Targeting SmCB1: Perspectives and Insights to Design Antischistosomal Drugs
- 作者: dos Santos Nascimento I.1, Albino S.2, da Silva Menezes K.2, de Azevedo Teotônio Cavalcanti M.2, de Oliveira M.3, Mali S.4, de Moura R.5
-
隶属关系:
- Pharmacy Department,, Cesmac University Center
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia,, Universidade Estadual da Paraíba
- , Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, Museu Paraense Emílio Goeldi
- Department of Pharmaceutical Sciences and Technology, I, Institute of Chemical Technology
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba,
- 期: 卷 31, 编号 16 (2024)
- 页面: 2264-2284
- 栏目: Anti-Infectives and Infectious Diseases
- URL: https://j-morphology.com/0929-8673/article/view/644452
- DOI: https://doi.org/10.2174/0109298673255826231011114249
- ID: 644452
如何引用文章
全文:
详细
Neglected tropical diseases (NTDs) are prevalent in tropical and subtropical countries, and schistosomiasis is among the most relevant diseases worldwide. In addition, one of the two biggest problems in developing drugs against this disease is related to drug resistance, which promotes the demand to develop new drug candidates for this purpose. Thus, one of the drug targets most explored, Schistosoma mansoni Cathepsin B1 (SmCB1 or Sm31), provides new opportunities in drug development due to its essential functions for the parasite's survival. In this way, here, the latest developments in drug design studies targeting SmCB1 were approached, focusing on the most promising analogs of nitrile, vinyl sulphones, and peptidomimetics. Thus, it was shown that despite being a disease known since ancient times, it remains prevalent throughout the world, with high mortality rates. The therapeutic arsenal of antischistosomal drugs (ASD) consists only of praziquantel, which is widely used for this purpose and has several advantages, such as efficacy and safety. However, it has limitations, such as the impossibility of acting on the immature worm and exploring new targets to overcome these limitations. SmCB1 shows its potential as a cysteine protease with a catalytic triad consisting of Cys100, His270, and Asn290. Thus, design studies of new inhibitors focus on their catalytic mechanism for designing new analogs. In fact, nitrile and sulfonamide analogs show the most significant potential in drug development, showing that these chemical groups can be better exploited in drug discovery against schistosomiasis. We hope this manuscript guides the authors in searching for promising new antischistosomal drugs.
作者简介
Igor dos Santos Nascimento
Pharmacy Department,, Cesmac University Center
编辑信件的主要联系方式.
Email: info@benthamscience.net
Sonaly Albino
Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia,, Universidade Estadual da Paraíba
Email: info@benthamscience.net
Karla da Silva Menezes
Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia,, Universidade Estadual da Paraíba
Email: info@benthamscience.net
Misael de Azevedo Teotônio Cavalcanti
Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia,, Universidade Estadual da Paraíba
Email: info@benthamscience.net
Mozaniel de Oliveira
, Coordination of Botany-Laboratory Adolpho Ducke, Avenida Perimetral, Museu Paraense Emílio Goeldi
Email: info@benthamscience.net
Suraj Mali
Department of Pharmaceutical Sciences and Technology, I, Institute of Chemical Technology
Email: info@benthamscience.net
Ricardo de Moura
Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba,
Email: info@benthamscience.net
参考
- Ferreira, L.L.G.; de Moraes, J.; Andricopulo, A.D. Approaches to advance drug discovery for neglected tropical diseases. Drug Discov. Today, 2022, 27(8), 2278-2287. doi: 10.1016/j.drudis.2022.04.004 PMID: 35398562
- Nascimento, I.J.S.; Santos-Júnior, P.F.S.; Aquino, T.M.; Araújo-Júnior, J.X.; Silva-Júnior, E.F. Insights on Dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur. J. Med. Chem., 2021, 224, 113698. doi: 10.1016/j.ejmech.2021.113698 PMID: 34274831
- de Aquino, T.M.; França, P.H.B.; Rodrigues, É.E.E.S.; Nascimento, I.J.S.; Santos-Júnior, P.F.S.; Aquino, P.G.V.; Santos, M.S.; Queiroz, A.C.; Araújo, M.V.; Alexandre-Moreira, M.S.; Rodrigues, R.R.L.; Rodrigues, K.A.F.; Freitas, J.D.; Bricard, J.; Meneghetti, M.R.; Bourguignon, J.J.; Schmitt, M.; da Silva-Júnior, E.F.; de Araújo-Júnior, J.X. Synthesis, antileishmanial activity and in silico studies of aminoguanidine hydrazones (AGH) and thiosemicarbazones (TSC) against Leishmania chagasi Amastigotes. Med. Chem., 2022, 18(2), 151-169. doi: 10.2174/1573406417666210216154428 PMID: 33593264
- WHO ⋅ World Health Organization. 2020. Neglected tropical diseases. Available at: https://www.who.int/neglected_diseases/diseases/en/ Accessed on: 06 Jun. 2023.
- Ferreira, L.L.G.; Andricopulo, A.D. Drugs and vaccines in the 21st century for neglected diseases. Lancet Infect. Dis., 2019, 19(2), 125-127. doi: 10.1016/S1473-3099(19)30005-2 PMID: 30712832
- dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Drug repurposing: A strategy for discovering inhibitors against emerging viral infections. Curr. Med. Chem., 2021, 28(15), 2887-2942. doi: 10.2174/1875533XMTA5rMDYp5 PMID: 32787752
- dos Santos Nascimento, I.J.; da Silva Rodrigues, É.E.; da Silva, M.F.; de Araújo-Júnior, J.X.; de Moura, R.O. Advances in computational methods to discover new NS2B-NS3 inhibitors useful against dengue and zika viruses. Curr. Top. Med. Chem., 2022, 22(29), 2435-2462. doi: 10.2174/1568026623666221122121330 PMID: 36415099
- da Conceição, J.R.; Lopes, C.P.G.; Ferreira, E.I.; Epiphanio, S.; Giarolla, J. Neglected tropical diseases and systemic racism especially in Brazil: from socio-economic aspects to the development of new drugs. Acta Trop., 2022, 235, 106654. doi: 10.1016/j.actatropica.2022.106654 PMID: 35988823
- McManus, D.P.; Bergquist, R.; Cai, P.; Ranasinghe, S.; Tebeje, B.M.; You, H. Schistosomiasis-from immunopathology to vaccines. Semin. Immunopathol., 2020, 42(3), 355-371. doi: 10.1007/s00281-020-00789-x PMID: 32076812
- José dos, S.N.I.; de Aquino, M.T.; da Silva Santos-Júnior, F.P.; de Araújo-Júnior, X.J.; da Silva-Júnior, F.E. Molecular modeling applied to design of cysteine protease inhibitors a powerful tool for the identification of hit compounds against neglected tropical diseases. In: Frontiers in Computational Chemistry; , 2020; p. 63-110.
- Alzain, A.A.; Elbadwi, F.A. De novo design of cathepsin b1 inhibitors as potential anti-schistosomal agents using computational studies. Adv. Appl. Bioinform. Chem., 2022, 15, 29-41. doi: 10.2147/AABC.S361626 PMID: 35935393
- Mansour, N.R.; Paveley, R.; Gardner, J.M.F.; Bell, A.S.; Parkinson, T.; Bickle, Q. High throughput screening identifies novel lead compounds with activity against larval, juvenile and adult Schistosoma mansoni. PLoS Negl. Trop. Dis., 2016, 10(4), e0004659. doi: 10.1371/journal.pntd.0004659 PMID: 27128493
- McManus, D.P.; Dunne, D.W.; Sacko, M.; Utzinger, J.; Vennervald, B.J.; Zhou, X.N. Schistosomiasis. Nat. Rev. Dis. Primers, 2018, 4(1), 13. doi: 10.1038/s41572-018-0013-8 PMID: 30093684
- dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Cruzain and rhodesain inhibitors: Last decade of advances in seeking for new compounds against American and African trypanosomiases. Curr. Top. Med. Chem., 2021, 21(21), 1871-1899. doi: 10.2174/18734294MTE10MTEoz PMID: 33797369
- Silva, L.R.; Guimarães, A.S.; do Nascimento, J.; do Santos Nascimento, I.J.; da Silva, E.B.; McKerrow, J.H.; Cardoso, S.H.; da Silva-Júnior, E.F. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg. Med. Chem., 2021, 41, 116213. doi: 10.1016/j.bmc.2021.116213 PMID: 33992862
- Albino, S.L.; da Silva Moura, W.C.; Reis, M.M.L.; Sousa, G.L.S.; da Silva, P.R.; de Oliveira, M.G.C.; Borges, T.K.S.; Albuquerque, L.F.F.; de Almeida, S.M.V.; de Lima, M.C.A.; Kuckelhaus, S.A.S.; Nascimento, I.J.S.; Junior, F.J.B.M.; da Silva, T.G.; de Moura, R.O. ACW-02 an acridine triazolidine derivative presents antileishmanial activity mediated by dna interaction and immunomodulation. Pharmaceuticals, 2023, 16(2), 204. doi: 10.3390/ph16020204 PMID: 37259353
- Correnti, J.M.; Brindley, P.J.; Pearce, E.J. Long-term suppression of cathepsin B levels by RNA interference retards schistosome growth. Mol. Biochem. Parasitol., 2005, 143(2), 209-215. doi: 10.1016/j.molbiopara.2005.06.007 PMID: 16076506
- Jílková, A. Rubeová, P.; Fanfrlík, J.; Fajtová, P.; Řezáčová, P.; Brynda, J.; Lepík, M.; Mertlíková-Kaiserová, H.; Emal, C.D.; Renslo, A.R.; Roush, W.R.; Horn, M.; Caffrey, C.R.; Mare, M. Druggable hot spots in the schistosomiasis cathepsin B1 target identified by functional and binding mode analysis of potent vinyl sulfone inhibitors. ACS Infect. Dis., 2021, 7(5), 1077-1088. doi: 10.1021/acsinfecdis.0c00501 PMID: 33175511
- Sajid, M.; McKerrow, J.H.; Hansell, E.; Mathieu, M.A.; Lucas, K.D.; Hsieh, I.; Greenbaum, D.; Bogyo, M.; Salter, J.P.; Lim, K.C.; Franklin, C.; Kim, J.H.; Caffrey, C.R. Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase. Mol. Biochem. Parasitol., 2003, 131(1), 65-75. doi: 10.1016/S0166-6851(03)00194-4 PMID: 12967713
- Abdel Aziz, N.; Musaigwa, F.; Mosala, P.; Berkiks, I.; Brombacher, F. Type 2 immunity: A two-edged sword in schistosomiasis immunopathology. Trends Immunol., 2022, 43(8), 657-673. doi: 10.1016/j.it.2022.06.005 PMID: 35835714
- Li, Q.; Xu, J.; Li, S.Z.; Utzinger, J.; McManus, D.P.; Zhou, X.N. Short-, mid-, and long-term epidemiological and economic effects of the world bank loan project on schistosomiasis control in the peoples republic of China. Diseases, 2022, 10(4), 84. doi: 10.3390/diseases10040084 PMID: 36278583
- Schistosomiasis. Available from: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis (Accessed on: Mar 6, 2023).
- Karunamoorthi, K.; Almalki, M.; Ghailan, K. Schistosomiasis: A neglected tropical disease of poverty: A call for intersectoral mitigation strategies for better health. J. Health Res. Rev., 2018, 5(1), 1. doi: 10.4103/jhrr.jhrr_92_17
- Lancelot, J.; Cabezas-Cruz, A.; Caby, S.; Marek, M.; Schultz, J.; Romier, C.; Sippl, W.; Jung, M.; Pierce, R.J. Schistosome sirtuins as drug targets. Future Med. Chem., 2015, 7(6), 765-782. doi: 10.4155/fmc.15.24 PMID: 25996069
- Barakat, R.M.R. Epidemiology of schistosomiasis in Egypt: Travel through time (Review). J. Adv. Res., 2013, 4(5), 425-432. doi: 10.1016/j.jare.2012.07.003 PMID: 25685449
- Tan, S.Y.; Ahana, A. Theodor Bilharz (1825-1862): Discoverer of schistosomiasis. Singapore Med. J., 2007, 48(3), 184-185. PMID: 17342284
- Wu, K.; Zhai, X.; Huang, S.; Jiang, L.; Yu, Z.; Huang, J. Protein kinases: Potential drug targets against schistosoma japonicum. Front. Cell. Infect. Microbiol., 2021, 11, 691757. doi: 10.3389/fcimb.2021.691757 PMID: 34277472
- Marker, E.; Debbert, S. Recent advances in anti-schistosomiasis drug discovery. In: Parasitic Helminths and Zoonoses - From Basic to Applied Research; IntechOpen, 2022. doi: 10.5772/intechopen.103056
- Xiao, S.H.; Sun, J.; Chen, M.G. Pharmacological and immunological effects of praziquantel against Schistosoma japonicum: A scoping review of experimental studies. Infect. Dis. Poverty, 2018, 7(1), 9. doi: 10.1186/s40249-018-0391-x PMID: 29409536
- Friedman, J.F.; Olveda, R.M.; Mirochnick, M.H.; Bustinduy, A.L.; Elliott, A.M. Praziquantel for the treatment of schistosomiasis during human pregnancy. Bull. World Health Organ., 2018, 96(1), 59-65. doi: 10.2471/BLT.17.198879 PMID: 29403101
- Stothard, J.R.; Sousa-Figueiredo, J.C.; Navaratnam, A.M.D. Advocacy, policies and practicalities of preventive chemotherapy campaigns for African children with schistosomiasis. Expert Rev. Anti Infect. Ther., 2013, 11(7), 733-752. doi: 10.1586/14787210.2013.811931 PMID: 23879611
- Knopp, S.; Becker, S.L.; Ingram, K.J.; Keiser, J.; Utzinger, J. Diagnosis and treatment of schistosomiasis in children in the era of intensified control. Expert Rev. Anti Infect. Ther., 2013, 11(11), 1237-1258. doi: 10.1586/14787210.2013.844066 PMID: 24127662
- Doenhoff, M.J.; Cioli, D.; Utzinger, J. Praziquantel: Mechanisms of action, resistance and new derivatives for schistosomiasis. Curr. Opin. Infect. Dis., 2008, 21(6), 659-667. doi: 10.1097/QCO.0b013e328318978f PMID: 18978535
- Bottieau, E.; Clerinx, J.; de Vega, M.R.; Van den Enden, E.; Colebunders, R.; Van Esbroeck, M.; Vervoort, T.; Van Gompel, A.; Van den Ende, J. Imported Katayama fever: Clinical and biological features at presentation and during treatment. J. Infect., 2006, 52(5), 339-345. doi: 10.1016/j.jinf.2005.07.022 PMID: 16169593
- Lambertucci, J.R.; Modha, J.; Curtis, R.; Doenhoff, M. The association of steroids and schistosomicides in the treatment of experimental schistosomiasis. Trans. R. Soc. Trop. Med. Hyg., 1989, 83(3), 354-357. doi: 10.1016/0035-9203(89)90502-6 PMID: 2515622
- Lambertucci, J.R. Acute schistosomiasis mansoni: Revisited and reconsidered. Mem. Inst. Oswaldo Cruz, 2010, 105(4), 422-435. doi: 10.1590/S0074-02762010000400012 PMID: 20721485
- El Guiniady, M.A.; Metwally, A.; Abdel-Bary, M.A.; Abdel-Fatah, S.A.; El Touny, M.A. Clinical and pharmacokinetic study of praziquantel in Egyptian Schistosomiasis patients with and without liver cell failure. Am. J. Trop. Med. Hyg., 1994, 51(6), 809-818. doi: 10.4269/ajtmh.1994.51.809 PMID: 7810816
- Mandour, M.E.M.; Turabi, H.E.; Homeida, M.M.A.; Sadig, T.; Ali, H.M.; Bennett, J.L.; Leahey, W.J.; Harron, D.W.G. Pharmacokinetics of praziquantel in healthy volunteers and patients with schistosomiasis. Trans. R. Soc. Trop. Med. Hyg., 1990, 84(3), 389-393. doi: 10.1016/0035-9203(90)90333-A PMID: 2124391
- Ortega-Pacheco, A.; Poot-Ramos, A.; Chan-Pérez, J.I.; Gutiérrez-Blanco, E.; Acevedo-Arcique, C.M.; Baak-Baak, C.M.; Jiménez-Coello, M. Evaluation of the effectiveness of fluralaner against adult stages of Rhodnius prolixus in dogs. Parasitol. Int., 2022, 87, 102508. doi: 10.1016/j.parint.2021.102508 PMID: 34781015
- Shuhua, X.; Binggui, S.; Chollet, J.; Utzinger, J.; Tanner, M. Tegumental alterations in juvenile Schistosoma haematobium harboured in hamsters following artemether treatment. Parasitol. Int., 2001, 50(3), 175-183. doi: 10.1016/S1383-5769(01)00076-9 PMID: 11595574
- Saeed, M.E.M.; Krishna, S.; Greten, H.J.; Kremsner, P.G.; Efferth, T. Antischistosomal activity of artemisinin derivatives in vivo and in patients. Pharmacol. Res., 2016, 110, 216-226. doi: 10.1016/j.phrs.2016.02.017 PMID: 26902577
- Shu-Hua, X. Development of antischistosomal drugs in China, with particular consideration to praziquantel and the artemisinins. Acta Trop., 2005, 96(2-3), 153-167. doi: 10.1016/j.actatropica.2005.07.010 PMID: 16112072
- Njogu, P.M.; Okombo, J.; Chibale, K. Designed hybrid compounds for tropical parasitic diseases. In: Design of Hybrid Molecules for Drug Development; Elsevier, 2017; pp. 83-135. doi: 10.1016/B978-0-08-101011-2.00004-0
- Tripathi, T.; Chetri, P.B. Potent inhibitors of thioredoxin glutathione reductase: Grail of anti-schistosome drug within reach? ACS Infect. Dis., 2020, 6(5), 893-895. doi: 10.1021/acsinfecdis.0c00072 PMID: 32159329
- Song, L.; Li, J.; Xie, S.; Qian, C.; Wang, J.; Zhang, W.; Yin, X.; Hua, Z.; Yu, C. Thioredoxin glutathione reductase as a novel drug target: Evidence from Schistosoma japonicum. PLoS One, 2012, 7(2), e31456. doi: 10.1371/journal.pone.0031456 PMID: 22384025
- Kuntz, A.N.; Davioud-Charvet, E.; Sayed, A.A.; Califf, L.L.; Dessolin, J.; Arnér, E.S.J.; Williams, D.L. Thioredoxin glutathione reductase from Schistosoma mansoni: An essential parasite enzyme and a key drug target. PLoS Med., 2007, 4(6), e206. doi: 10.1371/journal.pmed.0040206 PMID: 17579510
- Prast-Nielsen, S.; Huang, H.H.; Williams, D.L. Thioredoxin glutathione reductase: Its role in redox biology and potential as a target for drugs against neglected diseases. Biochim. Biophys. Acta, Gen. Subj., 2011, 1810(12), 1262-1271. doi: 10.1016/j.bbagen.2011.06.024 PMID: 21782895
- Ghazy, E.; Abdelsalam, M.; Robaa, D.; Pierce, R.J.; Sippl, W. Histone deacetylase (HDAC) inhibitors for the treatment of schistosomiasis. Pharmaceuticals, 2022, 15(1), 80. doi: 10.3390/ph15010080 PMID: 35056137
- Fennell, B.J.; Naughton, J.A.; Barlow, J.; Brennan, G.; Fairweather, I.; Hoey, E.; McFerran, N.; Trudgett, A.; Bell, A. Microtubules as antiparasitic drug targets. Expert Opin. Drug Discov., 2008, 3(5), 501-518. doi: 10.1517/17460441.3.5.501 PMID: 23484923
- Chatterji, B.P.; Jindal, B.; Srivastava, S.; Panda, D. Microtubules as antifungal and antiparasitic drug targets. Expert Opin. Ther. Pat., 2011, 21(2), 167-186. doi: 10.1517/13543776.2011.545349 PMID: 21204724
- Monti, L.; Cornec, A.S.; Oukoloff, K.; Kovalevich, J.; Prijs, K.; Alle, T.; Brunden, K.R.; Smith, A.B., III; El-Sakkary, N.; Liu, L.J.; Syed, A.; Skinner, D.E.; Ballatore, C.; Caffrey, C.R. Congeners derived from microtubule-active phenylpyrimidines produce a potent and long-lasting paralysis of Schistosoma mansoni in vitro. ACS Infect. Dis., 2021, 7(5), 1089-1103. doi: 10.1021/acsinfecdis.0c00508 PMID: 33135408
- Oliveira, M.F.; dAvila, J.C.P.; Torres, C.R.; Oliveira, P.L.; Tempone, A.J.; Rumjanek, F.D.; Braga, C.M.S.; Silva, J.R.; Dansa-Petretski, M.; Oliveira, M.A.; de Souza, W.; Ferreira, S.T. Haemozoin in Schistosoma mansoni. Mol. Biochem. Parasitol., 2000, 111(1), 217-221. doi: 10.1016/S0166-6851(00)00299-1 PMID: 11087932
- Xiao, S.; Sun, J. Schistosoma hemozoin and its possible roles. Int. J. Parasitol., 2017, 47(4), 171-183. doi: 10.1016/j.ijpara.2016.10.005 PMID: 28012717
- Corrêa Soares, J.B.R.; Menezes, D.; Vannier-Santos, M.A.; Ferreira-Pereira, A.; Almeida, G.T.; Venancio, T.M.; Verjovski-Almeida, S.; Zishiri, V.K.; Kuter, D.; Hunter, R.; Egan, T.J.; Oliveira, M.F. Interference with hemozoin formation represents an important mechanism of schistosomicidal action of antimalarial quinoline methanols. PLoS Negl. Trop. Dis., 2009, 3(7), e477. doi: 10.1371/journal.pntd.0000477 PMID: 19597543
- De Villiers, K.; Egan, T. Recent advances in the discovery of haem-targeting drugs for malaria and schistosomiasis. Molecules, 2009, 14(8), 2868-2887. doi: 10.3390/molecules14082868 PMID: 19701131
- Sun, J.; Li, C.; Wang, S. Organism-like formation of Schistosoma hemozoin and its function suggest a mechanism for anti-malarial action of artemisinin. Sci. Rep., 2016, 6(1), 34463. doi: 10.1038/srep34463 PMID: 27694940
- Okombo, J.; Singh, K.; Mayoka, G.; Ndubi, F.; Barnard, L.; Njogu, P.M.; Njoroge, M.; Gibhard, L.; Brunschwig, C.; Vargas, M.; Keiser, J.; Egan, T.J.; Chibale, K. Antischistosomal activity of pyrido1,2-abenzimidazole derivatives and correlation with inhibition of β-hematin formation. ACS Infect. Dis., 2017, 3(6), 411-420. doi: 10.1021/acsinfecdis.6b00205 PMID: 28440625
- Mayoka, G.; Keiser, J.; Häberli, C.; Chibale, K. Structureactivity relationship and in vitro absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies of N-aryl 3-trifluoromethyl pyrido1,2-abenzimidazoles that are efficacious in a mouse model of schistosomiasis. ACS Infect. Dis., 2019, 5(3), 418-429. doi: 10.1021/acsinfecdis.8b00313 PMID: 30580519
- Probst, A.; Chisanga, K.; Dziwornu, G.A.; Haeberli, C.; Keiser, J.; Chibale, K. Expanding the activity profile of pyrido1,2-abenzimidazoles: synthesis and evaluation of novel n1-1-phenylethanamine derivatives against Schistosoma mansoni. ACS Infect. Dis., 2021, 7(5), 1032-1043. doi: 10.1021/acsinfecdis.0c00278 PMID: 32786285
- Cruz, J.N.; Mali, S.N. Antimalarial hemozoin inhibitors (β-hematin formation inhibition): Latest updates. Comb. Chem. High Throughput Screen., 2022, 25(12), 1987-1990. doi: 10.2174/1386207325666220117145351 PMID: 35040394
- Mali, S.N.; Pandey, A. Hemozoin (beta-hematin) formation inhibitors: Promising target for the development of new antimalarials: Current update and future prospect. Comb. Chem. High Throughput Screen., 2022, 25(11), 1859-1874. doi: 10.2174/1386207325666210924104036 PMID: 34565319
- Mali, S.N.; Pandey, A. Synthesis, computational analysis, antimicrobial, antioxidant, trypan blue exclusion assay, β-hematin assay and anti-inflammatory studies of some hydrazones (Part-I); Curr. Comput. Aided Drug Des, 2022, p. 18.
- Patra, M.; Ingram, K.; Pierroz, V.; Ferrari, S.; Spingler, B.; Keiser, J.; Gasser, G. Ferrocenyl derivatives of the anthelmintic praziquantel: Design, synthesis, and biological evaluation. J. Med. Chem., 2012, 55(20), 8790-8798. doi: 10.1021/jm301077m PMID: 23005702
- Patra, M. Ingram, K.; Pierroz, V.; Ferrari, S.; Spingler, B.; Gasser, R.B.; Keiser, J.; Gasser, G. (η(6)-Praziquantel)Cr(CO)3 derivatives with remarkable in vitro anti-schistosomal activity. Chemistry, 2013, 19(7), 2232-2235. doi: 10.1002/chem.201204291 PMID: 23296750
- Patra, M.; Ingram, K.; Leonidova, A.; Pierroz, V.; Ferrari, S.; Robertson, M.N.; Todd, M.H.; Keiser, J.; Gasser, G. In vitro metabolic profile and in vivo antischistosomal activity studies of (η(6)-praziquantel)Cr(CO)3 derivatives. J. Med. Chem., 2013, 56(22), 9192-9198. doi: 10.1021/jm401287m PMID: 24219617
- Fonseca, N.C.; da Cruz, L.F.; da Silva Villela, F.; do Nascimento Pereira, G.A.; de Siqueira-Neto, J.L.; Kellar, D.; Suzuki, B.M.; Ray, D.; de Souza, T.B.; Alves, R.J.; Júnior, P.A.S.; Romanha, A.J.; Murta, S.M.F.; McKerrow, J.H.; Caffrey, C.R.; de Oliveira, R.B.; Ferreira, R.S. Synthesis of a sugar-based thiosemicarbazone series and structure-activity relationship versus the parasite cysteine proteases rhodesain, cruzain, and Schistosoma mansoni cathepsin B1. Antimicrob. Agents Chemother., 2015, 59(5), 2666-2677. doi: 10.1128/AAC.04601-14 PMID: 25712353
- Jílková, A.; Řezáčová, P.; Lepík, M.; Horn, M.; Váchová, J.; Fanfrlík, J.; Brynda, J.; McKerrow, J.H.; Caffrey, C.R.; Mare, M. Structural basis for inhibition of cathepsin B drug target from the human blood fluke, Schistosoma mansoni. J. Biol. Chem., 2011, 286(41), 35770-35781. doi: 10.1074/jbc.M111.271304 PMID: 21832058
- Krautz-Peterson, G.; Skelly, P.J. Schistosome asparaginyl endopeptidase (legumain) is not essential for cathepsin B1 activation in vivo. Mol. Biochem. Parasitol., 2008, 159(1), 54-58. doi: 10.1016/j.molbiopara.2007.12.011 PMID: 18280591
- de Oliveira Fraga, L.A.; Lamb, E.W.; Moreno, E.C.; Chatterjee, M. Dvořák, J.; Delcroix, M.; Sajid, M.; Caffrey, C.R.; Davies, S.J. Rapid induction of IgE responses to a worm cysteine protease during murine pre-patent schistosome infection. BMC Immunol., 2010, 11(1), 56. doi: 10.1186/1471-2172-11-56 PMID: 21078176
- Tallima, H.; Abou El Dahab, M.; Kareem, S.; Dalton, J.P.; El Ridi, R. Protection against Schistosoma haematobium infection in hamsters by immunization with Schistosoma mansoni gut-derived cysteine peptidases, SmCB1 and SmCL3. Vaccine, 2017, 35(50), 6977-6983. doi: 10.1016/j.vaccine.2017.10.069 PMID: 29122387
- Jílková, A. Horn, M.; Fanfrlík, J.; Küppers, J.; Pachl, P.; Řezáčová, P.; Lepík, M.; Fajtová, P.; Rubeová, P.; Chanová, M.; Caffrey, C.R.; Gütschow, M.; Mare, M. Azanitrile inhibitors of the smcb1 protease target are lethal to Schistosoma mansoni: Structural and mechanistic insights into chemotype reactivity. ACS Infect. Dis., 2021, 7(1), 189-201. doi: 10.1021/acsinfecdis.0c00644 PMID: 33301315
- Jílková, A. Horn, M.; Řezáčová, P.; Mareová, L.; Fajtová, P.; Brynda, J.; Vondráek, J.; McKerrow, J.H.; Caffrey, C.R.; Mare, M. Activation route of the Schistosoma mansoni cathepsin B1 drug target: Structural map with a glycosaminoglycan switch. Structure, 2014, 22(12), 1786-1798. doi: 10.1016/j.str.2014.09.015 PMID: 25456815
- Ehmke, V.; Quinsaat, J.E.Q.; Rivera-Fuentes, P.; Heindl, C.; Freymond, C.; Rottmann, M.; Brun, R.; Schirmeister, T.; Diederich, F. Tuning and predicting biological affinity: Aryl nitriles as cysteine protease inhibitors. Org. Biomol. Chem., 2012, 10(30), 5764-5768. doi: 10.1039/c2ob00034b PMID: 22336919
- Yang, P.Y.; Wang, M.; Li, L.; Wu, H.; He, C.Y.; Yao, S.Q. Design, synthesis and biological evaluation of potent azadipeptide nitrile inhibitors and activity-based probes as promising anti-Trypanosoma brucei agents. Chemistry, 2012, 18(21), 6528-6541. doi: 10.1002/chem.201103322 PMID: 22488888
- Ndao, M.; Beaulieu, C.; Black, W.C.; Isabel, E.; Vasquez-Camargo, F.; Nath-Chowdhury, M.; Massé, F.; Mellon, C.; Methot, N.; Nicoll-Griffith, D.A. Reversible cysteine protease inhibitors show promise for a Chagas disease cure. Antimicrob. Agents Chemother., 2014, 58(2), 1167-1178. doi: 10.1128/AAC.01855-13 PMID: 24323474
- Quesne, M.G.; Ward, R.A.; de Visser, S.P. Cysteine protease inhibition by nitrile-based inhibitors: A computational study. Front Chem., 2013, 1, 39. doi: 10.3389/fchem.2013.00039 PMID: 24790966
- Löser, R.; Frizler, M.; Schilling, K.; Gütschow, M. Azadipeptide nitriles: Highly potent and proteolytically stable inhibitors of papain-like cysteine proteases. Angew. Chem. Int. Ed., 2008, 47(23), 4331-4334. doi: 10.1002/anie.200705858 PMID: 18404765
- Frizler, M.; Lohr, F.; Lülsdorff, M.; Gütschow, M. Facing the gem-dialkyl effect in enzyme inhibitor design: Preparation of homocycloleucine-based azadipeptide nitriles. Chemistry, 2011, 17(41), 11419-11423. doi: 10.1002/chem.201101350 PMID: 21898616
- Laube, M.; Frizler, M.; Wodtke, R.; Neuber, C.; Belter, B.; Kniess, T.; Bachmann, M.; Gütschow, M.; Pietzsch, J.; Löser, R. Synthesis and preliminary radiopharmacological characterisation of an 11C‐labelled azadipeptide nitrile as potential PET tracer for imaging of cysteine cathepsins. J. Labelled Comp. Radiopharm., 2019, 62(8), 448-459. doi: 10.1002/jlcr.3729 PMID: 30912586
- Fanfrlík, J. Brahmkshatriya, P.S.; Řezáč J.; Jílková, A.; Horn, M.; Mare, M.; Hobza, P.; Lepík, M. Quantum mechanics-based scoring rationalizes the irreversible inactivation of parasitic Schistosoma mansoni cysteine peptidase by vinyl sulfone inhibitors. J. Phys. Chem. B, 2013, 117(48), 14973-14982. doi: 10.1021/jp409604n PMID: 24195769
- Palmer, J.T.; Rasnick, D.; Klaus, J.L.; Brömme, D. Vinyl sulfones as mechanism-based cysteine protease inhibitors. J. Med. Chem., 1995, 38(17), 3193-3196. doi: 10.1021/jm00017a002 PMID: 7650671
- Brömme, D.; Klaus, J.L.; Okamoto, K.; Rasnick, D.; Palmer, J.T. Peptidyl vinyl sulphones: A new class of potent and selective cysteine protease inhibitors: S2P2 specificity of human cathepsin O2 in comparison with cathepsins S and L. Biochem. J., 1996, 315(1), 85-89. doi: 10.1042/bj3150085 PMID: 8670136
- Barr, S.C.; Warner, K.L.; Kornreic, B.G.; Piscitelli, J.; Wolfe, A.; Benet, L.; McKerrow, J.H. A cysteine protease inhibitor protects dogs from cardiac damage during infection by Trypanosoma cruzi. Antimicrob. Agents Chemother., 2005, 49(12), 5160-5161. doi: 10.1128/AAC.49.12.5160-5161.2005 PMID: 16304193
- Abdulla, M.H.; Lim, K.C.; Sajid, M.; McKerrow, J.H.; Caffrey, C.R. Schistosomiasis mansoni: Novel chemotherapy using a cysteine protease inhibitor. PLoS Med., 2007, 4, 0130-0138.
- Roush, W.R.; Gwaltney, S.L., II; Cheng, J.; Scheidt, K.A.; McKerrow, J.H.; Hansell, E. Vinyl sulfonate esters and vinyl sulfonamides: Potent, irreversible inhibitors of cysteine proteases. J. Am. Chem. Soc., 1998, 120(42), 10994-10995. doi: 10.1021/ja981792o
- Scheidt, K.A.; Roush, W.R.; McKerrow, J.H.; Selzer, P.M.; Hansell, E.; Rosenthal, P.J. Structure-based design, synthesis and evaluation of conformationally constrained cysteine protease inhibitors. Bioorg. Med. Chem., 1998, 6(12), 2477-2494. doi: 10.1016/S0968-0896(98)80022-9 PMID: 9925304
- Somoza, J.R.; Zhan, H.; Bowman, K.K.; Yu, L.; Mortara, K.D.; Palmer, J.T.; Clark, J.M.; McGrath, M.E. Crystal structure of human cathepsin V. Biochemistry, 2000, 39(41), 12543-12551. doi: 10.1021/bi000951p PMID: 11027133
- Roush, W.R.; Cheng, J.; Knapp-Reed, B.; Alvarez-Hernandez, A.; McKerrow, J.H.; Hansell, E.; Engel, J.C. Potent second generation vinyl sulfonamide inhibitors of the trypanosomal cysteine protease cruzain. Bioorg. Med. Chem. Lett., 2001, 11(20), 2759-2762. doi: 10.1016/S0960-894X(01)00566-2 PMID: 11591518
- Chen, Y.T.; Brinen, L.S.; Kerr, I.D.; Hansell, E.; Doyle, P.S.; McKerrow, J.H.; Roush, W.R. In vitro and in vivo studies of the trypanocidal properties of WRR-483 against Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2010, 4(9), e825. doi: 10.1371/journal.pntd.0000825 PMID: 20856868
- Brinen, L.S.; Hansell, E.; Cheng, J.; Roush, W.R.; McKerrow, J.H.; Fletterick, R.J. A target within the target: Probing cruzains P1′ site to define structural determinants for the Chagas disease protease. Structure, 2000, 8(8), 831-840. doi: 10.1016/S0969-2126(00)00173-8 PMID: 10997902
- Caffrey, C.R.; Hansell, E.; Lucas, K.D.; Brinen, L.S.; Alvarez Hernandez, A.; Cheng, J.; Gwaltney, S.L., II; Roush, W.R.; Stierhof, Y.D.; Bogyo, M.; Steverding, D.; McKerrow, J.H. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol. Biochem. Parasitol., 2001, 118(1), 61-73. doi: 10.1016/S0166-6851(01)00368-1 PMID: 11704274
- Ang, K.K.H.; Ratnam, J.; Gut, J.; Legac, J.; Hansell, E.; Mackey, Z.B.; Skrzypczynska, K.M.; Debnath, A.; Engel, J.C.; Rosenthal, P.J.; McKerrow, J.H.; Arkin, M.R.; Renslo, A.R. Mining a cathepsin inhibitor library for new antiparasitic drug leads. PLoS Negl. Trop. Dis., 2011, 5(5), e1023. doi: 10.1371/journal.pntd.0001023 PMID: 21572521
- Horn, M.; Jílková, A.; Vondráek, J.; Mareová, L.; Caffrey, C.R.; Mare, M. Mapping the pro-peptide of the Schistosoma mansoni cathepsin B1 drug target: Modulation of inhibition by heparin and design of mimetic inhibitors. ACS Chem. Biol., 2011, 6(6), 609-617. doi: 10.1021/cb100411v PMID: 21375333
- Chowdhury, S.F.; Sivaraman, J.; Wang, J.; Devanathan, G.; Lachance, P.; Qi, H.; Ménard, R.; Lefebvre, J.; Konishi, Y.; Cygler, M.; Sulea, T.; Purisima, E.O. Design of noncovalent inhibitors of human cathepsin L. from the 96-residue proregion to optimized tripeptides. J. Med. Chem., 2002, 45(24), 5321-5329. doi: 10.1021/jm020238t PMID: 12431059
- Choe, Y.; Leonetti, F.; Greenbaum, D.C.; Lecaille, F.; Bogyo, M.; Brömme, D.; Ellman, J.A.; Craik, C.S. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem., 2006, 281(18), 12824-12832. doi: 10.1074/jbc.M513331200 PMID: 16520377
- de Moraes, J. Antischistosomal natural compounds: Present challenges for new drug screens. In: Current Topics in Tropical Medicine; IntechOpen, 2012.
- Obe, A.F. Praziquantel: Do we need another antischistosoma treatment? Future Med. Chem., 2015, 7(6), 677-680. doi: 10.4155/fmc.15.16 PMID: 25996058
- Bergquist, R.; Utzinger, J.; Keiser, J. Controlling schistosomiasis with praziquantel: How much longer without a viable alternative? Infect. Dis. Poverty, 2017, 6(1), 74. doi: 10.1186/s40249-017-0286-2 PMID: 28351414
- Tavares, N.C.; de Aguiar, P.H.N.; Gava, S.G.; Oliveira, G.; Mourão, M.M. Schistosomiasis: Setting Routes for Drug Discovery In: Special Topics in Drug Discovery; , 2016.
- Levecke, B.; Vlaminck, J.; Andriamaro, L.; Ame, S.; Belizario, V.; Degarege, A.; Engels, D.; Erko, B.; Garba, A.D.; Kaatano, G.M.; Mekonnen, Z.; Montresor, A.; Olliaro, P.; Pieri, O.S.; Sacko, M.; Sam-Wobo, S.O.; Tchuem Tchuenté, L.A.; Webster, J.P.; Vercruysse, J. Evaluation of the therapeutic efficacy of praziquantel against schistosomes in seven countries with ongoing large-scale deworming programs. Int. J. Parasitol. Drugs Drug Resist., 2020, 14, 183-187. doi: 10.1016/j.ijpddr.2020.10.003 PMID: 33125936
- Yu, Q.F.; Zhang, J.Y.; Sun, M.T.; Gu, M.M.; Zou, H.Y.; Webster, J.P.; Lu, D.B. In vivo praziquantel efficacy of Schistosoma japonicum over time: A systematic review and meta-analysis. Acta Trop., 2021, 222, 106048. doi: 10.1016/j.actatropica.2021.106048 PMID: 34273315
- Wang, W.; Wang, L.; Liang, Y.S. Susceptibility or resistance of praziquantel in human schistosomiasis: A review. Parasitol. Res., 2012, 111(5), 1871-1877. doi: 10.1007/s00436-012-3151-z PMID: 23052781
- Crellen, T.; Walker, M.; Lamberton, P.H.L.; Kabatereine, N.B.; Tukahebwa, E.M.; Cotton, J.A.; Webster, J.P. Reduced efficacy of praziquantel against schistosoma mansoni is associated with multiple rounds of mass drug administration. Clin. Infect. Dis., 2016, 63(9), 1151-1159. PMID: 27470241
- Lu, D.B.; Yu, Q.F.; Zhang, J.Y.; Sun, M.T.; Gu, M.M.; Webster, J.P.; Liang, Y.S. Extended survival and reproductive potential of single-sex male and female Schistosoma japonicum within definitive hosts. Int. J. Parasitol., 2021, 51(11), 887-891. doi: 10.1016/j.ijpara.2021.03.005 PMID: 33905765
- Fallon, P.G.; Doenhoff, M.J. Drug-resistant schistosomiasis: Resistance to praziquantel and oxamniquine induced in Schistosoma mansoni in mice is drug specific. Am. J. Trop. Med. Hyg., 1994, 51(1), 83-88. doi: 10.4269/ajtmh.1994.51.83 PMID: 8059919
- Kwofie, S.K.; Agyenkwa-Mawuli, K.; Broni, E.; Miller, W.A., III; Wilson, M.D. Prediction of antischistosomal small molecules using machine learning in the era of big data. Mol. Divers., 2022, 26(3), 1597-1607. doi: 10.1007/s11030-021-10288-2 PMID: 34351547
- Cioli, D.; Pica-Mattoccia, L.; Basso, A.; Guidi, A. Schistosomiasis control: Praziquantel forever? Mol. Biochem. Parasitol., 2014, 195(1), 23-29. doi: 10.1016/j.molbiopara.2014.06.002 PMID: 24955523
- Gouveia, M.; Brindley, P.; Gärtner, F.; Costa, J.; Vale, N. Drug repurposing for schistosomiasis: Combinations of drugs or biomolecules. Pharmaceuticals, 2018, 11(1), 15. doi: 10.3390/ph11010015 PMID: 29401734
- Spangenberg, T. Alternatives to praziquantel for the prevention and control of schistosomiasis. ACS Infect. Dis., 2021, 7(5), 939-942. doi: 10.1021/acsinfecdis.0c00542 PMID: 32819092
- Pink, R.; Hudson, A.; Mouriès, M.A.; Bendig, M. Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Discov., 2005, 4(9), 727-740. doi: 10.1038/nrd1824 PMID: 16138106
- Midzi, H.; Vengesai, A.; Muleya, V.; Kasambala, M.; Mduluza-Jokonya, T.L.; Chipako, I.; Siamayuwa, C.E.; Mutapi, F.M.; Naicker, T.; Mduluza, T. Metabolomics for biomarker discovery in schistosomiasis: A systematic scoping review. Front. Trop. Dis., 2023, 4, 1108317.
- Protasio, A.V.; Tsai, I.J.; Babbage, A.; Nichol, S.; Hunt, M.; Aslett, M.A.; De Silva, N.; Velarde, G.S.; Anderson, T.J.C.; Clark, R.C.; Davidson, C.; Dillon, G.P.; Holroyd, N.E.; LoVerde, P.T.; Lloyd, C.; McQuillan, J.; Oliveira, G.; Otto, T.D.; Parker-Manuel, S.J.; Quail, M.A.; Wilson, R.A.; Zerlotini, A.; Dunne, D.W.; Berriman, M. A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl. Trop. Dis., 2012, 6(1), e1455. doi: 10.1371/journal.pntd.0001455 PMID: 22253936
- Berriman, M.; Haas, B.J.; LoVerde, P.T.; Wilson, R.A.; Dillon, G.P.; Cerqueira, G.C.; Mashiyama, S.T.; Al-Lazikani, B.; Andrade, L.F.; Ashton, P.D.; Aslett, M.A.; Bartholomeu, D.C.; Blandin, G.; Caffrey, C.R.; Coghlan, A.; Coulson, R.; Day, T.A.; Delcher, A.; DeMarco, R.; Djikeng, A.; Eyre, T.; Gamble, J.A.; Ghedin, E.; Gu, Y.; Hertz-Fowler, C.; Hirai, H.; Hirai, Y.; Houston, R.; Ivens, A.; Johnston, D.A.; Lacerda, D.; Macedo, C.D.; McVeigh, P.; Ning, Z.; Oliveira, G.; Overington, J.P.; Parkhill, J.; Pertea, M.; Pierce, R.J.; Protasio, A.V.; Quail, M.A.; Rajandream, M.A.; Rogers, J.; Sajid, M.; Salzberg, S.L.; Stanke, M.; Tivey, A.R.; White, O.; Williams, D.L.; Wortman, J.; Wu, W.; Zamanian, M.; Zerlotini, A.; Fraser-Liggett, C.M.; Barrell, B.G.; El-Sayed, N.M. The genome of the blood fluke Schistosoma mansoni. Nature, 2009, 460(7253), 352-358. doi: 10.1038/nature08160 PMID: 19606141
- Luo, F.; Yin, M.; Mo, X.; Sun, C.; Wu, Q.; Zhu, B.; Xiang, M.; Wang, J.; Wang, Y.; Li, J.; Zhang, T.; Xu, B.; Zheng, H.; Feng, Z.; Hu, W. An improved genome assembly of the fluke Schistosoma japonicum. PLoS Negl. Trop. Dis., 2019, 13(8), e0007612. doi: 10.1371/journal.pntd.0007612 PMID: 31390359
- Young, N.D.; Jex, A.R.; Li, B.; Liu, S.; Yang, L.; Xiong, Z.; Li, Y.; Cantacessi, C.; Hall, R.S.; Xu, X.; Chen, F.; Wu, X.; Zerlotini, A.; Oliveira, G.; Hofmann, A.; Zhang, G.; Fang, X.; Kang, Y.; Campbell, B.E.; Loukas, A.; Ranganathan, S.; Rollinson, D.; Rinaldi, G.; Brindley, P.J.; Yang, H.; Wang, J.; Wang, J.; Gasser, R.B. Whole-genome sequence of Schistosoma haematobium. Nat. Genet., 2012, 44(2), 221-225. doi: 10.1038/ng.1065 PMID: 22246508
- Stroehlein, A.J.; Korhonen, P.K.; Chong, T.M.; Lim, Y.L.; Chan, K.G.; Webster, B.; Rollinson, D.; Brindley, P.J.; Gasser, R.B.; Young, N.D. High-quality Schistosoma haematobium genome achieved by single-molecule and long-range sequencing. Gigascience, 2019, 8(9), giz108. doi: 10.1093/gigascience/giz108 PMID: 31494670
- Mourão, M.M.; Grunau, C. LoVERDE, P.T.; Jones, M.K.; Oliveira, G. Recent advances in Schistosoma genomics. Parasite Immunol., 2012, 34(2-3), 151-162. doi: 10.1111/j.1365-3024.2011.01349.x PMID: 22145587
- LoVerde, P.T.; Hirai, H.; Merrick, J.M.; Lee, N.H.; El-Sayed, N. Schistosoma mansoni genome project: An update. Parasitol. Int., 2004, 53(2), 183-192. doi: 10.1016/j.parint.2004.01.009 PMID: 15081950
- Ferreira, L.G.; Oliva, G.; Andricopulo, A.D. Target-based molecular modeling strategies for schistosomiasis drug discovery. Future Med. Chem., 2015, 7(6), 753-764. doi: 10.4155/fmc.15.21 PMID: 25996068
- Simoens, S. Isabelle, H. R&D costs of new medicines: A landscape analysis. Front. Med., 2021, 8, 760762.
- Vemula, D.; Jayasurya, P.; Sushmitha, V.; Kumar, Y.N.; Bhandari, V. CADD, AI and ML in drug discovery: A comprehensive review. Eur. J. Pharm. Sci., 2023, 181, 106324. doi: 10.1016/j.ejps.2022.106324 PMID: 36347444
- Surabhi, S.; Singh, B.K. Computer aided drug design: An overview. J. Drug Deliv. Ther., 2018, 8(5), 504-509. doi: 10.22270/jddt.v8i5.1894
- Taboureau, O.; Baell, J.B.; Fernández-Recio, J.; Villoutreix, B.O. Established and emerging trends in computational drug discovery in the structural genomics era. Chem. Biol., 2012, 19(1), 29-41. doi: 10.1016/j.chembiol.2011.12.007 PMID: 22284352
- Mafud, A.C.; Ferreira, L.G.; Mascarenhas, Y.P.; Andricopulo, A.D.; de Moraes, J. Discovery of novel antischistosomal agents by molecular modeling approaches. Trends Parasitol., 2016, 32(11), 874-886. doi: 10.1016/j.pt.2016.08.002 PMID: 27593339
补充文件
