Discovery of Novel Inhibitors of Cruzain Cysteine Protease of Trypanosoma cruzi


Cite item

Full Text

Abstract

Chagas disease (CD) is a parasitic disease endemic in several developing coun-tries. According to the World Health Organization, approximately 6-8 million people worldwide are inflicted by CD. The scarcity of new drugs, mainly for the chronic phase, is the main reason for treatment limitation in CD. Therefore, there is an urgent need to dis-cover new targets for which new therapeutical agents could be developed. Cruzain cyste-ine protease (CCP) is a promising alternative because this enzyme exhibits pleiotropic ef-fects by acting as a virulence factor, modulating host immune cells, and interacting with host cells. This systematic review was conducted to discover new compounds that act as cruzain inhibitors, and their effects in vitro were studied through enzymatic assays and molecular docking. Additionally, the advances and perspectives of these inhibitors are discussed. These findings are expected to contribute to medicinal chemistry in view of the design of new, safe, and efficacious inhibitors against Trypanosoma cruzi CCP detected in the last decade (2013-2022) to provide scaffolds for further optimization, aiming toward the discovery of new drugs.

About the authors

João Prates

Department of Drugs and Medicine, School of Pharmaceutical Sciences,, São Paulo State University (UNESP)

Email: info@benthamscience.net

Juliana Lopes

Department of Drugs and Medicine, School of Pharmaceutical Sciences,, São Paulo State University (UNESP),

Email: info@benthamscience.net

Chung Chin

Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP)

Email: info@benthamscience.net

Elizabeth Ferreira

LAPEN-Laboratory of Design and Synthesis of Chemotherapeutic Agents Potentially Active on Neglected Diseases, Department of Pharmacy, School of Pharmaceutical Sciences,, University of São Paulo (USP),

Email: info@benthamscience.net

Jean dos Santos

Department of Drugs and Medicine, School of Pharmaceutical Sciences,, São Paulo State University (UNESP)

Email: info@benthamscience.net

Cauê Scarim

Department of Drugs and Medicine, School of Pharmaceutical Sciences,, São Paulo State University (UNESP),

Author for correspondence.
Email: info@benthamscience.net

References

  1. Lidani, K.C.F.; Andrade, F.A.; Bavia, L.; Damasceno, F.S.; Beltrame, M.H.; Messias-Reason, I.J.; Sandri, T.L. CD: From discovery to a worldwide health problem. Front. Public Health, 2019, 7, 166. doi: 10.3389/fpubh.2019.00166 PMID: 31312626
  2. Santos, E.F.; Silva, .A.O.; Leony, L.M.; Freitas, N.E.M.; Daltro, R.T.; Regis-Silva, C.G.; Del-Rei, R.P.; Souza, W.V.; Ostermayer, A.L.; Costa, V.M.; Silva, R.A.; Ramos, A.N., Jr; Sousa, A.S.; Gomes, Y.M.; Santos, F.L.N. Acute Chagas disease in Brazil from 2001 to 2018: A nationwide spatiotemporal analysis. PLoS Negl. Trop. Dis., 2020, 14(8), e0008445. doi: 10.1371/journal.pntd.0008445 PMID: 32745113
  3. Bern, C.; Messenger, L.A.; Whitman, J.D.; Maguire, J.H. CD in the United States: A public health approach. Clin. Microbiol. Rev., 2019, 33(1), e00023-e19. doi: 10.1128/CMR.00023-19 PMID: 31776135
  4. World Health Organization. 2022. Available From: www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)
  5. Coura, J.R. Chagas disease: What is known and what is needed A background article. Mem. Inst. Oswaldo Cruz, 2007, 102(Suppl. 1), 113-122. doi: 10.1590/S0074-02762007000900018 PMID: 17992371
  6. Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet, 2018, 391(10115), 82-94. doi: 10.1016/S0140-6736(17)31612-4 PMID: 28673423
  7. Wilkinson, S.R.; Taylor, M.C.; Horn, D.; Kelly, J.M.; Cheeseman, I. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc. Natl. Acad. Sci. USA, 2008, 105(13), 5022-5027. doi: 10.1073/pnas.0711014105 PMID: 18367671
  8. Jackson, Y.; Wyssa, B.; Chappuis, F. Tolerance to nifurtimox and benznidazole in adult patients with chronic Chagas’ disease. J. Antimicrob. Chemother., 2020, 75(3), 690-696. doi: 10.1093/jac/dkz473 PMID: 31754690
  9. Soeiro, M.N.C.; de Castro, S.L. Trypanosoma cruzi targets for new chemotherapeutic approaches. Expert Opin. Ther. Targets, 2009, 13(1), 105-121. doi: 10.1517/14728220802623881 PMID: 19063710
  10. Lo Presti, M.S.; Bazán, P.C.; Strauss, M.; Báez, A.L.; Rivarola, H.W.; Paglini-Oliva, P.A. Trypanothione reductase inhibitors: Overview of the action of thioridazine in different stages of Chagas disease. Acta Trop., 2015, 145, 79-87. doi: 10.1016/j.actatropica.2015.02.012 PMID: 25733492
  11. Cazzulo, J.; Stoka, V.; Turk, V. The major cysteine proteinase of Trypanosoma cruzi: A valid target for chemotherapy of Chagas disease. Curr. Pharm. Des., 2001, 7(12), 1143-1156. doi: 10.2174/1381612013397528 PMID: 11472258
  12. Schormann, N.; Velu, S.E.; Murugesan, S.; Senkovich, O.; Walker, K.; Chenna, B.C.; Shinkre, B.; Desai, A.; Chattopadhyay, D. Synthesis and characterization of potent inhibitors of Trypanosoma cruzi dihydrofolate reductase. Bioorg. Med. Chem., 2010, 18(11), 4056-4066. doi: 10.1016/j.bmc.2010.04.020 PMID: 20452776
  13. Glockzin, K.; Kostomiris, D.; Minnow, Y.V.T.; Suthagar, K.; Clinch, K.; Gai, S.; Buckler, J.N.; Schramm, V.L.; Tyler, P.C.; Meek, T.D.; Katzfuss, A. Kinetic characterization and inhibition of Trypanosoma cruzi hypoxanthine-guanine phosphoribosyltransferases. Biochemistry, 2022, 61(19), 2088-2105. doi: 10.1021/acs.biochem.2c00312 PMID: 36193631
  14. Freitas, R.F.; Prokopczyk, I.M.; Zottis, A.; Oliva, G.; Andricopulo, A.D.; Trevisan, M.T.S.; Vilegas, W.; Silva, M.G.V.; Montanari, C.A. Discovery of novel Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase inhibitors. Bioorg. Med. Chem., 2009, 17(6), 2476-2482. doi: 10.1016/j.bmc.2009.01.079 PMID: 19254846
  15. Sajid, M.; Robertson, S.A.; Brinen, L.S.; McKerrow, J.H. Cruzain. Adv. Exp. Med. Biol., 2011, 712, 100-115. doi: 10.1007/978-1-4419-8414-2_7 PMID: 21660661
  16. Caffrey, C.; Scory, S.; Steverding, D. Cysteine proteinases of trypanosome parasites: Novel targets for chemotherapy. Curr. Drug Targets, 2000, 1(2), 155-162. doi: 10.2174/1389450003349290 PMID: 11465068
  17. Franke de Cazzulo, B.M.; Martínez, J.; North, M.J.; Coombs, G.H.; Cazzulo, J.J. Effects of proteinase inhibitors on the growth and differentiation of Trypanosoma cruzi. FEMS Microbiol. Lett., 1994, 124(1), 81-86. doi: 10.1111/j.1574-6968.1994.tb07265.x PMID: 8001773
  18. Jasinski, G.; Salas-Sarduy, E.; Vega, D.; Fabian, L.; Martini, M.F.; Moglioni, A.G. Thiosemicarbazone derivatives: Evaluation as cruzipain inhibitors and molecular modeling study of complexes with cruzain. Bioorg. Med. Chem., 2022, 61, 116708. doi: 10.1016/j.bmc.2022.116708 PMID: 35334448
  19. Barr, S.C.; Warner, K.L.; Kornreic, B.G.; Piscitelli, J.; Wolfe, A.; Benet, L.; McKerrow, J.H. A cysteine protease inhibitor protects dogs from cardiac damage during infection by Trypanosoma cruzi. Antimicrob. Agents Chemother., 2005, 49(12), 5160-5161. doi: 10.1128/AAC.49.12.5160-5161.2005 PMID: 16304193
  20. Cianni, L.; Feldmann, C.W.; Gilberg, E.; Gütschow, M.; Juliano, L.; Leitão, A.; Bajorath, J.; Montanari, C.A. Can cysteine protease cross-class inhibitors achieve selectivity? J. Med. Chem., 2019, 62(23), 10497-10525. doi: 10.1021/acs.jmedchem.9b00683 PMID: 31361135
  21. Ndao, M.; Beaulieu, C.; Black, W.C.; Isabel, E.; Vasquez-Camargo, F.; Nath-Chowdhury, M.; Massé, F.; Mellon, C.; Methot, N.; Nicoll-Griffith, D.A. Reversible cysteine protease inhibitors show promise for a Chagas disease cure. Antimicrob. Agents Chemother., 2014, 58(2), 1167-1178. doi: 10.1128/AAC.01855-13 PMID: 24323474
  22. Albericio, F.; Kruger, H.G. Therapeutic peptides. Future Med. Chem., 2012, 4(12), 1527-1531. doi: 10.4155/fmc.12.94 PMID: 22917241
  23. Cicardi, M.; Levy, R.J.; McNeil, D.L.; Li, H.H.; Sheffer, A.L.; Campion, M.; Horn, P.T.; Pullman, W.E. Ecallantide for the treatment of acute attacks in hereditary angioedema. N. Engl. J. Med., 2010, 363(6), 523-531. doi: 10.1056/NEJMoa0905079 PMID: 20818887
  24. Cicardi, M.; Banerji, A.; Bracho, F.; Malbrán, A.; Rosenkranz, B.; Riedl, M.; Bork, K.; Lumry, W.; Aberer, W.; Bier, H.; Bas, M.; Greve, J.; Hoffmann, T.K.; Farkas, H.; Reshef, A.; Ritchie, B.; Yang, W.; Grabbe, J.; Kivity, S.; Kreuz, W.; Levy, R.J.; Luger, T.; Obtulowicz, K.; Schmid-Grendelmeier, P.; Bull, C.; Sitkauskiene, B.; Smith, W.B.; Toubi, E.; Werner, S.; Anné, S.; Björkander, J.; Bouillet, L.; Cillari, E.; Hurewitz, D.; Jacobson, K.W.; Katelaris, C.H.; Maurer, M.; Merk, H.; Bernstein, J.A.; Feighery, C.; Floccard, B.; Gleich, G.; Hébert, J.; Kaatz, M.; Keith, P.; Kirkpatrick, C.H.; Langton, D.; Martin, L.; Pichler, C.; Resnick, D.; Wombolt, D.; Romero, D.S.F.; Zanichelli, A.; Arcoleo, F.; Knolle, J.; Kravec, I.; Dong, L.; Zimmermann, J.; Rosen, K.; Fan, W.T. Icatibant, a new bradykinin-receptor antagonist, in hereditary angioedema. N. Engl. J. Med., 2010, 363(6), 532-541. doi: 10.1056/NEJMoa0906393 PMID: 20818888
  25. Saravolatz, L.D.; Stein, G.E.; Johnson, L.B. Telavancin: A novel lipoglycopeptide. Clin. Infect. Dis., 2009, 49(12), 1908-1914. doi: 10.1086/648438 PMID: 19911938
  26. VanderMolen, K.M.; McCulloch, W.; Pearce, C.J.; Oberlies, N.H. Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): A natural product recently approved for cutaneous T-cell lymphoma. J. Antibiot., 2011, 64(8), 525-531. doi: 10.1038/ja.2011.35 PMID: 21587264
  27. Jackson, S.H.; Martin, T.S.; Jones, J.D.; Seal, D.; Emanuel, F. Liraglutide (victoza): The first once-daily incretin mimetic injection for type-2 diabetes. P&T, 2010, 35(9), 498-529. PMID: 20975808
  28. Yi, J.H.; Kim, S.J.; Kim, W.S. Brentuximab vedotin: Clinical updates and practical guidance. Blood Res., 2017, 52(4), 243-253. doi: 10.5045/br.2017.52.4.243 PMID: 29333400
  29. Chang, M.H.; Gordon, L.A.; Fung, H.B. Boceprevir: A protease inhibitor for the treatment of hepatitis C. Clin. Ther., 2012, 34(10), 2021-2038. doi: 10.1016/j.clinthera.2012.08.009 PMID: 22975763
  30. Cunningham, M.; Foster, G.R. Efficacy and safety of telaprevir in patients with genotype 1 hepatitis C infection. Therap. Adv. Gastroenterol., 2012, 5(2), 139-151. doi: 10.1177/1756283X11426895 PMID: 22423262
  31. Verhelst, S.H.L.; Witte, M.D.; Arastu-Kapur, S.; Fonovic, M.; Bogyo, M. Novel aza peptide inhibitors and active-site probes of papain-family cysteine proteases. ChemBioChem, 2006, 7(6), 943-950. doi: 10.1002/cbic.200600001 PMID: 16607671
  32. Fennell, B.D.; Warren, J.M.; Chung, K.K.; Main, H.L.; Arend, A.B.; Tochowicz, A.; Götz, M.G. Optimization of peptidyl allyl sulfones as clan CA cysteine protease inhibitors. J. Enzyme Inhib. Med. Chem., 2013, 28(3), 468-478. doi: 10.3109/14756366.2011.651466 PMID: 22380780
  33. Jones, B.D.; Tochowicz, A.; Tang, Y.; Cameron, M.D.; McCall, L.I.; Hirata, K.; Siqueira-Neto, J.L.; Reed, S.L.; McKerrow, J.H.; Roush, W.R. Synthesis and evaluation of oxyguanidine analogues of the cysteine protease inhibitor WRR-483 against cruzain. ACS Med. Chem. Lett., 2016, 7(1), 77-82. doi: 10.1021/acsmedchemlett.5b00336 PMID: 26819670
  34. Latorre, A.; Schirmeister, T.; Kesselring, J.; Jung, S.; Johé, P.; Hellmich, U.A.; Heilos, A.; Engels, B.; Krauth-Siegel, R.L.; Dirdjaja, N.; Bou-Iserte, L.; Rodríguez, S.; González, F.V. Dipeptidyl nitroalkenes as potent reversible inhibitors of cysteine proteases rhodesain and cruzain. ACS Med. Chem. Lett., 2016, 7(12), 1073-1076. doi: 10.1021/acsmedchemlett.6b00276 PMID: 27994740
  35. Royo, S.; Schirmeister, T.; Kaiser, M.; Jung, S.; Rodríguez, S.; Bautista, J.M.; González, F.V. Antiprotozoal and cysteine proteases inhibitory activity of dipeptidyl enoates. Bioorg. Med. Chem., 2018, 26(16), 4624-4634. doi: 10.1016/j.bmc.2018.07.015 PMID: 30037754
  36. Chenna, B.C.; Li, L.; Mellott, D.M.; Zhai, X.; Siqueira-Neto, J.L.; Calvet Alvarez, C.; Bernatchez, J.A.; Desormeaux, E.; Alvarez Hernandez, E.; Gomez, J.; McKerrow, J.H.; Cruz-Reyes, J.; Meek, T.D. Peptidomimetic vinyl heterocyclic inhibitors of cruzain effect antitrypanosomal activity. J. Med. Chem., 2020, 63(6), 3298-3316. doi: 10.1021/acs.jmedchem.9b02078 PMID: 32125159
  37. Barbosa Da Silva, E.; Sharma, V.; Hernandez-Alvarez, L.; Tang, A.H.; Stoye, A.; O’Donoghue, A.J.; Gerwick, W.H.; Payne, R.J.; McKerrow, J.H.; Podust, L.M. Intramolecular interactions enhance the potency of gallinamide A analogues against Trypanosoma cruzi. J. Med. Chem., 2022, 65(5), 4255-4269. doi: 10.1021/acs.jmedchem.1c02063 PMID: 35188371
  38. Dufour, E.; Storer, A.C.; Ménard, R. Engineering nitrile hydratase activity into a cysteine protease by a single mutation. Biochemistry, 1995, 34(50), 16382-16388. doi: 10.1021/bi00050a019 PMID: 8845364
  39. Brinen, L.S.; Hansell, E.; Cheng, J.; Roush, W.R.; McKerrow, J.H.; Fletterick, R.J. A target within the target: Probing cruzain’s P1′ site to define structural determinants for the Chagas’ disease protease. Structure, 2000, 8(8), 831-840. doi: 10.1016/S0969-2126(00)00173-8 PMID: 10997902
  40. Löser, R.; Schilling, K.; Dimmig, E.; Gütschow, M. Interaction of papain-like cysteine proteases with dipeptide-derived nitriles. J. Med. Chem., 2005, 48(24), 7688-7707. doi: 10.1021/jm050686b PMID: 16302809
  41. Burtoloso, A.C.B.; de Albuquerque, S.; Furber, M.; Gomes, J.C.; Gonçalez, C.; Kenny, P.W.; Leitão, A.; Montanari, C.A.; Quilles, J.C.; Ribeiro, J.F.R.; Rocha, J.R. Anti-trypanosomal activity of non-peptidic nitrile-based cysteine protease inhibitors. PLoS Negl. Trop. Dis., 2017, 11(2), e0005343. doi: 10.1371/journal.pntd.0005343 PMID: 28222138
  42. Quilles, J.C., Jr; Shamim, A.; Tezuka, D.Y.; Batista, P.H.J.; Lopes, C.D.; de Albuquerque, S.; Montanari, C.A.; Leitão, A. Dipeptidyl nitrile derivatives suppress the Trypanosoma cruzi in vitro infection. Exp. Parasitol., 2020, 219, 108032. doi: 10.1016/j.exppara.2020.108032 PMID: 33137308
  43. Brogi, S.; Ibba, R.; Rossi, S.; Butini, S.; Calderone, V.; Gemma, S.; Campiani, G. Covalent reversible inhibitors of cysteine proteases containing the nitrile warhead: Recent advancement in the field of viral and parasitic diseases. Molecules, 2022, 27(8), 2561. doi: 10.3390/molecules27082561 PMID: 35458759
  44. Avelar, L.A.A.; Camilo, C.D.; de Albuquerque, S.; Fernandes, W.B.; Gonçalez, C.; Kenny, P.W.; Leitão, A.; McKerrow, J.H.; Montanari, C.A.; Orozco, E.V.M.; Ribeiro, J.F.R.; Rocha, J.R.; Rosini, F.; Saidel, M.E. Molecular design, synthesis and trypanocidal activity of dipeptidyl nitriles as cruzain inhibitors. PLoS Negl. Trop. Dis., 2015, 9(7), e0003916. doi: 10.1371/journal.pntd.0003916 PMID: 26173110
  45. Salas-Sarduy, E.; Landaburu, L.U.; Karpiak, J.; Madauss, K.P.; Cazzulo, J.J.; Agüero, F.; Alvarez, V.E. Novel scaffolds for inhibition of cruzipain identified from high-throughput screening of anti-kinetoplastid chemical boxes. Sci. Rep., 2017, 7(1), 12073. doi: 10.1038/s41598-017-12170-4 PMID: 28935948
  46. Dos Santos, A.M.; Cianni, L.; De Vita, D.; Rosini, F.; Leitão, A.; Laughton, C.A.; Lameira, J.; Montanari, C.A. Experimental study and computational modelling of cruzain cysteine protease inhibition by dipeptidyl nitriles. Phys. Chem. Chem. Phys., 2018, 20(37), 24317-24328. doi: 10.1039/C8CP03320J PMID: 30211406
  47. Gomes, J.C.; Cianni, L.; Ribeiro, J.; dos Reis Rocho, F.; da Costa Martins Silva, S.; Batista, P.H.J.; Moraes, C.B.; Franco, C.H.; Freitas-Junior, L.H.G.; Kenny, P.W.; Leitão, A.; Burtoloso, A.C.B.; de Vita, D.; Montanari, C.A. Synthesis and structure-activity relationship of nitrile-based cruzain inhibitors incorporating a trifluoroethylamine-based P2 amide replacement. Bioorg. Med. Chem., 2019, 27(22), 115083. doi: 10.1016/j.bmc.2019.115083 PMID: 31561938
  48. Alves, L.; Santos, D.A.; Cendron, R.; Rocho, F.R.; Matos, T.K.B.; Leitão, A.; Montanari, C.A. Nitrile-based peptoids as cysteine protease inhibitors. Bioorg. Med. Chem., 2021, 41, 116211. doi: 10.1016/j.bmc.2021.116211 PMID: 33991733
  49. Cianni, L.; Lemke, C.; Gilberg, E.; Feldmann, C.; Rosini, F.; Rocho, F.R.; Ribeiro, J.F.R.; Tezuka, D.Y.; Lopes, C.D.; de Albuquerque, S.; Bajorath, J.; Laufer, S.; Leitão, A.; Gütschow, M.; Montanari, C.A. Mapping the S1 and S1′ subsites of cysteine proteases with new dipeptidyl nitrile inhibitors as trypanocidal agents. PLoS Negl. Trop. Dis., 2020, 14(3), e0007755. doi: 10.1371/journal.pntd.0007755 PMID: 32163418
  50. Richardson, D.R.; Sharpe, P.C.; Lovejoy, D.B.; Senaratne, D.; Kalinowski, D.S.; Islam, M.; Bernhardt, P.V. Dipyridyl thiosemicarbazone chelators with potent and selective antitumor activity form iron complexes with redox activity. J. Med. Chem., 2006, 49(22), 6510-6521. doi: 10.1021/jm0606342 PMID: 17064069
  51. He, Z.; Qiao, H.; Yang, F.; Zhou, W.; Gong, Y.; Zhang, X.; Wang, H.; Zhao, B.; Ma, L.; Liu, H.; Zhao, W. Novel thiosemicarbazone derivatives containing indole fragment as potent and selective anticancer agent. Eur. J. Med. Chem., 2019, 184, 111764. doi: 10.1016/j.ejmech.2019.111764 PMID: 31614257
  52. Pelosi, G.; Bisceglie, F.; Bignami, F.; Ronzi, P.; Schiavone, P.; Re, M.C.; Casoli, C.; Pilotti, E. Antiretroviral activity of thiosemicarbazone metal complexes. J. Med. Chem., 2010, 53(24), 8765-8769. doi: 10.1021/jm1007616 PMID: 21121632
  53. Khan, S.A.; Asiri, A.M.; Al-Amry, K.; Malik, M.A. Synthesis, characterization, electrochemical studies, and in vitro antibacterial activity of novel thiosemicarbazone and its Cu(II), Ni(II), and Co(II) complexes. ScientificWorldJournal, 2014, 2014, 1-9. doi: 10.1155/2014/592375 PMID: 24523641
  54. Bahl, D.; Athar, F.; Soares, M.B.P.; de Sá, M.S.; Moreira, D.R.M.; Srivastava, R.M.; Leite, A.C.L.; Azam, A. Structure-activity relationships of mononuclear metal-thiosemicarbazone complexes endowed with potent antiplasmodial and antiamoebic activities. Bioorg. Med. Chem., 2010, 18(18), 6857-6864. doi: 10.1016/j.bmc.2010.07.039 PMID: 20719524
  55. Jamal, S.E.; Iqbal, A.; Rahman, K.A.; Tahmeena, K. Thiosemicarbazone complexes as versatile medicinal chemistry agents: A review. J. Drug Deliv. Ther., 2019, 9(3), 689-703. doi: 10.22270/jddt.v9i3.2888
  56. Matesanz, A.I.; Herrero, J.M.; Quiroga, A.G. Chemical and biological evaluation of thiosemicarbazone-bearing heterocyclic metal complexes. Curr. Top. Med. Chem., 2021, 21(1), 59-72. doi: 10.2174/18734294MTEwuODQry PMID: 33092510
  57. Chiyanzu, I.; Hansell, E.; Gut, J.; Rosenthal, P.J.; McKerrow, J.H.; Chibale, K. Synthesis and evaluation of isatins and thiosemicarbazone derivatives against cruzain, falcipain-2 and rhodesain. Bioorg. Med. Chem. Lett., 2003, 13(20), 3527-3530. doi: 10.1016/S0960-894X(03)00756-X PMID: 14505663
  58. Fujii, N.; Mallari, J.P.; Hansell, E.J.; Mackey, Z.; Doyle, P.; Zhou, Y.M.; Gut, J.; Rosenthal, P.J.; McKerrow, J.H.; Guy, R.K. Discovery of potent thiosemicarbazone inhibitors of rhodesain and cruzain. Bioorg. Med. Chem. Lett., 2005, 15(1), 121-123. doi: 10.1016/j.bmcl.2004.10.023 PMID: 15582423
  59. Blau, L.; Menegon, R.F.; Trossini, G.H.G.; Molino, J.V.D.; Vital, D.G.; Cicarelli, R.M.B.; Passerini, G.D.; Bosquesi, P.L.; Chin, C.M. Design, synthesis and biological evaluation of new aryl thiosemicarbazone as antichagasic candidates. Eur. J. Med. Chem., 2013, 67, 142-151. doi: 10.1016/j.ejmech.2013.04.022 PMID: 23851115
  60. Fonseca, N.C.; da Cruz, L.F.; da Silva Villela, F.; do Nascimento Pereira, G.A.; de Siqueira-Neto, J.L.; Kellar, D.; Suzuki, B.M.; Ray, D.; de Souza, T.B.; Alves, R.J.; Júnior, P.A.S.; Romanha, A.J.; Murta, S.M.F.; McKerrow, J.H.; Caffrey, C.R.; de Oliveira, R.B.; Ferreira, R.S. Synthesis of a sugar-based thiosemicarbazone series and structure-activity relationship versus the parasite cysteine proteases rhodesain, cruzain, and Schistosoma mansoni cathepsin B1. Antimicrob. Agents Chemother., 2015, 59(5), 2666-2677. doi: 10.1128/AAC.04601-14 PMID: 25712353
  61. Cardoso, M.V.O.; Oliveira Filho, G.B.; Siqueira, L.R.P.; Espíndola, J.W.P.; Silva, E.B.; Mendes, A.P.O.; Pereira, V.R.A.; Castro, M.C.A.B.; Ferreira, R.S.; Villela, F.S.; Costa, F.M.R.; Meira, C.S.; Moreira, D.R.M.; Soares, M.B.P.; Leite, A.C.L. 2-(phenylthio)ethylidene derivatives as anti-Trypanosoma cruzi compounds: Structural design, synthesis and antiparasitic activity. Eur. J. Med. Chem., 2019, 180, 191-203. doi: 10.1016/j.ejmech.2019.07.018 PMID: 31306906
  62. de Assis, R.R.D.; Oliveira, A.A.; Porto, L.S.; Rabelo, A.N.R.; Lages, B.E.; Santos, C.V.; Milagre, M.M.; Fragoso, P.S.; Teixeira, M.M.; Ferreira, S.R.; Machado, R.C.; Ferreira, A.M.L.; Speziali, L.N.; Beraldo, H.; Machado, S.F. 4-Chlorophenylthioacetone-derived thiosemicarbazones as potent antitrypanosomal drug candidates: Investigations on the mode of action. Bioorg. Chem., 2021, 113, 105018. doi: 10.1016/j.bioorg.2021.105018 PMID: 34098396
  63. Moreira, M.D.R.; de Oliveira, A.D.T.; Teixeira de Moraes Gomes, P.A.; de Simone, C.A.; Villela, F.S.; Ferreira, R.S.; da Silva, A.C.; dos Santos, T.A.R.; Brelaz de Castro, M.C.A.; Pereira, V.R.A.; Leite, A.C.L. Conformational restriction of aryl thiosemicarbazones produces potent and selective anti-Trypanosoma cruzi compounds which induce apoptotic parasite death. Eur. J. Med. Chem., 2014, 75(75), 467-478. doi: 10.1016/j.ejmech.2014.02.001 PMID: 24561675
  64. Espíndola, J.W.P.; Cardoso, M.V.O.; Filho, G.B.O.; Oliveira e Silva, D.A.; Moreira, D.R.M.; Bastos, T.M.; Simone, C.A.; Soares, M.B.P.; Villela, F.S.; Ferreira, R.S.; Castro, M.C.A.B.; Pereira, V.R.A.; Murta, S.M.F.; Sales, Junior, P.A.; Romanha, A.J.; Leite, A.C.L. Synthesis and structure-activity relationship study of a new series of antiparasitic aryloxyl thiosemicarbazones inhibiting Trypanosoma cruzi cruzain. Eur. J. Med. Chem., 2015, 101, 818-835. doi: 10.1016/j.ejmech.2015.06.048 PMID: 26231082
  65. Gaba, M.; Singh, S.; Mohan, C. Benzimidazole: An emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 494-505. doi: 10.1016/j.ejmech.2014.01.030 PMID: 24602792
  66. Nascimento, M.V.P.S.; Munhoz, A.C.M.; Theindl, L.C.; Mohr, E.T.B.; Saleh, N.; Parisotto, E.B.; Rossa, T.A.; Zamoner, A.; Creczynski-Pasa, T.B.; Filippin-Monteiro, F.B.; Sá, M.M.; Dalmarco, E.M. A novel tetrasubstituted imidazole as a prototype for the development of anti-inflammatory drugs. Inflammation, 2018, 41(4), 1334-1348. doi: 10.1007/s10753-018-0782-y PMID: 29656318
  67. Torres-Gómez, H.; Hernández-Núñez, E.; León-Rivera, I.; Guerrero-Alvarez, J.; Cedillo-Rivera, R.; Moo-Puc, R.; Argotte-Ramos, R.; Carmen Rodríguez-Gutiérrez, M.; Chan-Bacab, M.J.; Navarrete-Vázquez, G. Design, synthesis and in vitro antiprotozoal activity of benzimidazole-pentamidine hybrids. Bioorg. Med. Chem. Lett., 2008, 18(11), 3147-3151. doi: 10.1016/j.bmcl.2008.05.009 PMID: 18486471
  68. Saccoliti, F.; Madia, V.N.; Tudino, V.; De Leo, A.; Pescatori, L.; Messore, A.; De Vita, D.; Scipione, L.; Brun, R.; Kaiser, M.; Mäser, P.; Calvet, C.M.; Jennings, G.K.; Podust, L.M.; Costi, R.; Di Santo, R. Biological evaluation and structure-activity relationships of imidazole-based compounds as antiprotozoal agents. Eur. J. Med. Chem., 2018, 156, 53-60. doi: 10.1016/j.ejmech.2018.06.063 PMID: 30006174
  69. Vausselin, T.; Séron, K.; Lavie, M.; Mesalam, A.A.; Lemasson, M.; Belouzard, S.; Fénéant, L.; Danneels, A.; Rouillé, Y.; Cocquerel, L.; Foquet, L.; Rosenberg, A.R.; Wychowski, C.; Meuleman, P.; Melnyk, P.; Dubuisson, J. Identification of a new benzimidazole derivative as an antiviral against hepatitis C virus. J. Virol., 2016, 90(19), 8422-8434. doi: 10.1128/JVI.00404-16 PMID: 27412600
  70. Picconi, P.; Hind, C.; Jamshidi, S.; Nahar, K.; Clifford, M.; Wand, M.E.; Sutton, J.M.; Rahman, K.M. Triaryl benzimidazoles as a new class of antibacterial agents against resistant pathogenic microorganisms. J. Med. Chem., 2017, 60(14), 6045-6059. doi: 10.1021/acs.jmedchem.7b00108 PMID: 28650661
  71. Valls, A.; Andreu, J.J.; Falomir, E.; Luis, S.V.; Atrián-Blasco, E.; Mitchell, S.G.; Altava, B. Imidazole and imidazolium antibacterial drugs derived from amino acids. Pharmaceuticals, 2020, 13(12), 482. doi: 10.3390/ph13120482 PMID: 33371256
  72. De Luca, L.; Ferro, S.; Buemi, M.R.; Monforte, A.M.; Gitto, R.; Schirmeister, T.; Maes, L.; Rescifina, A.; Micale, N. Discovery of benzimidazole-based Leishmania mexicana cysteine protease CPB2.8ΔCTE inhibitors as potential therapeutics for leishmaniasis. Chem. Biol. Drug Des., 2018, 92(3), 1585-1596. doi: 10.1111/cbdd.13326 PMID: 29729080
  73. Medeiros, A.R.; Ferreira, L.L.G.; de Souza, M.L.; de Oliveira Rezende, Junior, C.; Espinoza-Chávez, R.M.; Dias, L.C.; Andricopulo, A.D. Chemoinformatics studies on a series of imidazoles as cruzain inhibitors. Biomolecules, 2021, 11(4), 579. doi: 10.3390/biom11040579 PMID: 33920961
  74. de Souza, M.L.; de Oliveira Rezende, Junior, C.; Ferreira, R.S.; Espinoza Chávez, R.M.; Ferreira, L.L.G.; Slafer, B.W.; Magalhães, L.G.; Krogh, R.; Oliva, G.; Cruz, F.C.; Dias, L.C.; Andricopulo, A.D. Discovery of potent, reversible, and competitive cruzain inhibitors with trypanocidal activity: A structure-based drug design approach. J. Chem. Inf. Model., 2020, 60(2), 1028-1041. doi: 10.1021/acs.jcim.9b00802 PMID: 31765144
  75. Ferreira, R.S.; Dessoy, M.A.; Pauli, I.; Souza, M.L.; Krogh, R.; Sales, A.I.L.; Oliva, G.; Dias, L.C.; Andricopulo, A.D. Synthesis, biological evaluation, and structure-activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents. J. Med. Chem., 2014, 57(6), 2380-2392. doi: 10.1021/jm401709b PMID: 24533839
  76. Pauli, I.; Rezende, C.O., Jr; Slafer, B.W.; Dessoy, M.A.; de Souza, M.L.; Ferreira, L.L.G.; Adjanohun, A.L.M.; Ferreira, R.S.; Magalhães, L.G.; Krogh, R.; Michelan-Duarte, S.; Del Pintor, R.V.; da Silva, F.B.R.; Cruz, F.C.; Dias, L.C.; Andricopulo, A.D. Multiparameter optimization of trypanocidal cruzain inhibitors with in vivo activity and favorable pharmacokinetics. Front. Pharmacol., 2022, 12, 774069. doi: 10.3389/fphar.2021.774069 PMID: 35069198
  77. Yurttaş L.; Özkay, Y.; Kaplancıklı Z.A.; Tunalı Y.; Karaca, H. Synthesis and antimicrobial activity of some new hydrazone-bridged thiazole-pyrrole derivatives. J. Enzyme Inhib. Med. Chem., 2013, 28(4), 830-835. doi: 10.3109/14756366.2012.688043 PMID: 22651798
  78. Zha, G.F.; Leng, J.; Darshini, N.; Shubhavathi, T.; Vivek, H.K.; Asiri, A.M.; Marwani, H.M.; Rakesh, K.P.; Mallesha, N.; Qin, H.L. Synthesis, SAR and molecular docking studies of benzodthiazole-hydrazones as potential antibacterial and antifungal agents. Bioorg. Med. Chem. Lett., 2017, 27(14), 3148-3155. doi: 10.1016/j.bmcl.2017.05.032 PMID: 28539243
  79. Özdemir, A.; Turan-zitouni, G. Asim kaplancikli, Z.; Demirci, F.; Iscan, G. Studies on hydrazone derivatives as antifungal agents. J. Enzyme Inhib. Med. Chem., 2008, 23(4), 470-475. doi: 10.1080/14756360701709094 PMID: 18665994
  80. Kauthale, S.; Tekale, S.; Damale, M.; Sangshetti, J.; Pawar, R. Synthesis, antioxidant, antifungal, molecular docking and ADMET studies of some thiazolyl hydrazones. Bioorg. Med. Chem. Lett., 2017, 27(16), 3891-3896. doi: 10.1016/j.bmcl.2017.06.043 PMID: 28676272
  81. Moldovan, C.M.; Oniga, O.; Pârvu, A.; Tiperciuc, B.; Verite, P. Pîrnău, A.; Crişan, O.; Bojiţă M.; Pop, R. Synthesis and anti-inflammatory evaluation of some new acyl-hydrazones bearing 2-aryl-thiazole. Eur. J. Med. Chem., 2011, 46(2), 526-534. doi: 10.1016/j.ejmech.2010.11.032 PMID: 21163557
  82. Altıntop, M.; Özdemir, A.; Turan-Zitouni, G.; Ilgın, S.; Atlı Ö.; Demirci, F.; Kaplancıklı Z. Synthesis and in vitro evaluation of new nitro-substituted thiazolyl hydrazone derivatives as anticandidal and anticancer agents. Molecules, 2014, 19(9), 14809-14820. doi: 10.3390/molecules190914809 PMID: 25232704
  83. Cardoso, M.V.O.; Siqueira, L.R.P.; Silva, E.B.; Costa, L.B.; Hernandes, M.Z.; Rabello, M.M.; Ferreira, R.S.; da Cruz, L.F.; Magalhães Moreira, D.R.; Pereira, V.R.A.; de Castro, M.C.A.B.; Bernhardt, P.V.; Leite, A.C.L. 2-Pyridyl thiazoles as novel anti-Trypanosoma cruzi agents: Structural design, synthesis and pharmacological evaluation. Eur. J. Med. Chem., 2014, 86, 48-59. doi: 10.1016/j.ejmech.2014.08.012 PMID: 25147146
  84. Du, X.; Guo, C.; Hansell, E.; Doyle, P.S.; Caffrey, C.R.; Holler, T.P.; McKerrow, J.H.; Cohen, F.E. Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J. Med. Chem., 2002, 45(13), 2695-2707. doi: 10.1021/jm010459j PMID: 12061873
  85. de Moraes Gomes, P.A.T.; de Oliveira Barbosa, M.; Farias Santiago, E.; de Oliveira Cardoso, M.V.; Capistrano Costa, N.T.; Hernandes, M.Z.; Moreira, D.R.M.; da Silva, A.C.; dos Santos, T.A.R.; Pereira, V.R.A.; Brayner dos Santosd, F.A.; do Nascimento Pereira, G.A.; Ferreira, R.S.; Leite, A.C.L. New 1,3-thiazole derivatives and their biological and ultrastructural effects on Trypanosoma cruzi. Eur. J. Med. Chem., 2016, 121, 387-398. doi: 10.1016/j.ejmech.2016.05.050 PMID: 27295485
  86. de Oliveira Filho, G.B.; Cardoso, M.V.O.; Espíndola, J.W.P.; Oliveira e Silva, D.A.; Ferreira, R.S.; Coelho, P.L.; Anjos, P.S.; Santos, E.S.; Meira, C.S.; Moreira, D.R.M.; Soares, M.B.P.; Leite, A.C.L. Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi. Eur. J. Med. Chem., 2017, 141, 346-361. doi: 10.1016/j.ejmech.2017.09.047 PMID: 29031078
  87. Singh, A.; Malhotra, D.; Singh, K.; Chadha, R.; Bedi, P.M.S. Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. J. Mol. Struct., 2022, 1266, 133479. doi: 10.1016/j.molstruc.2022.133479
  88. Silva-Júnior, E.F.; Silva, E.P.S.; França, P.H.B.; Silva, J.P.N.; Barreto, E.O.; Silva, E.B.; Ferreira, R.S.; Gatto, C.C.; Moreira, D.R.M.; Siqueira-Neto, J.L.; Mendonça-Júnior, F.J.B.; Lima, M.C.A.; Bortoluzzi, J.H.; Scotti, M.T.; Scotti, L.; Meneghetti, M.R.; Aquino, T.M.; Araújo-Júnior, J.X. Design, synthesis, molecular docking and biological evaluation of thiophen-2-iminothiazolidine derivatives for use against Trypanosoma cruzi. Bioorg. Med. Chem., 2016, 24(18), 4228-4240. doi: 10.1016/j.bmc.2016.07.013 PMID: 27475533
  89. de Oliveira Filho, G.B.; de Oliveira Cardoso, M.V.; Espíndola, J.W.P.; Ferreira, L.F.G.R.; de Simone, C.A.; Ferreira, R.S.; Coelho, P.L.; Meira, C.S.; Magalhaes Moreira, D.R.; Soares, M.B.P.; Lima, Leite A.C. Structural design, synthesis and pharmacological evaluation of 4-thiazolidinones against Trypanosoma cruzi. Bioorg. Med. Chem., 2015, 23(23), 7478-7486. doi: 10.1016/j.bmc.2015.10.048 PMID: 26549870
  90. Moreira, D.R.M.; Lima, Leite A.C.; Cardoso, M.V.O.; Srivastava, R.M.; Hernandes, M.Z.; Rabello, M.M.; da Cruz, L.F.; Ferreira, R.S.; de Simone, C.A.; Meira, C.S.; Guimarães, E.T.; da Silva, A.C.; dos Santos, T.A.R.; Pereira, V.R.A.; Pereira Soares, M.B. Structural design, synthesis and structure-activity relationships of thiazolidinones with enhanced anti-Trypanosoma cruzi activity. ChemMedChem, 2014, 9(1), 177-188. doi: 10.1002/cmdc.201300354 PMID: 24203393
  91. Constantinescu, T.; Lungu, C.N. Anticancer activity of natural and synthetic chalcones. Int. J. Mol. Sci., 2021, 22(21), 11306. doi: 10.3390/ijms222111306 PMID: 34768736
  92. ur Rashid, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem., 2019, 87, 335-365. doi: 10.1016/j.bioorg.2019.03.033 PMID: 30921740
  93. Elkhalifa, D.; Al-Hashimi, I.; Al Moustafa, A.E.; Khalil, A. A comprehensive review on the antiviral activities of chalcones. J. Drug Target., 2021, 29(4), 403-419. doi: 10.1080/1061186X.2020.1853759 PMID: 33232192
  94. Okolo, E.N.; Ugwu, D.I.; Ezema, B.E.; Ndefo, J.C.; Eze, F.U.; Ezema, C.G.; Ezugwu, J.A.; Ujam, O.T. New chalcone derivatives as potential antimicrobial and antioxidant agent. Sci. Rep., 2021, 11(1), 21781. doi: 10.1038/s41598-021-01292-5 PMID: 34741131
  95. Gomes, M.N.; Braga, R.C.; Grzelak, E.M.; Neves, B.J.; Muratov, E.; Ma, R.; Klein, L.L.; Cho, S.; Oliveira, G.R.; Franzblau, S.G.; Andrade, C.H. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Eur. J. Med. Chem., 2017, 137, 126-138. doi: 10.1016/j.ejmech.2017.05.026 PMID: 28582669
  96. Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810. doi: 10.1021/acs.chemrev.7b00020 PMID: 28488435
  97. Pitchumani Violet Mary, C.; Shankar, R.; Vijayakumar, S. Mechanistic insights into the inhibition mechanism of cysteine cathepsins by chalcone-based inhibitors-a QM cluster model approach. Struct. Chem., 2019, 30(5), 1779-1793. doi: 10.1007/s11224-018-1273-3
  98. Park, J.Y.; Ko, J.A.; Kim, D.W.; Kim, Y.M.; Kwon, H.J.; Jeong, H.J.; Kim, C.Y.; Park, K.H.; Lee, W.S.; Ryu, Y.B. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 23-30. doi: 10.3109/14756366.2014.1003215 PMID: 25683083
  99. Borchhardt, D.M.; Mascarello, A.; Chiaradia, L.D.; Nunes, R.J.; Oliva, G.; Yunes, R.A.; Andricopulo, A.D. Biochemical evaluation of a series of synthetic chalcone and hydrazide derivatives as novel inhibitors of cruzain from Trypanosoma cruzi. J. Braz. Chem. Soc., 2010, 21(1), 142-150. doi: 10.1590/S0103-50532010000100021
  100. Vital, D.; Arribas, M.; Trossini, G. Molecular Modeling and docking application to evaluate cruzian inhibitory activity by chalcones and hydrazides. Lett. Drug Des. Discov., 2014, 11(3), 249-255. doi: 10.2174/15701808113106660082
  101. Magalhães, E.P.; Gomes, N.D.B.; Freitas, T.A.; Silva, B.P.; Ribeiro, L.R.; Ameida-Neto, F.W.Q.; Marinho, M.M.; Lima-Neto, P.; Marinho, E.S.; Santos, H.S.; Teixeira, A.M.R.; Sampaio, T.L.; Menezes, R.R.P.P.B.; Martins, A.M.C. Chloride substitution on 2-hydroxy-3,4,6-trimethoxyphenylchalcones improves in vitro selectivity on Trypanosoma cruzi strain Y. Chem. Biol. Interact., 2022, 361, 109920. doi: 10.1016/j.cbi.2022.109920 PMID: 35461787
  102. de Brito, D.H.A.; Almeida-Neto, F.W.Q.; Ribeiro, L.R.; Magalhães, E.P.; de Menezes, R.R.P.P.B.; Sampaio, T.L.; Martins, A.M.C.; Bandeira, P.N.; Marinho, M.M.; Marinho, E.S.; Barreto, A.C.H.; de Lima-Neto, P.; Saraiva, G.D.; Canuto, K.M.; dos Santos, H.S.; Teixeira, A.M.R.; Ricardo, N.M.P.S.; Canuto, K.M.; Santos, H.S.; Teixeira, A.M.R.; Ricardo, N.M.P.S. Synthesis, structural and spectroscopic analysis, and antiproliferative activity of chalcone derivate (E)-1-(4-aminophenyl)-3-(benzobthiophen-2-yl)prop 2-en-1-one in Trypanosoma cruzi. J. Mol. Struct., 2022, 1253, 132197. doi: 10.1016/j.molstruc.2021.132197
  103. Vargas, E.; Echeverri, F.; Upegui, Y.; Robledo, S.; Quiñones, W. Hydrazone derivatives enhance antileishmanial activity of thiochroman-4-ones. Molecules, 2017, 23(1), 70. doi: 10.3390/molecules23010070 PMID: 29286346
  104. Zebbiche, Z.; Tekin, S.; Küçükbay, H.; Yüksel, F.; Boumoud, B. Synthesis and anticancer properties of novel hydrazone derivatives incorporating pyridine and isatin moieties. Arch. Pharm., 2021, 354(5), 2000377. doi: 10.1002/ardp.202000377 PMID: 33368627
  105. Baier, A.; Kokel, A.; Horton, W. Gizińska, E.; Pandey, G.; Szyszka, R.; Török, B.; Török, M. Organofluorine hydrazone derivatives as multifunctional anti-Alzheimer’s agents with CK2 inhibitory and antioxidant features. ChemMedChem, 2021, 16(12), 1927-1932. doi: 10.1002/cmdc.202100047 PMID: 33713036
  106. Cywin, C.L.; Firestone, R.A.; McNeil, D.W.; Grygon, C.A.; Crane, K.M.; White, D.M.; Kinkade, P.R.; Hopkins, J.L.; Davidson, W.; Labadia, M.E.; Wildeson, J.; Morelock, M.M.; Peterson, J.D.; Raymond, E.L.; Brown, M.L.; Spero, D.M. The design of potent hydrazones and disulfides as cathepsin S inhibitors. Bioorg. Med. Chem., 2003, 11(5), 733-740. doi: 10.1016/S0968-0896(02)00468-6 PMID: 12538003
  107. Elizondo-Jimenez, S.; Moreno-Herrera, A.; Reyes-Olivares, R.; Dorantes-Gonzalez, E.; Nogueda-Torres, B.; Oliveira, E.; Romeiro, N.; Lima, L.; Palos, I.; Rivera, G. Synthesis, biological evaluation and molecular docking of new benzenesulfonylhydrazone as potential anti-Trypanosoma cruzi agents. Med. Chem., 2017, 13(2), 149-158. doi: 10.2174/1573406412666160701022230 PMID: 27396731
  108. Massarico Serafim, R.A.; Gonçalves, J.E.; de Souza, F.P.; de Melo Loureiro, A.P.; Storpirtis, S.; Krogh, R.; Andricopulo, A.D.; Dias, L.C.; Ferreira, E.I. Design, synthesis and biological evaluation of hybrid bioisoster derivatives of N-acylhydrazone and furoxan groups with potential and selective anti-Trypanosoma cruzi activity. Eur. J. Med. Chem., 2014, 82, 418-425. doi: 10.1016/j.ejmech.2014.05.077 PMID: 24929292
  109. Herrera-Mayorga, V.; Lara-Ramírez, E.; Chacón-Vargas, K.; Aguirre-Alvarado, C.; Rodríguez-Páez, L.; Alcántara-Farfán, V.; Cordero-Martínez, J.; Nogueda-Torres, B.; Reyes-Espinosa, F.; Bocanegra-García, V.; Rivera, G. Structure-based virtual screening and in vitro evaluation of new Trypanosoma cruzi cruzain inhibitors. Int. J. Mol. Sci., 2019, 20(7), 1742. doi: 10.3390/ijms20071742 PMID: 30970549
  110. Delgado-Maldonado, T.; Nogueda-Torres, B.; Espinoza-Hicks, J.C.; Vázquez-Jiménez, L.K.; Paz-González, A.D.; Juárez-Saldívar, A.; Rivera, G. Synthesis and biological evaluation in vitro and in silico of N-propionyl-N′-benzeneacylhydrazone derivatives as cruzain inhibitors of Trypanosoma cruzi. Mol. Divers., 2022, 26(1), 39-50. doi: 10.1007/s11030-020-10156-5 PMID: 33216257
  111. Suthar, S.K.; Chundawat, N.S.; Singh, G.P.; Padrón, J.M.; Jhala, Y.K. Quinoxaline: A comprehension of current pharmacological advancement in medicinal chemistry. Eur. J. Med. Chem. Rep., 2022, 5, 100040. doi: 10.1016/j.ejmcr.2022.100040
  112. Franck, X.; Fournet, A.; Prina, E.; Mahieux, R.; Hocquemiller, R.; Figadère, B. Biological evaluation of substituted quinolines. Bioorg. Med. Chem. Lett., 2004, 14(14), 3635-3638. doi: 10.1016/j.bmcl.2004.05.026 PMID: 15203133
  113. Salas, C.O.; Faúndez, M.; Morello, A.; Maya, J.D.; Tapia, R.A. Natural and synthetic naphthoquinones active against Trypanosoma cruzi: An initial step towards new drugs for Chagas disease. Curr. Med. Chem., 2011, 18(1), 144-161. doi: 10.2174/092986711793979779 PMID: 21110810
  114. Mendoza-Martínez, C.; Correa-Basurto, J.; Nieto-Meneses, R.; Márquez-Navarro, A.; Aguilar-Suárez, R.; Montero-Cortes, M.D.; Nogueda-Torres, B.; Suárez-Contreras, E.; Galindo-Sevilla, N.; Rojas-Rojas, Á.; Rodriguez-Lezama, A.; Hernández-Luis, F. Design, synthesis and biological evaluation of quinazoline derivatives as anti-trypanosomatid and anti-plasmodial agents. Eur. J. Med. Chem., 2015, 96, 296-307. doi: 10.1016/j.ejmech.2015.04.028 PMID: 25899334
  115. Andrade, M.M.S.; Martins, L.C.; Marques, G.V.L.; Silva, C.A.; Faria, G.; Caldas, S.; dos Santos, J.S.C.; Leclercq, S.Y.; Maltarollo, V.G.; Ferreira, R.S.; Oliveira, R.B. Synthesis of quinoline derivatives as potential cysteine protease inhibitors. Future Med. Chem., 2020, 12(7), fmc-2019-0201. doi: 10.4155/fmc-2019-0201 PMID: 32116030
  116. Barbosa da Silva, E.; Rocha, D.A.; Fortes, I.S.; Yang, W.; Monti, L.; Siqueira-Neto, J.L.; Caffrey, C.R.; McKerrow, J.; Andrade, S.F.; Ferreira, R.S. Structure-based optimization of quinazolines as cruzain and Tbr CATL inhibitors. J. Med. Chem., 2021, 64(17), 13054-13071. doi: 10.1021/acs.jmedchem.1c01151 PMID: 34461718
  117. Braga, S.F.P.; Martins, L.C.; da Silva, E.B.; Sales Júnior, P.A.; Murta, S.M.F.; Romanha, A.J.; Soh, W.T.; Brandstetter, H.; Ferreira, R.S.; de Oliveira, R.B. Synthesis and biological evaluation of potential inhibitors of the cysteine proteases cruzain and rhodesain designed by molecular simplification. Bioorg. Med. Chem., 2017, 25(6), 1889-1900. doi: 10.1016/j.bmc.2017.02.009 PMID: 28215783
  118. Silva, L.R.; Guimarães, A.S.; do Nascimento, J.; do Santos Nascimento, I.J.; da Silva, E.B.; McKerrow, J.H.; Cardoso, S.H.; da Silva-Júnior, E.F. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg. Med. Chem., 2021, 41, 116213. doi: 10.1016/j.bmc.2021.116213 PMID: 33992862
  119. Assis, D.M.; Gontijo, V.S.; de Oliveira Pereira, I.; Santos, J.A.N.; Camps, I.; Nagem, T.J.; Ellena, J.; Izidoro, M.A.; dos Santos Tersariol, I.L.; de Barros, N.M.T.; Doriguetto, A.C.; dos Santos, M.H.; Juliano, M.A. Inhibition of cysteine proteases by a natural biflavone: Behavioral evaluation of fukugetin as papain and cruzain inhibitor. J. Enzyme Inhib. Med. Chem., 2013, 28(4), 661-670. doi: 10.3109/14756366.2012.668539 PMID: 22468751
  120. Bellera, C.L.; Balcazar, D.E.; Alberca, L.; Labriola, C.A.; Talevi, A.; Carrillo, C. Application of computer-aided drug repurposing in the search of new cruzipain inhibitors: Discovery of amiodarone and bromocriptine inhibitory effects. J. Chem. Inf. Model., 2013, 53(9), 2402-2408. doi: 10.1021/ci400284v PMID: 23906322
  121. Palos, I.; Lara-Ramirez, E.E.; Lopez-Cedillo, J.C.; Garcia-Perez, C.; Kashif, M.; Bocanegra-Garcia, V.; Nogueda-Torres, B.; Rivera, G. Repositioning FDA drugs as potential cruzain inhibitors from Trypanosoma cruzi: Virtual screening, in vitro and in vivo studies. Molecules, 2017, 22(6), 1015. doi: 10.3390/molecules22061015 PMID: 28629155
  122. Pereira, G.A.N.; da Silva, E.B.; Braga, S.F.P.; Leite, P.G.; Martins, L.C.; Vieira, R.P.; Soh, W.T.; Villela, F.S.; Costa, F.M.R.; Ray, D.; de Andrade, S.F.; Brandstetter, H.; Oliveira, R.B.; Caffrey, C.R.; Machado, F.S.; Ferreira, R.S. Discovery and characterization of trypanocidal cysteine protease inhibitors from the ‘malaria box’. Eur. J. Med. Chem., 2019, 179, 765-778. doi: 10.1016/j.ejmech.2019.06.062 PMID: 31284086
  123. Ferreira, R.A.A.; Pauli, I.; Sampaio, T.S.; de Souza, M.L.; Ferreira, L.L.G.; Magalhães, L.G.; Rezende, C.O., Jr; Ferreira, R.S.; Krogh, R.; Dias, L.C.; Andricopulo, A.D. Structure-based and molecular modeling studies for the discovery of cyclic imides as reversible cruzain inhibitors with potent anti-Trypanosoma cruzi activity. Front Chem., 2019, 7, 798. doi: 10.3389/fchem.2019.00798 PMID: 31824926
  124. Couto, M.; Sánchez, C.; Dávila, B.; Machín, V.; Varela, J.; Álvarez, G.; Cabrera, M.; Celano, L.; Aguirre-López, B.; Cabrera, N.; de Gómez-Puyou, M.; Gómez-Puyou, A.; Pérez-Montfort, R.; Cerecetto, H.; González, M. 3-H-1,2Dithiole as a new anti-Trypanosoma cruzi chemotype: Biological and mechanism of action studies. Molecules, 2015, 20(8), 14595-14610. doi: 10.3390/molecules200814595 PMID: 26274947
  125. Neitz, R.J.; Bryant, C.; Chen, S.; Gut, J.; Hugo Caselli, E.; Ponce, S.; Chowdhury, S.; Xu, H.; Arkin, M.R.; Ellman, J.A.; Renslo, A.R. Tetrafluorophenoxymethyl ketone cruzain inhibitors with improved pharmacokinetic properties as therapeutic leads for Chagas’ disease. Bioorg. Med. Chem. Lett., 2015, 25(21), 4834-4837. doi: 10.1016/j.bmcl.2015.06.066 PMID: 26144347
  126. Wiggers, H.J.; Rocha, J.R.; Fernandes, W.B.; Sesti-Costa, R.; Carneiro, Z.A.; Cheleski, J.; da Silva, A.B.F.; Juliano, L.; Cezari, M.H.S.; Silva, J.S.; McKerrow, J.H.; Montanari, C.A. Non-peptidic cruzain inhibitors with trypanocidal activity discovered by virtual screening and in vitro assay. PLoS Negl. Trop. Dis., 2013, 7(8), e2370. doi: 10.1371/journal.pntd.0002370 PMID: 23991231
  127. Souza, T.B.; Caldas, I.S.; Paula, F.R.; Rodrigues, C.C.; Carvalho, D.T.; Dias, D.F. Synthesis, activity, and molecular modeling studies of 1,2,3‐triazole derivatives from natural phenylpropanoids as new trypanocidal agents. Chem. Biol. Drug Des., 2020, 95(1), 124-129. doi: 10.1111/cbdd.13628 PMID: 31569301
  128. Scarim, C.B.; Jornada, D.H.; Chelucci, R.C.; de Almeida, L.; dos Santos, J.L.; Chung, M.C. Current advances in drug discovery for Chagas disease. Eur. J. Med. Chem., 2018, 155, 824-838. doi: 10.1016/j.ejmech.2018.06.040 PMID: 30033393

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers