B.J.; Urbaniak, M.D.; Patterson, S.; Ong, H.B.; Berriman, M.; Fairlamb, A.H. Genomic and proteomic studies on the mode of action of oxaboroles against the African trypanosome. PLoS Negl. Trop. Dis., 2015, 9(12), e0004299. doi: 10.1371/journal.pntd.0004299 PMID: 26684831
- Unciti-Broceta, J.D.; Maceira, J.; Morales, S.; García-Pérez, A.; Muñóz-Torres, M.E.; Garcia-Salcedo, J.A. Nicotinamide inhibits the lysosomal cathepsin b-like protease and kills African trypanosomes. J. Biol. Chem., 2013, 288(15), 10548-10557. doi: 10.1074/jbc.M112.449207 PMID: 23443665
- Steverding, D.; Rushworth, S.A.; Florea, B.I.; Overkleeft, H.S. Trypanosoma brucei: Inhibition of cathepsin L is sufficient to kill bloodstream forms. Mol. Biochem. Parasitol., 2020, 235, 111246. doi: 10.1016/j.molbiopara.2019.111246 PMID: 31743688
- Chen, Y.T.; Lira, R.; Hansell, E.; McKerrow, J.H.; Roush, W.R. Synthesis of macrocyclic trypanosomal cysteine protease inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(22), 5860-5863. doi: 10.1016/j.bmcl.2008.06.012 PMID: 18585034
- Ferreira, L.G.; Andricopulo, A.D. Targeting cysteine proteases in Trypanosomatid disease drug discovery. Pharmacol. Ther., 2017, 180, 49-61. doi: 10.1016/j.pharmthera.2017.06.004 PMID: 28579388
- Du, X.; Hansell, E.; Engel, J.C.; Caffrey, C.R.; Cohen, F.E.; McKerrow, J.H. Aryl ureas represent a new class of anti-trypanosomal agents. Chem. Biol., 2000, 7(9), 733-742. doi: 10.1016/S1074-5521(00)00018-1 PMID: 10980453
- Giroud, M.; Dietzel, U.; Anselm, L.; Banner, D.; Kuglstatter, A.; Benz, J.; Blanc, J.B.; Gaufreteau, D.; Liu, H.; Lin, X.; Stich, A.; Kuhn, B.; Schuler, F.; Kaiser, M.; Brun, R.; Schirmeister, T.; Kisker, C.; Diederich, F.; Haap, W. Repurposing a library of human cathepsin L ligands: Identification of macrocyclic lactams as potent rhodesain and Trypanosoma brucei inhibitors. J. Med. Chem., 2018, 61(8), 3350-3369. doi: 10.1021/acs.jmedchem.7b01869 PMID: 29590750
- Mosi, R.; Baird, I.R.; Cox, J.; Anastassov, V.; Cameron, B.; Skerlj, R.T.; Fricker, S.P. Rhenium inhibitors of Cathepsin B (ReO(SYS)X (Where Y = S, py; X = Cl, Br, SPhOMe- p)): Synthesis and mechanism of inhibition. J. Med. Chem., 2006, 49(17), 5262-5272. doi: 10.1021/jm060357z PMID: 16913715
- Mott, B.T.; Ferreira, R.S.; Simeonov, A.; Jadhav, A.; Ang, K.K.H.; Leister, W.; Shen, M.; Silveira, J.T.; Doyle, P.S.; Arkin, M.R.; McKerrow, J.H.; Inglese, J.; Austin, C.P.; Thomas, C.J.; Shoichet, B.K.; Maloney, D.J. Identification and optimization of inhibitors of trypanosomal cysteine proteases: Cruzain, rhodesain, and TbCatB. J. Med. Chem., 2010, 53(1), 52-60. doi: 10.1021/jm901069a PMID: 19908842
- Vicik, R.; Hoerr, V.; Glaser, M.; Schultheis, M.; Hansell, E.; McKerrow, J.H.; Holzgrabe, U.; Caffrey, C.R.; Ponte-Sucre, A.; Moll, H.; Stich, A.; Schirmeister, T. Aziridine-2,3-dicarboxylate inhibitors targeting the major cysteine protease of Trypanosoma brucei as lead trypanocidal agents. Bioorg. Med. Chem. Lett., 2006, 16(10), 2753-2757. doi: 10.1016/j.bmcl.2006.02.026 PMID: 16516467
- Ettari, R.; Previti, S.; Maiorana, S.; Allegra, A.; Schirmeister, T.; Grasso, S.; Zappalà, M. Drug combination studies of curcumin and genistein against rhodesain of Trypanosoma brucei rhodesiense. Nat. Prod. Res., 2019, 33(24), 3577-3581. doi: 10.1080/14786419.2018.1483927 PMID: 29897253
- Lavrado, J.; Mackey, Z.; Hansell, E.; McKerrow, J.H.; Paulo, A.; Moreira, R. Anti trypanosomal and cysteine protease inhibitory activities of alkyldiamine cryptolepine derivatives. Bioorg. Med. Chem. Lett., 2012, 22(19), 6256-6260. doi: 10.1016/j.bmcl.2012.07.104 PMID: 22926067
- Mallari, J.P.; Shelat, A.A.; Obrien, T.; Caffrey, C.R.; Kosinski, A.; Connelly, M.; Harbut, M.; Greenbaum, D.; McKerrow, J.H.; Guy, R.K. Development of potent purine-derived nitrile inhibitors of the trypanosomal protease TbcatB. J. Med. Chem., 2008, 51(3), 545-552. doi: 10.1021/jm070760l PMID: 18173229
- Mallari, J.P.; Shelat, A.A.; Kosinski, A.; Caffrey, C.R.; Connelly, M.; Zhu, F.; McKerrow, J.H.; Guy, R.K. Structure-guided development of selective TbcatB inhibitors. J. Med. Chem., 2009, 52(20), 6489-6493. doi: 10.1021/jm900908p PMID: 19769357
- Braga, S.F.P.; Santos, V.C.; Vieira, R.P.; Silva, E.B.; Monti, L.; Krake, S.H.; Martinez, P.D.G.; Dias, L.C.; Caffrey, C.R.; Siqueira-Neto, J.L.; de Oliveira, R.B.; Ferreira, R.S. From rational design to serendipity: Discovery of novel thiosemicarbazones as potent trypanocidal compounds. Eur. J. Med. Chem., 2022, 244, 114876. doi: 10.1016/j.ejmech.2022.114876 PMID: 36343429
- Romero, E.L.; Morilla, M.J. Nanotechnological approaches against Chagas disease. Adv. Drug Deliv. Rev., 2010, 62(4-5), 576-588. doi: 10.1016/j.addr.2009.11.025 PMID: 19941920
- Figueiredo da Silva, A.A.; Vieira, L.C.; Krieger, M.A.; Goldenberg, S.; Zanchin, N.I.T.; Guimarães, B.G. Crystal structure of chagasin, the endogenous cysteine-protease inhibitor from Trypanosoma cruzi. J. Struct. Biol., 2007, 157(2), 416-423. doi: 10.1016/j.jsb.2006.07.017 PMID: 17011790
- Brak, K.; Doyle, P.S.; McKerrow, J.H.; Ellman, J.A. Identification of a new class of nonpeptidic inhibitors of cruzain. J. Am. Chem. Soc., 2008, 130(20), 6404-6410. doi: 10.1021/ja710254m PMID: 18435536
- McKerrow, J.; Engel, J.C.; Caffrey, C.R. Cysteine protease inhibitors as chemotherapy for parasitic infections. Bioorg. Med. Chem., 1999, 7(4), 639-644. doi: 10.1016/S0968-0896(99)00008-5 PMID: 10353643
- Silva, J.R.A.; Cianni, L.; Araujo, D.; Batista, P.H.J.; de Vita, D.; Rosini, F.; Leitão, A.; Lameira, J.; Montanari, C.A. Assessment of the cruzain cysteine protease reversible and irreversible covalent inhibition mechanism. J. Chem. Inf. Model., 2020, 60(3), 1666-1677. doi: 10.1021/acs.jcim.9b01138 PMID: 32126170
- Boudreau, P.D.; Miller, B.W.; McCall, L.I.; Almaliti, J.; Reher, R.; Hirata, K.; Le, T.; Siqueira-Neto, J.L.; Hook, V.; Gerwick, W.H. Design of gallinamide A analogs as potent inhibitors of the cysteine proteases human cathepsin L and Trypanosoma cruzi cruzain. J. Med. Chem., 2019, 62(20), 9026-9044. doi: 10.1021/acs.jmedchem.9b00294 PMID: 31539239
- Ferreira, R.S.; Dessoy, M.A.; Pauli, I.; Souza, M.L.; Krogh, R.; Sales, A.I.L.; Oliva, G.; Dias, L.C.; Andricopulo, A.D. Synthesis, biological evaluation, and structure-activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents. J. Med. Chem., 2014, 57(6), 2380-2392. doi: 10.1021/jm401709b PMID: 24533839
- Yang, P.Y.; Wang, M.; Li, L.; Wu, H.; He, C.Y.; Yao, S.Q. Design, synthesis and biological evaluation of potent azadipeptide nitrile inhibitors and activity-based probes as promising anti-Trypanosoma brucei agents. Chemistry, 2012, 18(21), 6528-6541. doi: 10.1002/chem.201103322 PMID: 22488888
- Brak, K.; Kerr, I.D.; Barrett, K.T.; Fuchi, N.; Debnath, M.; Ang, K.; Engel, J.C.; McKerrow, J.H.; Doyle, P.S.; Brinen, L.S.; Ellman, J.A. Nonpeptidic tetrafluorophenoxymethyl ketone cruzain inhibitors as promising new leads for Chagas disease chemotherapy. J. Med. Chem., 2010, 53(4), 1763-1773. doi: 10.1021/jm901633v PMID: 20088534
- Chen, Y.T.; Brinen, L.S.; Kerr, I.D.; Hansell, E.; Doyle, P.S.; McKerrow, J.H.; Roush, W.R. In vitro and in vivo studies of the trypanocidal properties of WRR-483 against Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2010, 4(9), e825. doi: 10.1371/journal.pntd.0000825 PMID: 20856868
- Trossini, G.H.G.; Malvezzi, A. T-do Amaral, A.; Rangel-Yagui, C.O.; Izidoro, M.A.; Cezari, M.H.; Juliano, L.; Chin, C.M.; Menezes, C.M.; Ferreira, E.I. Cruzain inhibition by hydroxymethylnitrofurazone and nitrofurazone: Investigation of a new target in Trypanosoma cruzi. J. Enzyme Inhib. Med. Chem., 2010, 25(1), 62-67. doi: 10.3109/14756360902941058 PMID: 20030510
- Choe, Y.; Brinen, L.S.; Price, M.S.; Engel, J.C.; Lange, M.; Grisostomi, C.; Weston, S.G.; Pallai, P.V.; Cheng, H.; Hardy, L.W.; Hartsough, D.S.; McMakin, M.; Tilton, R.F.; Baldino, C.M.; Craik, C.S. Development of α-keto-based inhibitors of cruzain, a cysteine protease implicated in Chagas disease. Bioorg. Med. Chem., 2005, 13(6), 2141-2156. doi: 10.1016/j.bmc.2004.12.053 PMID: 15727867
- Greenbaum, D.C.; Mackey, Z.; Hansell, E.; Doyle, P.; Gut, J.; Caffrey, C.R.; Lehrman, J.; Rosenthal, P.J.; McKerrow, J.H.; Chibale, K. Synthesis and structure-activity relationships of parasiticidal thiosemicarbazone cysteine protease inhibitors against Plasmodium falciparum, Trypanosoma brucei, and Trypanosoma cruzi. J. Med. Chem., 2004, 47(12), 3212-3219. doi: 10.1021/jm030549j PMID: 15163200
Supplementary files
