Discovery of Novel Inhibitors of Cruzain Cysteine Protease of Trypanosoma cruzi
- Authors: Prates J.1, Lopes J.2, Chin C.3, Ferreira E.4, dos Santos J.1, Scarim C.2
-
Affiliations:
- Department of Drugs and Medicine, School of Pharmaceutical Sciences,, São Paulo State University (UNESP)
- Department of Drugs and Medicine, School of Pharmaceutical Sciences,, São Paulo State University (UNESP),
- Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP)
- LAPEN-Laboratory of Design and Synthesis of Chemotherapeutic Agents Potentially Active on Neglected Diseases, Department of Pharmacy, School of Pharmaceutical Sciences,, University of São Paulo (USP),
- Issue: Vol 31, No 16 (2024)
- Pages: 2285-2308
- Section: Anti-Infectives and Infectious Diseases
- URL: https://j-morphology.com/0929-8673/article/view/644456
- DOI: https://doi.org/10.2174/0109298673254864230921090519
- ID: 644456
Cite item
Full Text
Abstract
Chagas disease (CD) is a parasitic disease endemic in several developing coun-tries. According to the World Health Organization, approximately 6-8 million people worldwide are inflicted by CD. The scarcity of new drugs, mainly for the chronic phase, is the main reason for treatment limitation in CD. Therefore, there is an urgent need to dis-cover new targets for which new therapeutical agents could be developed. Cruzain cyste-ine protease (CCP) is a promising alternative because this enzyme exhibits pleiotropic ef-fects by acting as a virulence factor, modulating host immune cells, and interacting with host cells. This systematic review was conducted to discover new compounds that act as cruzain inhibitors, and their effects in vitro were studied through enzymatic assays and molecular docking. Additionally, the advances and perspectives of these inhibitors are discussed. These findings are expected to contribute to medicinal chemistry in view of the design of new, safe, and efficacious inhibitors against Trypanosoma cruzi CCP detected in the last decade (2013-2022) to provide scaffolds for further optimization, aiming toward the discovery of new drugs.
About the authors
João Prates
Department of Drugs and Medicine, School of Pharmaceutical Sciences,, São Paulo State University (UNESP)
Email: info@benthamscience.net
Juliana Lopes
Department of Drugs and Medicine, School of Pharmaceutical Sciences,, São Paulo State University (UNESP),
Email: info@benthamscience.net
Chung Chin
Department of Drugs and Medicine, School of Pharmaceutical Sciences, São Paulo State University (UNESP)
Email: info@benthamscience.net
Elizabeth Ferreira
LAPEN-Laboratory of Design and Synthesis of Chemotherapeutic Agents Potentially Active on Neglected Diseases, Department of Pharmacy, School of Pharmaceutical Sciences,, University of São Paulo (USP),
Email: info@benthamscience.net
Jean dos Santos
Department of Drugs and Medicine, School of Pharmaceutical Sciences,, São Paulo State University (UNESP)
Email: info@benthamscience.net
Cauê Scarim
Department of Drugs and Medicine, School of Pharmaceutical Sciences,, São Paulo State University (UNESP),
Author for correspondence.
Email: info@benthamscience.net
References
- Lidani, K.C.F.; Andrade, F.A.; Bavia, L.; Damasceno, F.S.; Beltrame, M.H.; Messias-Reason, I.J.; Sandri, T.L. CD: From discovery to a worldwide health problem. Front. Public Health, 2019, 7, 166. doi: 10.3389/fpubh.2019.00166 PMID: 31312626
- Santos, E.F.; Silva, .A.O.; Leony, L.M.; Freitas, N.E.M.; Daltro, R.T.; Regis-Silva, C.G.; Del-Rei, R.P.; Souza, W.V.; Ostermayer, A.L.; Costa, V.M.; Silva, R.A.; Ramos, A.N., Jr; Sousa, A.S.; Gomes, Y.M.; Santos, F.L.N. Acute Chagas disease in Brazil from 2001 to 2018: A nationwide spatiotemporal analysis. PLoS Negl. Trop. Dis., 2020, 14(8), e0008445. doi: 10.1371/journal.pntd.0008445 PMID: 32745113
- Bern, C.; Messenger, L.A.; Whitman, J.D.; Maguire, J.H. CD in the United States: A public health approach. Clin. Microbiol. Rev., 2019, 33(1), e00023-e19. doi: 10.1128/CMR.00023-19 PMID: 31776135
- World Health Organization. 2022. Available From: www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)
- Coura, J.R. Chagas disease: What is known and what is needed A background article. Mem. Inst. Oswaldo Cruz, 2007, 102(Suppl. 1), 113-122. doi: 10.1590/S0074-02762007000900018 PMID: 17992371
- Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet, 2018, 391(10115), 82-94. doi: 10.1016/S0140-6736(17)31612-4 PMID: 28673423
- Wilkinson, S.R.; Taylor, M.C.; Horn, D.; Kelly, J.M.; Cheeseman, I. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc. Natl. Acad. Sci. USA, 2008, 105(13), 5022-5027. doi: 10.1073/pnas.0711014105 PMID: 18367671
- Jackson, Y.; Wyssa, B.; Chappuis, F. Tolerance to nifurtimox and benznidazole in adult patients with chronic Chagas disease. J. Antimicrob. Chemother., 2020, 75(3), 690-696. doi: 10.1093/jac/dkz473 PMID: 31754690
- Soeiro, M.N.C.; de Castro, S.L. Trypanosoma cruzi targets for new chemotherapeutic approaches. Expert Opin. Ther. Targets, 2009, 13(1), 105-121. doi: 10.1517/14728220802623881 PMID: 19063710
- Lo Presti, M.S.; Bazán, P.C.; Strauss, M.; Báez, A.L.; Rivarola, H.W.; Paglini-Oliva, P.A. Trypanothione reductase inhibitors: Overview of the action of thioridazine in different stages of Chagas disease. Acta Trop., 2015, 145, 79-87. doi: 10.1016/j.actatropica.2015.02.012 PMID: 25733492
- Cazzulo, J.; Stoka, V.; Turk, V. The major cysteine proteinase of Trypanosoma cruzi: A valid target for chemotherapy of Chagas disease. Curr. Pharm. Des., 2001, 7(12), 1143-1156. doi: 10.2174/1381612013397528 PMID: 11472258
- Schormann, N.; Velu, S.E.; Murugesan, S.; Senkovich, O.; Walker, K.; Chenna, B.C.; Shinkre, B.; Desai, A.; Chattopadhyay, D. Synthesis and characterization of potent inhibitors of Trypanosoma cruzi dihydrofolate reductase. Bioorg. Med. Chem., 2010, 18(11), 4056-4066. doi: 10.1016/j.bmc.2010.04.020 PMID: 20452776
- Glockzin, K.; Kostomiris, D.; Minnow, Y.V.T.; Suthagar, K.; Clinch, K.; Gai, S.; Buckler, J.N.; Schramm, V.L.; Tyler, P.C.; Meek, T.D.; Katzfuss, A. Kinetic characterization and inhibition of Trypanosoma cruzi hypoxanthine-guanine phosphoribosyltransferases. Biochemistry, 2022, 61(19), 2088-2105. doi: 10.1021/acs.biochem.2c00312 PMID: 36193631
- Freitas, R.F.; Prokopczyk, I.M.; Zottis, A.; Oliva, G.; Andricopulo, A.D.; Trevisan, M.T.S.; Vilegas, W.; Silva, M.G.V.; Montanari, C.A. Discovery of novel Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase inhibitors. Bioorg. Med. Chem., 2009, 17(6), 2476-2482. doi: 10.1016/j.bmc.2009.01.079 PMID: 19254846
- Sajid, M.; Robertson, S.A.; Brinen, L.S.; McKerrow, J.H. Cruzain. Adv. Exp. Med. Biol., 2011, 712, 100-115. doi: 10.1007/978-1-4419-8414-2_7 PMID: 21660661
- Caffrey, C.; Scory, S.; Steverding, D. Cysteine proteinases of trypanosome parasites: Novel targets for chemotherapy. Curr. Drug Targets, 2000, 1(2), 155-162. doi: 10.2174/1389450003349290 PMID: 11465068
- Franke de Cazzulo, B.M.; Martínez, J.; North, M.J.; Coombs, G.H.; Cazzulo, J.J. Effects of proteinase inhibitors on the growth and differentiation of Trypanosoma cruzi. FEMS Microbiol. Lett., 1994, 124(1), 81-86. doi: 10.1111/j.1574-6968.1994.tb07265.x PMID: 8001773
- Jasinski, G.; Salas-Sarduy, E.; Vega, D.; Fabian, L.; Martini, M.F.; Moglioni, A.G. Thiosemicarbazone derivatives: Evaluation as cruzipain inhibitors and molecular modeling study of complexes with cruzain. Bioorg. Med. Chem., 2022, 61, 116708. doi: 10.1016/j.bmc.2022.116708 PMID: 35334448
- Barr, S.C.; Warner, K.L.; Kornreic, B.G.; Piscitelli, J.; Wolfe, A.; Benet, L.; McKerrow, J.H. A cysteine protease inhibitor protects dogs from cardiac damage during infection by Trypanosoma cruzi. Antimicrob. Agents Chemother., 2005, 49(12), 5160-5161. doi: 10.1128/AAC.49.12.5160-5161.2005 PMID: 16304193
- Cianni, L.; Feldmann, C.W.; Gilberg, E.; Gütschow, M.; Juliano, L.; Leitão, A.; Bajorath, J.; Montanari, C.A. Can cysteine protease cross-class inhibitors achieve selectivity? J. Med. Chem., 2019, 62(23), 10497-10525. doi: 10.1021/acs.jmedchem.9b00683 PMID: 31361135
- Ndao, M.; Beaulieu, C.; Black, W.C.; Isabel, E.; Vasquez-Camargo, F.; Nath-Chowdhury, M.; Massé, F.; Mellon, C.; Methot, N.; Nicoll-Griffith, D.A. Reversible cysteine protease inhibitors show promise for a Chagas disease cure. Antimicrob. Agents Chemother., 2014, 58(2), 1167-1178. doi: 10.1128/AAC.01855-13 PMID: 24323474
- Albericio, F.; Kruger, H.G. Therapeutic peptides. Future Med. Chem., 2012, 4(12), 1527-1531. doi: 10.4155/fmc.12.94 PMID: 22917241
- Cicardi, M.; Levy, R.J.; McNeil, D.L.; Li, H.H.; Sheffer, A.L.; Campion, M.; Horn, P.T.; Pullman, W.E. Ecallantide for the treatment of acute attacks in hereditary angioedema. N. Engl. J. Med., 2010, 363(6), 523-531. doi: 10.1056/NEJMoa0905079 PMID: 20818887
- Cicardi, M.; Banerji, A.; Bracho, F.; Malbrán, A.; Rosenkranz, B.; Riedl, M.; Bork, K.; Lumry, W.; Aberer, W.; Bier, H.; Bas, M.; Greve, J.; Hoffmann, T.K.; Farkas, H.; Reshef, A.; Ritchie, B.; Yang, W.; Grabbe, J.; Kivity, S.; Kreuz, W.; Levy, R.J.; Luger, T.; Obtulowicz, K.; Schmid-Grendelmeier, P.; Bull, C.; Sitkauskiene, B.; Smith, W.B.; Toubi, E.; Werner, S.; Anné, S.; Björkander, J.; Bouillet, L.; Cillari, E.; Hurewitz, D.; Jacobson, K.W.; Katelaris, C.H.; Maurer, M.; Merk, H.; Bernstein, J.A.; Feighery, C.; Floccard, B.; Gleich, G.; Hébert, J.; Kaatz, M.; Keith, P.; Kirkpatrick, C.H.; Langton, D.; Martin, L.; Pichler, C.; Resnick, D.; Wombolt, D.; Romero, D.S.F.; Zanichelli, A.; Arcoleo, F.; Knolle, J.; Kravec, I.; Dong, L.; Zimmermann, J.; Rosen, K.; Fan, W.T. Icatibant, a new bradykinin-receptor antagonist, in hereditary angioedema. N. Engl. J. Med., 2010, 363(6), 532-541. doi: 10.1056/NEJMoa0906393 PMID: 20818888
- Saravolatz, L.D.; Stein, G.E.; Johnson, L.B. Telavancin: A novel lipoglycopeptide. Clin. Infect. Dis., 2009, 49(12), 1908-1914. doi: 10.1086/648438 PMID: 19911938
- VanderMolen, K.M.; McCulloch, W.; Pearce, C.J.; Oberlies, N.H. Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): A natural product recently approved for cutaneous T-cell lymphoma. J. Antibiot., 2011, 64(8), 525-531. doi: 10.1038/ja.2011.35 PMID: 21587264
- Jackson, S.H.; Martin, T.S.; Jones, J.D.; Seal, D.; Emanuel, F. Liraglutide (victoza): The first once-daily incretin mimetic injection for type-2 diabetes. P&T, 2010, 35(9), 498-529. PMID: 20975808
- Yi, J.H.; Kim, S.J.; Kim, W.S. Brentuximab vedotin: Clinical updates and practical guidance. Blood Res., 2017, 52(4), 243-253. doi: 10.5045/br.2017.52.4.243 PMID: 29333400
- Chang, M.H.; Gordon, L.A.; Fung, H.B. Boceprevir: A protease inhibitor for the treatment of hepatitis C. Clin. Ther., 2012, 34(10), 2021-2038. doi: 10.1016/j.clinthera.2012.08.009 PMID: 22975763
- Cunningham, M.; Foster, G.R. Efficacy and safety of telaprevir in patients with genotype 1 hepatitis C infection. Therap. Adv. Gastroenterol., 2012, 5(2), 139-151. doi: 10.1177/1756283X11426895 PMID: 22423262
- Verhelst, S.H.L.; Witte, M.D.; Arastu-Kapur, S.; Fonovic, M.; Bogyo, M. Novel aza peptide inhibitors and active-site probes of papain-family cysteine proteases. ChemBioChem, 2006, 7(6), 943-950. doi: 10.1002/cbic.200600001 PMID: 16607671
- Fennell, B.D.; Warren, J.M.; Chung, K.K.; Main, H.L.; Arend, A.B.; Tochowicz, A.; Götz, M.G. Optimization of peptidyl allyl sulfones as clan CA cysteine protease inhibitors. J. Enzyme Inhib. Med. Chem., 2013, 28(3), 468-478. doi: 10.3109/14756366.2011.651466 PMID: 22380780
- Jones, B.D.; Tochowicz, A.; Tang, Y.; Cameron, M.D.; McCall, L.I.; Hirata, K.; Siqueira-Neto, J.L.; Reed, S.L.; McKerrow, J.H.; Roush, W.R. Synthesis and evaluation of oxyguanidine analogues of the cysteine protease inhibitor WRR-483 against cruzain. ACS Med. Chem. Lett., 2016, 7(1), 77-82. doi: 10.1021/acsmedchemlett.5b00336 PMID: 26819670
- Latorre, A.; Schirmeister, T.; Kesselring, J.; Jung, S.; Johé, P.; Hellmich, U.A.; Heilos, A.; Engels, B.; Krauth-Siegel, R.L.; Dirdjaja, N.; Bou-Iserte, L.; Rodríguez, S.; González, F.V. Dipeptidyl nitroalkenes as potent reversible inhibitors of cysteine proteases rhodesain and cruzain. ACS Med. Chem. Lett., 2016, 7(12), 1073-1076. doi: 10.1021/acsmedchemlett.6b00276 PMID: 27994740
- Royo, S.; Schirmeister, T.; Kaiser, M.; Jung, S.; Rodríguez, S.; Bautista, J.M.; González, F.V. Antiprotozoal and cysteine proteases inhibitory activity of dipeptidyl enoates. Bioorg. Med. Chem., 2018, 26(16), 4624-4634. doi: 10.1016/j.bmc.2018.07.015 PMID: 30037754
- Chenna, B.C.; Li, L.; Mellott, D.M.; Zhai, X.; Siqueira-Neto, J.L.; Calvet Alvarez, C.; Bernatchez, J.A.; Desormeaux, E.; Alvarez Hernandez, E.; Gomez, J.; McKerrow, J.H.; Cruz-Reyes, J.; Meek, T.D. Peptidomimetic vinyl heterocyclic inhibitors of cruzain effect antitrypanosomal activity. J. Med. Chem., 2020, 63(6), 3298-3316. doi: 10.1021/acs.jmedchem.9b02078 PMID: 32125159
- Barbosa Da Silva, E.; Sharma, V.; Hernandez-Alvarez, L.; Tang, A.H.; Stoye, A.; ODonoghue, A.J.; Gerwick, W.H.; Payne, R.J.; McKerrow, J.H.; Podust, L.M. Intramolecular interactions enhance the potency of gallinamide A analogues against Trypanosoma cruzi. J. Med. Chem., 2022, 65(5), 4255-4269. doi: 10.1021/acs.jmedchem.1c02063 PMID: 35188371
- Dufour, E.; Storer, A.C.; Ménard, R. Engineering nitrile hydratase activity into a cysteine protease by a single mutation. Biochemistry, 1995, 34(50), 16382-16388. doi: 10.1021/bi00050a019 PMID: 8845364
- Brinen, L.S.; Hansell, E.; Cheng, J.; Roush, W.R.; McKerrow, J.H.; Fletterick, R.J. A target within the target: Probing cruzains P1′ site to define structural determinants for the Chagas disease protease. Structure, 2000, 8(8), 831-840. doi: 10.1016/S0969-2126(00)00173-8 PMID: 10997902
- Löser, R.; Schilling, K.; Dimmig, E.; Gütschow, M. Interaction of papain-like cysteine proteases with dipeptide-derived nitriles. J. Med. Chem., 2005, 48(24), 7688-7707. doi: 10.1021/jm050686b PMID: 16302809
- Burtoloso, A.C.B.; de Albuquerque, S.; Furber, M.; Gomes, J.C.; Gonçalez, C.; Kenny, P.W.; Leitão, A.; Montanari, C.A.; Quilles, J.C.; Ribeiro, J.F.R.; Rocha, J.R. Anti-trypanosomal activity of non-peptidic nitrile-based cysteine protease inhibitors. PLoS Negl. Trop. Dis., 2017, 11(2), e0005343. doi: 10.1371/journal.pntd.0005343 PMID: 28222138
- Quilles, J.C., Jr; Shamim, A.; Tezuka, D.Y.; Batista, P.H.J.; Lopes, C.D.; de Albuquerque, S.; Montanari, C.A.; Leitão, A. Dipeptidyl nitrile derivatives suppress the Trypanosoma cruzi in vitro infection. Exp. Parasitol., 2020, 219, 108032. doi: 10.1016/j.exppara.2020.108032 PMID: 33137308
- Brogi, S.; Ibba, R.; Rossi, S.; Butini, S.; Calderone, V.; Gemma, S.; Campiani, G. Covalent reversible inhibitors of cysteine proteases containing the nitrile warhead: Recent advancement in the field of viral and parasitic diseases. Molecules, 2022, 27(8), 2561. doi: 10.3390/molecules27082561 PMID: 35458759
- Avelar, L.A.A.; Camilo, C.D.; de Albuquerque, S.; Fernandes, W.B.; Gonçalez, C.; Kenny, P.W.; Leitão, A.; McKerrow, J.H.; Montanari, C.A.; Orozco, E.V.M.; Ribeiro, J.F.R.; Rocha, J.R.; Rosini, F.; Saidel, M.E. Molecular design, synthesis and trypanocidal activity of dipeptidyl nitriles as cruzain inhibitors. PLoS Negl. Trop. Dis., 2015, 9(7), e0003916. doi: 10.1371/journal.pntd.0003916 PMID: 26173110
- Salas-Sarduy, E.; Landaburu, L.U.; Karpiak, J.; Madauss, K.P.; Cazzulo, J.J.; Agüero, F.; Alvarez, V.E. Novel scaffolds for inhibition of cruzipain identified from high-throughput screening of anti-kinetoplastid chemical boxes. Sci. Rep., 2017, 7(1), 12073. doi: 10.1038/s41598-017-12170-4 PMID: 28935948
- Dos Santos, A.M.; Cianni, L.; De Vita, D.; Rosini, F.; Leitão, A.; Laughton, C.A.; Lameira, J.; Montanari, C.A. Experimental study and computational modelling of cruzain cysteine protease inhibition by dipeptidyl nitriles. Phys. Chem. Chem. Phys., 2018, 20(37), 24317-24328. doi: 10.1039/C8CP03320J PMID: 30211406
- Gomes, J.C.; Cianni, L.; Ribeiro, J.; dos Reis Rocho, F.; da Costa Martins Silva, S.; Batista, P.H.J.; Moraes, C.B.; Franco, C.H.; Freitas-Junior, L.H.G.; Kenny, P.W.; Leitão, A.; Burtoloso, A.C.B.; de Vita, D.; Montanari, C.A. Synthesis and structure-activity relationship of nitrile-based cruzain inhibitors incorporating a trifluoroethylamine-based P2 amide replacement. Bioorg. Med. Chem., 2019, 27(22), 115083. doi: 10.1016/j.bmc.2019.115083 PMID: 31561938
- Alves, L.; Santos, D.A.; Cendron, R.; Rocho, F.R.; Matos, T.K.B.; Leitão, A.; Montanari, C.A. Nitrile-based peptoids as cysteine protease inhibitors. Bioorg. Med. Chem., 2021, 41, 116211. doi: 10.1016/j.bmc.2021.116211 PMID: 33991733
- Cianni, L.; Lemke, C.; Gilberg, E.; Feldmann, C.; Rosini, F.; Rocho, F.R.; Ribeiro, J.F.R.; Tezuka, D.Y.; Lopes, C.D.; de Albuquerque, S.; Bajorath, J.; Laufer, S.; Leitão, A.; Gütschow, M.; Montanari, C.A. Mapping the S1 and S1′ subsites of cysteine proteases with new dipeptidyl nitrile inhibitors as trypanocidal agents. PLoS Negl. Trop. Dis., 2020, 14(3), e0007755. doi: 10.1371/journal.pntd.0007755 PMID: 32163418
- Richardson, D.R.; Sharpe, P.C.; Lovejoy, D.B.; Senaratne, D.; Kalinowski, D.S.; Islam, M.; Bernhardt, P.V. Dipyridyl thiosemicarbazone chelators with potent and selective antitumor activity form iron complexes with redox activity. J. Med. Chem., 2006, 49(22), 6510-6521. doi: 10.1021/jm0606342 PMID: 17064069
- He, Z.; Qiao, H.; Yang, F.; Zhou, W.; Gong, Y.; Zhang, X.; Wang, H.; Zhao, B.; Ma, L.; Liu, H.; Zhao, W. Novel thiosemicarbazone derivatives containing indole fragment as potent and selective anticancer agent. Eur. J. Med. Chem., 2019, 184, 111764. doi: 10.1016/j.ejmech.2019.111764 PMID: 31614257
- Pelosi, G.; Bisceglie, F.; Bignami, F.; Ronzi, P.; Schiavone, P.; Re, M.C.; Casoli, C.; Pilotti, E. Antiretroviral activity of thiosemicarbazone metal complexes. J. Med. Chem., 2010, 53(24), 8765-8769. doi: 10.1021/jm1007616 PMID: 21121632
- Khan, S.A.; Asiri, A.M.; Al-Amry, K.; Malik, M.A. Synthesis, characterization, electrochemical studies, and in vitro antibacterial activity of novel thiosemicarbazone and its Cu(II), Ni(II), and Co(II) complexes. ScientificWorldJournal, 2014, 2014, 1-9. doi: 10.1155/2014/592375 PMID: 24523641
- Bahl, D.; Athar, F.; Soares, M.B.P.; de Sá, M.S.; Moreira, D.R.M.; Srivastava, R.M.; Leite, A.C.L.; Azam, A. Structure-activity relationships of mononuclear metal-thiosemicarbazone complexes endowed with potent antiplasmodial and antiamoebic activities. Bioorg. Med. Chem., 2010, 18(18), 6857-6864. doi: 10.1016/j.bmc.2010.07.039 PMID: 20719524
- Jamal, S.E.; Iqbal, A.; Rahman, K.A.; Tahmeena, K. Thiosemicarbazone complexes as versatile medicinal chemistry agents: A review. J. Drug Deliv. Ther., 2019, 9(3), 689-703. doi: 10.22270/jddt.v9i3.2888
- Matesanz, A.I.; Herrero, J.M.; Quiroga, A.G. Chemical and biological evaluation of thiosemicarbazone-bearing heterocyclic metal complexes. Curr. Top. Med. Chem., 2021, 21(1), 59-72. doi: 10.2174/18734294MTEwuODQry PMID: 33092510
- Chiyanzu, I.; Hansell, E.; Gut, J.; Rosenthal, P.J.; McKerrow, J.H.; Chibale, K. Synthesis and evaluation of isatins and thiosemicarbazone derivatives against cruzain, falcipain-2 and rhodesain. Bioorg. Med. Chem. Lett., 2003, 13(20), 3527-3530. doi: 10.1016/S0960-894X(03)00756-X PMID: 14505663
- Fujii, N.; Mallari, J.P.; Hansell, E.J.; Mackey, Z.; Doyle, P.; Zhou, Y.M.; Gut, J.; Rosenthal, P.J.; McKerrow, J.H.; Guy, R.K. Discovery of potent thiosemicarbazone inhibitors of rhodesain and cruzain. Bioorg. Med. Chem. Lett., 2005, 15(1), 121-123. doi: 10.1016/j.bmcl.2004.10.023 PMID: 15582423
- Blau, L.; Menegon, R.F.; Trossini, G.H.G.; Molino, J.V.D.; Vital, D.G.; Cicarelli, R.M.B.; Passerini, G.D.; Bosquesi, P.L.; Chin, C.M. Design, synthesis and biological evaluation of new aryl thiosemicarbazone as antichagasic candidates. Eur. J. Med. Chem., 2013, 67, 142-151. doi: 10.1016/j.ejmech.2013.04.022 PMID: 23851115
- Fonseca, N.C.; da Cruz, L.F.; da Silva Villela, F.; do Nascimento Pereira, G.A.; de Siqueira-Neto, J.L.; Kellar, D.; Suzuki, B.M.; Ray, D.; de Souza, T.B.; Alves, R.J.; Júnior, P.A.S.; Romanha, A.J.; Murta, S.M.F.; McKerrow, J.H.; Caffrey, C.R.; de Oliveira, R.B.; Ferreira, R.S. Synthesis of a sugar-based thiosemicarbazone series and structure-activity relationship versus the parasite cysteine proteases rhodesain, cruzain, and Schistosoma mansoni cathepsin B1. Antimicrob. Agents Chemother., 2015, 59(5), 2666-2677. doi: 10.1128/AAC.04601-14 PMID: 25712353
- Cardoso, M.V.O.; Oliveira Filho, G.B.; Siqueira, L.R.P.; Espíndola, J.W.P.; Silva, E.B.; Mendes, A.P.O.; Pereira, V.R.A.; Castro, M.C.A.B.; Ferreira, R.S.; Villela, F.S.; Costa, F.M.R.; Meira, C.S.; Moreira, D.R.M.; Soares, M.B.P.; Leite, A.C.L. 2-(phenylthio)ethylidene derivatives as anti-Trypanosoma cruzi compounds: Structural design, synthesis and antiparasitic activity. Eur. J. Med. Chem., 2019, 180, 191-203. doi: 10.1016/j.ejmech.2019.07.018 PMID: 31306906
- de Assis, R.R.D.; Oliveira, A.A.; Porto, L.S.; Rabelo, A.N.R.; Lages, B.E.; Santos, C.V.; Milagre, M.M.; Fragoso, P.S.; Teixeira, M.M.; Ferreira, S.R.; Machado, R.C.; Ferreira, A.M.L.; Speziali, L.N.; Beraldo, H.; Machado, S.F. 4-Chlorophenylthioacetone-derived thiosemicarbazones as potent antitrypanosomal drug candidates: Investigations on the mode of action. Bioorg. Chem., 2021, 113, 105018. doi: 10.1016/j.bioorg.2021.105018 PMID: 34098396
- Moreira, M.D.R.; de Oliveira, A.D.T.; Teixeira de Moraes Gomes, P.A.; de Simone, C.A.; Villela, F.S.; Ferreira, R.S.; da Silva, A.C.; dos Santos, T.A.R.; Brelaz de Castro, M.C.A.; Pereira, V.R.A.; Leite, A.C.L. Conformational restriction of aryl thiosemicarbazones produces potent and selective anti-Trypanosoma cruzi compounds which induce apoptotic parasite death. Eur. J. Med. Chem., 2014, 75(75), 467-478. doi: 10.1016/j.ejmech.2014.02.001 PMID: 24561675
- Espíndola, J.W.P.; Cardoso, M.V.O.; Filho, G.B.O.; Oliveira e Silva, D.A.; Moreira, D.R.M.; Bastos, T.M.; Simone, C.A.; Soares, M.B.P.; Villela, F.S.; Ferreira, R.S.; Castro, M.C.A.B.; Pereira, V.R.A.; Murta, S.M.F.; Sales, Junior, P.A.; Romanha, A.J.; Leite, A.C.L. Synthesis and structure-activity relationship study of a new series of antiparasitic aryloxyl thiosemicarbazones inhibiting Trypanosoma cruzi cruzain. Eur. J. Med. Chem., 2015, 101, 818-835. doi: 10.1016/j.ejmech.2015.06.048 PMID: 26231082
- Gaba, M.; Singh, S.; Mohan, C. Benzimidazole: An emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 494-505. doi: 10.1016/j.ejmech.2014.01.030 PMID: 24602792
- Nascimento, M.V.P.S.; Munhoz, A.C.M.; Theindl, L.C.; Mohr, E.T.B.; Saleh, N.; Parisotto, E.B.; Rossa, T.A.; Zamoner, A.; Creczynski-Pasa, T.B.; Filippin-Monteiro, F.B.; Sá, M.M.; Dalmarco, E.M. A novel tetrasubstituted imidazole as a prototype for the development of anti-inflammatory drugs. Inflammation, 2018, 41(4), 1334-1348. doi: 10.1007/s10753-018-0782-y PMID: 29656318
- Torres-Gómez, H.; Hernández-Núñez, E.; León-Rivera, I.; Guerrero-Alvarez, J.; Cedillo-Rivera, R.; Moo-Puc, R.; Argotte-Ramos, R.; Carmen Rodríguez-Gutiérrez, M.; Chan-Bacab, M.J.; Navarrete-Vázquez, G. Design, synthesis and in vitro antiprotozoal activity of benzimidazole-pentamidine hybrids. Bioorg. Med. Chem. Lett., 2008, 18(11), 3147-3151. doi: 10.1016/j.bmcl.2008.05.009 PMID: 18486471
- Saccoliti, F.; Madia, V.N.; Tudino, V.; De Leo, A.; Pescatori, L.; Messore, A.; De Vita, D.; Scipione, L.; Brun, R.; Kaiser, M.; Mäser, P.; Calvet, C.M.; Jennings, G.K.; Podust, L.M.; Costi, R.; Di Santo, R. Biological evaluation and structure-activity relationships of imidazole-based compounds as antiprotozoal agents. Eur. J. Med. Chem., 2018, 156, 53-60. doi: 10.1016/j.ejmech.2018.06.063 PMID: 30006174
- Vausselin, T.; Séron, K.; Lavie, M.; Mesalam, A.A.; Lemasson, M.; Belouzard, S.; Fénéant, L.; Danneels, A.; Rouillé, Y.; Cocquerel, L.; Foquet, L.; Rosenberg, A.R.; Wychowski, C.; Meuleman, P.; Melnyk, P.; Dubuisson, J. Identification of a new benzimidazole derivative as an antiviral against hepatitis C virus. J. Virol., 2016, 90(19), 8422-8434. doi: 10.1128/JVI.00404-16 PMID: 27412600
- Picconi, P.; Hind, C.; Jamshidi, S.; Nahar, K.; Clifford, M.; Wand, M.E.; Sutton, J.M.; Rahman, K.M. Triaryl benzimidazoles as a new class of antibacterial agents against resistant pathogenic microorganisms. J. Med. Chem., 2017, 60(14), 6045-6059. doi: 10.1021/acs.jmedchem.7b00108 PMID: 28650661
- Valls, A.; Andreu, J.J.; Falomir, E.; Luis, S.V.; Atrián-Blasco, E.; Mitchell, S.G.; Altava, B. Imidazole and imidazolium antibacterial drugs derived from amino acids. Pharmaceuticals, 2020, 13(12), 482. doi: 10.3390/ph13120482 PMID: 33371256
- De Luca, L.; Ferro, S.; Buemi, M.R.; Monforte, A.M.; Gitto, R.; Schirmeister, T.; Maes, L.; Rescifina, A.; Micale, N. Discovery of benzimidazole-based Leishmania mexicana cysteine protease CPB2.8ΔCTE inhibitors as potential therapeutics for leishmaniasis. Chem. Biol. Drug Des., 2018, 92(3), 1585-1596. doi: 10.1111/cbdd.13326 PMID: 29729080
- Medeiros, A.R.; Ferreira, L.L.G.; de Souza, M.L.; de Oliveira Rezende, Junior, C.; Espinoza-Chávez, R.M.; Dias, L.C.; Andricopulo, A.D. Chemoinformatics studies on a series of imidazoles as cruzain inhibitors. Biomolecules, 2021, 11(4), 579. doi: 10.3390/biom11040579 PMID: 33920961
- de Souza, M.L.; de Oliveira Rezende, Junior, C.; Ferreira, R.S.; Espinoza Chávez, R.M.; Ferreira, L.L.G.; Slafer, B.W.; Magalhães, L.G.; Krogh, R.; Oliva, G.; Cruz, F.C.; Dias, L.C.; Andricopulo, A.D. Discovery of potent, reversible, and competitive cruzain inhibitors with trypanocidal activity: A structure-based drug design approach. J. Chem. Inf. Model., 2020, 60(2), 1028-1041. doi: 10.1021/acs.jcim.9b00802 PMID: 31765144
- Ferreira, R.S.; Dessoy, M.A.; Pauli, I.; Souza, M.L.; Krogh, R.; Sales, A.I.L.; Oliva, G.; Dias, L.C.; Andricopulo, A.D. Synthesis, biological evaluation, and structure-activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents. J. Med. Chem., 2014, 57(6), 2380-2392. doi: 10.1021/jm401709b PMID: 24533839
- Pauli, I.; Rezende, C.O., Jr; Slafer, B.W.; Dessoy, M.A.; de Souza, M.L.; Ferreira, L.L.G.; Adjanohun, A.L.M.; Ferreira, R.S.; Magalhães, L.G.; Krogh, R.; Michelan-Duarte, S.; Del Pintor, R.V.; da Silva, F.B.R.; Cruz, F.C.; Dias, L.C.; Andricopulo, A.D. Multiparameter optimization of trypanocidal cruzain inhibitors with in vivo activity and favorable pharmacokinetics. Front. Pharmacol., 2022, 12, 774069. doi: 10.3389/fphar.2021.774069 PMID: 35069198
- Yurttaş L.; Özkay, Y.; Kaplancıklı Z.A.; Tunalı Y.; Karaca, H. Synthesis and antimicrobial activity of some new hydrazone-bridged thiazole-pyrrole derivatives. J. Enzyme Inhib. Med. Chem., 2013, 28(4), 830-835. doi: 10.3109/14756366.2012.688043 PMID: 22651798
- Zha, G.F.; Leng, J.; Darshini, N.; Shubhavathi, T.; Vivek, H.K.; Asiri, A.M.; Marwani, H.M.; Rakesh, K.P.; Mallesha, N.; Qin, H.L. Synthesis, SAR and molecular docking studies of benzodthiazole-hydrazones as potential antibacterial and antifungal agents. Bioorg. Med. Chem. Lett., 2017, 27(14), 3148-3155. doi: 10.1016/j.bmcl.2017.05.032 PMID: 28539243
- Özdemir, A.; Turan-zitouni, G. Asim kaplancikli, Z.; Demirci, F.; Iscan, G. Studies on hydrazone derivatives as antifungal agents. J. Enzyme Inhib. Med. Chem., 2008, 23(4), 470-475. doi: 10.1080/14756360701709094 PMID: 18665994
- Kauthale, S.; Tekale, S.; Damale, M.; Sangshetti, J.; Pawar, R. Synthesis, antioxidant, antifungal, molecular docking and ADMET studies of some thiazolyl hydrazones. Bioorg. Med. Chem. Lett., 2017, 27(16), 3891-3896. doi: 10.1016/j.bmcl.2017.06.043 PMID: 28676272
- Moldovan, C.M.; Oniga, O.; Pârvu, A.; Tiperciuc, B.; Verite, P. Pîrnău, A.; Crişan, O.; Bojiţă M.; Pop, R. Synthesis and anti-inflammatory evaluation of some new acyl-hydrazones bearing 2-aryl-thiazole. Eur. J. Med. Chem., 2011, 46(2), 526-534. doi: 10.1016/j.ejmech.2010.11.032 PMID: 21163557
- Altıntop, M.; Özdemir, A.; Turan-Zitouni, G.; Ilgın, S.; Atlı Ö.; Demirci, F.; Kaplancıklı Z. Synthesis and in vitro evaluation of new nitro-substituted thiazolyl hydrazone derivatives as anticandidal and anticancer agents. Molecules, 2014, 19(9), 14809-14820. doi: 10.3390/molecules190914809 PMID: 25232704
- Cardoso, M.V.O.; Siqueira, L.R.P.; Silva, E.B.; Costa, L.B.; Hernandes, M.Z.; Rabello, M.M.; Ferreira, R.S.; da Cruz, L.F.; Magalhães Moreira, D.R.; Pereira, V.R.A.; de Castro, M.C.A.B.; Bernhardt, P.V.; Leite, A.C.L. 2-Pyridyl thiazoles as novel anti-Trypanosoma cruzi agents: Structural design, synthesis and pharmacological evaluation. Eur. J. Med. Chem., 2014, 86, 48-59. doi: 10.1016/j.ejmech.2014.08.012 PMID: 25147146
- Du, X.; Guo, C.; Hansell, E.; Doyle, P.S.; Caffrey, C.R.; Holler, T.P.; McKerrow, J.H.; Cohen, F.E. Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J. Med. Chem., 2002, 45(13), 2695-2707. doi: 10.1021/jm010459j PMID: 12061873
- de Moraes Gomes, P.A.T.; de Oliveira Barbosa, M.; Farias Santiago, E.; de Oliveira Cardoso, M.V.; Capistrano Costa, N.T.; Hernandes, M.Z.; Moreira, D.R.M.; da Silva, A.C.; dos Santos, T.A.R.; Pereira, V.R.A.; Brayner dos Santosd, F.A.; do Nascimento Pereira, G.A.; Ferreira, R.S.; Leite, A.C.L. New 1,3-thiazole derivatives and their biological and ultrastructural effects on Trypanosoma cruzi. Eur. J. Med. Chem., 2016, 121, 387-398. doi: 10.1016/j.ejmech.2016.05.050 PMID: 27295485
- de Oliveira Filho, G.B.; Cardoso, M.V.O.; Espíndola, J.W.P.; Oliveira e Silva, D.A.; Ferreira, R.S.; Coelho, P.L.; Anjos, P.S.; Santos, E.S.; Meira, C.S.; Moreira, D.R.M.; Soares, M.B.P.; Leite, A.C.L. Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi. Eur. J. Med. Chem., 2017, 141, 346-361. doi: 10.1016/j.ejmech.2017.09.047 PMID: 29031078
- Singh, A.; Malhotra, D.; Singh, K.; Chadha, R.; Bedi, P.M.S. Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. J. Mol. Struct., 2022, 1266, 133479. doi: 10.1016/j.molstruc.2022.133479
- Silva-Júnior, E.F.; Silva, E.P.S.; França, P.H.B.; Silva, J.P.N.; Barreto, E.O.; Silva, E.B.; Ferreira, R.S.; Gatto, C.C.; Moreira, D.R.M.; Siqueira-Neto, J.L.; Mendonça-Júnior, F.J.B.; Lima, M.C.A.; Bortoluzzi, J.H.; Scotti, M.T.; Scotti, L.; Meneghetti, M.R.; Aquino, T.M.; Araújo-Júnior, J.X. Design, synthesis, molecular docking and biological evaluation of thiophen-2-iminothiazolidine derivatives for use against Trypanosoma cruzi. Bioorg. Med. Chem., 2016, 24(18), 4228-4240. doi: 10.1016/j.bmc.2016.07.013 PMID: 27475533
- de Oliveira Filho, G.B.; de Oliveira Cardoso, M.V.; Espíndola, J.W.P.; Ferreira, L.F.G.R.; de Simone, C.A.; Ferreira, R.S.; Coelho, P.L.; Meira, C.S.; Magalhaes Moreira, D.R.; Soares, M.B.P.; Lima, Leite A.C. Structural design, synthesis and pharmacological evaluation of 4-thiazolidinones against Trypanosoma cruzi. Bioorg. Med. Chem., 2015, 23(23), 7478-7486. doi: 10.1016/j.bmc.2015.10.048 PMID: 26549870
- Moreira, D.R.M.; Lima, Leite A.C.; Cardoso, M.V.O.; Srivastava, R.M.; Hernandes, M.Z.; Rabello, M.M.; da Cruz, L.F.; Ferreira, R.S.; de Simone, C.A.; Meira, C.S.; Guimarães, E.T.; da Silva, A.C.; dos Santos, T.A.R.; Pereira, V.R.A.; Pereira Soares, M.B. Structural design, synthesis and structure-activity relationships of thiazolidinones with enhanced anti-Trypanosoma cruzi activity. ChemMedChem, 2014, 9(1), 177-188. doi: 10.1002/cmdc.201300354 PMID: 24203393
- Constantinescu, T.; Lungu, C.N. Anticancer activity of natural and synthetic chalcones. Int. J. Mol. Sci., 2021, 22(21), 11306. doi: 10.3390/ijms222111306 PMID: 34768736
- ur Rashid, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem., 2019, 87, 335-365. doi: 10.1016/j.bioorg.2019.03.033 PMID: 30921740
- Elkhalifa, D.; Al-Hashimi, I.; Al Moustafa, A.E.; Khalil, A. A comprehensive review on the antiviral activities of chalcones. J. Drug Target., 2021, 29(4), 403-419. doi: 10.1080/1061186X.2020.1853759 PMID: 33232192
- Okolo, E.N.; Ugwu, D.I.; Ezema, B.E.; Ndefo, J.C.; Eze, F.U.; Ezema, C.G.; Ezugwu, J.A.; Ujam, O.T. New chalcone derivatives as potential antimicrobial and antioxidant agent. Sci. Rep., 2021, 11(1), 21781. doi: 10.1038/s41598-021-01292-5 PMID: 34741131
- Gomes, M.N.; Braga, R.C.; Grzelak, E.M.; Neves, B.J.; Muratov, E.; Ma, R.; Klein, L.L.; Cho, S.; Oliveira, G.R.; Franzblau, S.G.; Andrade, C.H. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Eur. J. Med. Chem., 2017, 137, 126-138. doi: 10.1016/j.ejmech.2017.05.026 PMID: 28582669
- Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810. doi: 10.1021/acs.chemrev.7b00020 PMID: 28488435
- Pitchumani Violet Mary, C.; Shankar, R.; Vijayakumar, S. Mechanistic insights into the inhibition mechanism of cysteine cathepsins by chalcone-based inhibitors-a QM cluster model approach. Struct. Chem., 2019, 30(5), 1779-1793. doi: 10.1007/s11224-018-1273-3
- Park, J.Y.; Ko, J.A.; Kim, D.W.; Kim, Y.M.; Kwon, H.J.; Jeong, H.J.; Kim, C.Y.; Park, K.H.; Lee, W.S.; Ryu, Y.B. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J. Enzyme Inhib. Med. Chem., 2016, 31(1), 23-30. doi: 10.3109/14756366.2014.1003215 PMID: 25683083
- Borchhardt, D.M.; Mascarello, A.; Chiaradia, L.D.; Nunes, R.J.; Oliva, G.; Yunes, R.A.; Andricopulo, A.D. Biochemical evaluation of a series of synthetic chalcone and hydrazide derivatives as novel inhibitors of cruzain from Trypanosoma cruzi. J. Braz. Chem. Soc., 2010, 21(1), 142-150. doi: 10.1590/S0103-50532010000100021
- Vital, D.; Arribas, M.; Trossini, G. Molecular Modeling and docking application to evaluate cruzian inhibitory activity by chalcones and hydrazides. Lett. Drug Des. Discov., 2014, 11(3), 249-255. doi: 10.2174/15701808113106660082
- Magalhães, E.P.; Gomes, N.D.B.; Freitas, T.A.; Silva, B.P.; Ribeiro, L.R.; Ameida-Neto, F.W.Q.; Marinho, M.M.; Lima-Neto, P.; Marinho, E.S.; Santos, H.S.; Teixeira, A.M.R.; Sampaio, T.L.; Menezes, R.R.P.P.B.; Martins, A.M.C. Chloride substitution on 2-hydroxy-3,4,6-trimethoxyphenylchalcones improves in vitro selectivity on Trypanosoma cruzi strain Y. Chem. Biol. Interact., 2022, 361, 109920. doi: 10.1016/j.cbi.2022.109920 PMID: 35461787
- de Brito, D.H.A.; Almeida-Neto, F.W.Q.; Ribeiro, L.R.; Magalhães, E.P.; de Menezes, R.R.P.P.B.; Sampaio, T.L.; Martins, A.M.C.; Bandeira, P.N.; Marinho, M.M.; Marinho, E.S.; Barreto, A.C.H.; de Lima-Neto, P.; Saraiva, G.D.; Canuto, K.M.; dos Santos, H.S.; Teixeira, A.M.R.; Ricardo, N.M.P.S.; Canuto, K.M.; Santos, H.S.; Teixeira, A.M.R.; Ricardo, N.M.P.S. Synthesis, structural and spectroscopic analysis, and antiproliferative activity of chalcone derivate (E)-1-(4-aminophenyl)-3-(benzobthiophen-2-yl)prop 2-en-1-one in Trypanosoma cruzi. J. Mol. Struct., 2022, 1253, 132197. doi: 10.1016/j.molstruc.2021.132197
- Vargas, E.; Echeverri, F.; Upegui, Y.; Robledo, S.; Quiñones, W. Hydrazone derivatives enhance antileishmanial activity of thiochroman-4-ones. Molecules, 2017, 23(1), 70. doi: 10.3390/molecules23010070 PMID: 29286346
- Zebbiche, Z.; Tekin, S.; Küçükbay, H.; Yüksel, F.; Boumoud, B. Synthesis and anticancer properties of novel hydrazone derivatives incorporating pyridine and isatin moieties. Arch. Pharm., 2021, 354(5), 2000377. doi: 10.1002/ardp.202000377 PMID: 33368627
- Baier, A.; Kokel, A.; Horton, W. Gizińska, E.; Pandey, G.; Szyszka, R.; Török, B.; Török, M. Organofluorine hydrazone derivatives as multifunctional anti-Alzheimers agents with CK2 inhibitory and antioxidant features. ChemMedChem, 2021, 16(12), 1927-1932. doi: 10.1002/cmdc.202100047 PMID: 33713036
- Cywin, C.L.; Firestone, R.A.; McNeil, D.W.; Grygon, C.A.; Crane, K.M.; White, D.M.; Kinkade, P.R.; Hopkins, J.L.; Davidson, W.; Labadia, M.E.; Wildeson, J.; Morelock, M.M.; Peterson, J.D.; Raymond, E.L.; Brown, M.L.; Spero, D.M. The design of potent hydrazones and disulfides as cathepsin S inhibitors. Bioorg. Med. Chem., 2003, 11(5), 733-740. doi: 10.1016/S0968-0896(02)00468-6 PMID: 12538003
- Elizondo-Jimenez, S.; Moreno-Herrera, A.; Reyes-Olivares, R.; Dorantes-Gonzalez, E.; Nogueda-Torres, B.; Oliveira, E.; Romeiro, N.; Lima, L.; Palos, I.; Rivera, G. Synthesis, biological evaluation and molecular docking of new benzenesulfonylhydrazone as potential anti-Trypanosoma cruzi agents. Med. Chem., 2017, 13(2), 149-158. doi: 10.2174/1573406412666160701022230 PMID: 27396731
- Massarico Serafim, R.A.; Gonçalves, J.E.; de Souza, F.P.; de Melo Loureiro, A.P.; Storpirtis, S.; Krogh, R.; Andricopulo, A.D.; Dias, L.C.; Ferreira, E.I. Design, synthesis and biological evaluation of hybrid bioisoster derivatives of N-acylhydrazone and furoxan groups with potential and selective anti-Trypanosoma cruzi activity. Eur. J. Med. Chem., 2014, 82, 418-425. doi: 10.1016/j.ejmech.2014.05.077 PMID: 24929292
- Herrera-Mayorga, V.; Lara-Ramírez, E.; Chacón-Vargas, K.; Aguirre-Alvarado, C.; Rodríguez-Páez, L.; Alcántara-Farfán, V.; Cordero-Martínez, J.; Nogueda-Torres, B.; Reyes-Espinosa, F.; Bocanegra-García, V.; Rivera, G. Structure-based virtual screening and in vitro evaluation of new Trypanosoma cruzi cruzain inhibitors. Int. J. Mol. Sci., 2019, 20(7), 1742. doi: 10.3390/ijms20071742 PMID: 30970549
- Delgado-Maldonado, T.; Nogueda-Torres, B.; Espinoza-Hicks, J.C.; Vázquez-Jiménez, L.K.; Paz-González, A.D.; Juárez-Saldívar, A.; Rivera, G. Synthesis and biological evaluation in vitro and in silico of N-propionyl-N′-benzeneacylhydrazone derivatives as cruzain inhibitors of Trypanosoma cruzi. Mol. Divers., 2022, 26(1), 39-50. doi: 10.1007/s11030-020-10156-5 PMID: 33216257
- Suthar, S.K.; Chundawat, N.S.; Singh, G.P.; Padrón, J.M.; Jhala, Y.K. Quinoxaline: A comprehension of current pharmacological advancement in medicinal chemistry. Eur. J. Med. Chem. Rep., 2022, 5, 100040. doi: 10.1016/j.ejmcr.2022.100040
- Franck, X.; Fournet, A.; Prina, E.; Mahieux, R.; Hocquemiller, R.; Figadère, B. Biological evaluation of substituted quinolines. Bioorg. Med. Chem. Lett., 2004, 14(14), 3635-3638. doi: 10.1016/j.bmcl.2004.05.026 PMID: 15203133
- Salas, C.O.; Faúndez, M.; Morello, A.; Maya, J.D.; Tapia, R.A. Natural and synthetic naphthoquinones active against Trypanosoma cruzi: An initial step towards new drugs for Chagas disease. Curr. Med. Chem., 2011, 18(1), 144-161. doi: 10.2174/092986711793979779 PMID: 21110810
- Mendoza-Martínez, C.; Correa-Basurto, J.; Nieto-Meneses, R.; Márquez-Navarro, A.; Aguilar-Suárez, R.; Montero-Cortes, M.D.; Nogueda-Torres, B.; Suárez-Contreras, E.; Galindo-Sevilla, N.; Rojas-Rojas, Á.; Rodriguez-Lezama, A.; Hernández-Luis, F. Design, synthesis and biological evaluation of quinazoline derivatives as anti-trypanosomatid and anti-plasmodial agents. Eur. J. Med. Chem., 2015, 96, 296-307. doi: 10.1016/j.ejmech.2015.04.028 PMID: 25899334
- Andrade, M.M.S.; Martins, L.C.; Marques, G.V.L.; Silva, C.A.; Faria, G.; Caldas, S.; dos Santos, J.S.C.; Leclercq, S.Y.; Maltarollo, V.G.; Ferreira, R.S.; Oliveira, R.B. Synthesis of quinoline derivatives as potential cysteine protease inhibitors. Future Med. Chem., 2020, 12(7), fmc-2019-0201. doi: 10.4155/fmc-2019-0201 PMID: 32116030
- Barbosa da Silva, E.; Rocha, D.A.; Fortes, I.S.; Yang, W.; Monti, L.; Siqueira-Neto, J.L.; Caffrey, C.R.; McKerrow, J.; Andrade, S.F.; Ferreira, R.S. Structure-based optimization of quinazolines as cruzain and Tbr CATL inhibitors. J. Med. Chem., 2021, 64(17), 13054-13071. doi: 10.1021/acs.jmedchem.1c01151 PMID: 34461718
- Braga, S.F.P.; Martins, L.C.; da Silva, E.B.; Sales Júnior, P.A.; Murta, S.M.F.; Romanha, A.J.; Soh, W.T.; Brandstetter, H.; Ferreira, R.S.; de Oliveira, R.B. Synthesis and biological evaluation of potential inhibitors of the cysteine proteases cruzain and rhodesain designed by molecular simplification. Bioorg. Med. Chem., 2017, 25(6), 1889-1900. doi: 10.1016/j.bmc.2017.02.009 PMID: 28215783
- Silva, L.R.; Guimarães, A.S.; do Nascimento, J.; do Santos Nascimento, I.J.; da Silva, E.B.; McKerrow, J.H.; Cardoso, S.H.; da Silva-Júnior, E.F. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg. Med. Chem., 2021, 41, 116213. doi: 10.1016/j.bmc.2021.116213 PMID: 33992862
- Assis, D.M.; Gontijo, V.S.; de Oliveira Pereira, I.; Santos, J.A.N.; Camps, I.; Nagem, T.J.; Ellena, J.; Izidoro, M.A.; dos Santos Tersariol, I.L.; de Barros, N.M.T.; Doriguetto, A.C.; dos Santos, M.H.; Juliano, M.A. Inhibition of cysteine proteases by a natural biflavone: Behavioral evaluation of fukugetin as papain and cruzain inhibitor. J. Enzyme Inhib. Med. Chem., 2013, 28(4), 661-670. doi: 10.3109/14756366.2012.668539 PMID: 22468751
- Bellera, C.L.; Balcazar, D.E.; Alberca, L.; Labriola, C.A.; Talevi, A.; Carrillo, C. Application of computer-aided drug repurposing in the search of new cruzipain inhibitors: Discovery of amiodarone and bromocriptine inhibitory effects. J. Chem. Inf. Model., 2013, 53(9), 2402-2408. doi: 10.1021/ci400284v PMID: 23906322
- Palos, I.; Lara-Ramirez, E.E.; Lopez-Cedillo, J.C.; Garcia-Perez, C.; Kashif, M.; Bocanegra-Garcia, V.; Nogueda-Torres, B.; Rivera, G. Repositioning FDA drugs as potential cruzain inhibitors from Trypanosoma cruzi: Virtual screening, in vitro and in vivo studies. Molecules, 2017, 22(6), 1015. doi: 10.3390/molecules22061015 PMID: 28629155
- Pereira, G.A.N.; da Silva, E.B.; Braga, S.F.P.; Leite, P.G.; Martins, L.C.; Vieira, R.P.; Soh, W.T.; Villela, F.S.; Costa, F.M.R.; Ray, D.; de Andrade, S.F.; Brandstetter, H.; Oliveira, R.B.; Caffrey, C.R.; Machado, F.S.; Ferreira, R.S. Discovery and characterization of trypanocidal cysteine protease inhibitors from the malaria box. Eur. J. Med. Chem., 2019, 179, 765-778. doi: 10.1016/j.ejmech.2019.06.062 PMID: 31284086
- Ferreira, R.A.A.; Pauli, I.; Sampaio, T.S.; de Souza, M.L.; Ferreira, L.L.G.; Magalhães, L.G.; Rezende, C.O., Jr; Ferreira, R.S.; Krogh, R.; Dias, L.C.; Andricopulo, A.D. Structure-based and molecular modeling studies for the discovery of cyclic imides as reversible cruzain inhibitors with potent anti-Trypanosoma cruzi activity. Front Chem., 2019, 7, 798. doi: 10.3389/fchem.2019.00798 PMID: 31824926
- Couto, M.; Sánchez, C.; Dávila, B.; Machín, V.; Varela, J.; Álvarez, G.; Cabrera, M.; Celano, L.; Aguirre-López, B.; Cabrera, N.; de Gómez-Puyou, M.; Gómez-Puyou, A.; Pérez-Montfort, R.; Cerecetto, H.; González, M. 3-H-1,2Dithiole as a new anti-Trypanosoma cruzi chemotype: Biological and mechanism of action studies. Molecules, 2015, 20(8), 14595-14610. doi: 10.3390/molecules200814595 PMID: 26274947
- Neitz, R.J.; Bryant, C.; Chen, S.; Gut, J.; Hugo Caselli, E.; Ponce, S.; Chowdhury, S.; Xu, H.; Arkin, M.R.; Ellman, J.A.; Renslo, A.R. Tetrafluorophenoxymethyl ketone cruzain inhibitors with improved pharmacokinetic properties as therapeutic leads for Chagas disease. Bioorg. Med. Chem. Lett., 2015, 25(21), 4834-4837. doi: 10.1016/j.bmcl.2015.06.066 PMID: 26144347
- Wiggers, H.J.; Rocha, J.R.; Fernandes, W.B.; Sesti-Costa, R.; Carneiro, Z.A.; Cheleski, J.; da Silva, A.B.F.; Juliano, L.; Cezari, M.H.S.; Silva, J.S.; McKerrow, J.H.; Montanari, C.A. Non-peptidic cruzain inhibitors with trypanocidal activity discovered by virtual screening and in vitro assay. PLoS Negl. Trop. Dis., 2013, 7(8), e2370. doi: 10.1371/journal.pntd.0002370 PMID: 23991231
- Souza, T.B.; Caldas, I.S.; Paula, F.R.; Rodrigues, C.C.; Carvalho, D.T.; Dias, D.F. Synthesis, activity, and molecular modeling studies of 1,2,3‐triazole derivatives from natural phenylpropanoids as new trypanocidal agents. Chem. Biol. Drug Des., 2020, 95(1), 124-129. doi: 10.1111/cbdd.13628 PMID: 31569301
- Scarim, C.B.; Jornada, D.H.; Chelucci, R.C.; de Almeida, L.; dos Santos, J.L.; Chung, M.C. Current advances in drug discovery for Chagas disease. Eur. J. Med. Chem., 2018, 155, 824-838. doi: 10.1016/j.ejmech.2018.06.040 PMID: 30033393
Supplementary files
