An Update on Parkinsons Disease and its Neurodegenerative Counterparts
- Authors: Adam H.1, Gopinath S.2, Arshad M.3, Adam T.1, Subramaniam S.4, Hashim U.3
-
Affiliations:
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP)
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP)
- School of Biological Sciences,, Universiti Sains Malaysia
- Issue: Vol 31, No 19 (2024)
- Pages: 2770-2787
- Section: Anti-Infectives and Infectious Diseases
- URL: https://j-morphology.com/0929-8673/article/view/644590
- DOI: https://doi.org/10.2174/0929867330666230403085733
- ID: 644590
Cite item
Full Text
Abstract
Introduction:Neurodegenerative disorders are a group of diseases that cause nerve cell degeneration in the brain, resulting in a variety of symptoms and are not treatable with drugs. Parkinson's disease (PD), prion disease, motor neuron disease (MND), Huntington's disease (HD), spinal cerebral dyskinesia (SCA), spinal muscle atrophy (SMA), multiple system atrophy, Alzheimer's disease (AD), spinocerebellar ataxia (SCA) (ALS), pantothenate kinase-related neurodegeneration, and TDP-43 protein disorder are examples of neurodegenerative diseases. Dementia is caused by the loss of brain and spinal cord nerve cells in neurodegenerative diseases.
Background:Even though environmental and genetic predispositions have also been involved in the process, redox metal abuse plays a crucial role in neurodegeneration since the preponderance of symptoms originates from abnormal metal metabolism.
Method:Hence, this review investigates several neurodegenerative diseases that may occur symptoms similar to Parkinson's disease to understand the differences and similarities between Parkinson's disease and other neurodegenerative disorders based on reviewing previously published papers.
Results:Based on the findings, the aggregation of alpha-synuclein occurs in Parkinsons disease, multiple system atrophy, and dementia with Lewy bodies. Other neurodegenerative diseases occur with different protein aggregation or mutations
Conclusion:We can conclude that Parkinson's disease, Multiple system atrophy, and Dementia with Lewy bodies are closely related. Therefore, researchers must distinguish among the three diseases to avoid misdiagnosis of Multiple System Atrophy and Dementia with Lewy bodies with Parkinson's disease symptoms.
Keywords
About the authors
Hussaini Adam
Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP
Email: info@benthamscience.net
Subash Gopinath
Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP)
Author for correspondence.
Email: info@benthamscience.net
M.K. Arshad
Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP)
Email: info@benthamscience.net
Tijjani Adam
Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP
Email: info@benthamscience.net
Sreeramanan Subramaniam
School of Biological Sciences,, Universiti Sains Malaysia
Email: info@benthamscience.net
Uda Hashim
Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP)
Email: info@benthamscience.net
References
- Teissier, T.; Boulanger, E.; Deramecourt, V. Normal ageing of the brain: Histological and biological aspects. Rev. Neurol., 2020, 176(9), 649-660. doi: 10.1016/j.neurol.2020.03.017 PMID: 32418702
- Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035. doi: 10.1101/cshperspect.a028035 PMID: 28062563
- Wareham, L.K.; Liddelow, S.A.; Temple, S.; Benowitz, L.I.; Di Polo, A.; Wellington, C.; Goldberg, J.L.; He, Z.; Duan, X.; Bu, G.; Davis, A.A.; Shekhar, K.; Torre, A.L.; Chan, D.C.; Canto-Soler, M.V.; Flanagan, J.G.; Subramanian, P.; Rossi, S.; Brunner, T.; Bovenkamp, D.E.; Calkins, D.J. Solving neurodegeneration: Common mechanisms and strategies for new treatments. Mol. Neurodegener., 2022, 17(1), 23. doi: 10.1186/s13024-022-00524-0 PMID: 35313950
- Picca, A.; Calvani, R.; Coelho-Júnior, H.J.; Landi, F.; Bernabei, R.; Marzetti, E. Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration. Antioxidants, 2020, 9(8), 647. doi: 10.3390/antiox9080647 PMID: 32707949
- Deture, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimers disease. Mol Neurodegener, 2019, 5, 1-8. doi: 10.1186/s13024-019-0333-5 PMID: 31375134
- Gustavsson, A.; Norton, N.; Fast, T.; Frölich, L.; Georges, J.; Holzapfel, D.; Kirabali, T.; Krolak-Salmon, P.; Rossini, P.M.; Ferretti, M.T.; Lanman, L.; Chadha, A.S.; van der Flier, W.M. Global estimates on the number of persons across the Alzheimers disease continuum. Alzheimers Dement., 2022, 1-13. PMID: 35652476
- Wilkaniec, A.; Gąssowska-Dobrowolska, M.; Strawski, M.; Adamczyk, A.; Czapski, G.A. Inhibition of cyclin-dependent kinase 5 affects early neuroinflammatory signalling in murine model of amyloid beta toxicity. J. Neuroinflammation, 2018, 15(1), 1-18. doi: 10.1186/s12974-017-1027-y PMID: 29301548
- Shupp, A.; Casimiro, M.C.; Pestell, R.G. Biological functions of CDK5 and potential CDK5 targeted clinical treatments. Oncotarget, 2017, 8(10), 17373-17382. doi: 10.18632/oncotarget.14538 PMID: 28077789
- Zahoor, I.; Shafi, A.; Haq, E. Parkinsons disease (Book); Inc Animal Model Review, 2018.
- McKay, J.L.; Hackney, M.E.; Factor, S.A.; Ting, L.H. Lower limb rigidity is associated with frequent falls in Parkinsons disease. Mov. Disord. Clin. Pract., 2019, 6(6), 446-451. doi: 10.1002/mdc3.12784 PMID: 31392245
- Emanuele, M.; Chieregatti, E. Mechanisms of alpha-synuclein action on neurotransmission: Cell-autonomous and non-cell autonomous role. Biomolecules, 2015, 5(2), 865-892. doi: 10.3390/biom5020865 PMID: 25985082
- Novellino, F.; Salsone, M.; Riccelli, R.; Chiriaco, C.; Argirò, G.; Quattrone, A.; Madrigal, J.L.M.; Ferini Strambi, L.; Quattrone, A. Connectivity Alterations in Vascular Parkinsonism: A Structural Covariance Study; Applied Sciences: Switzerland, 2022, p. 12.
- Son, S.J.; Kim, M.; Park, H. Imaging analysis of Parkinsons disease patients using SPECT and tractography. Sci. Rep., 2016, 6(1), 38070. doi: 10.1038/srep38070 PMID: 27901100
- Ray, B.; Mahalakshmi, A.M.; Tuladhar, S.; Bhat, A.; Srinivasan, A.; Pellegrino, C.; Kannan, A.; Bolla, S.R.; Chidambaram, S.B.; Sakharkar, M.K. "Janus-faced" α-synuclein: Role in Parkinsons disease. Front. Cell Dev. Biol., 2021, 9, 673395. doi: 10.3389/fcell.2021.673395 PMID: 34124057
- Nishida, N.; Miyamoto, T. Prion disease. Nippon Naika Gakkai Zasshi, 1997, 86(7), 1262-1268. PMID: 9379109
- Hartmann, K.; Sepulveda-Falla, D.; Rose, I.V.L.; Madore, C.; Muth, C.; Matschke, J.; Butovsky, O.; Liddelow, S.; Glatzel, M.; Krasemann, S. Complement 3+-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia. Acta Neuropathol. Commun., 2019, 7(1), 83. doi: 10.1186/s40478-019-0735-1 PMID: 31118110
- Dirzius, E.; Balnyte, R.; Steibliene, V.; Gleizniene, R.; Gudinaviciene, I.; Radziunas, A.; Petrikonis, K. Sporadic Creutzfeldt-Jakob disease with unusual initial presentation as posterior reversible encephalopathy syndrome: A case report. BMC Neurol., 2016, 16(1), 234. doi: 10.1186/s12883-016-0751-8 PMID: 27876002
- Bernardi, L.; Bruni, A.C. Mutations in prion protein gene: Pathogenic mechanisms in c-terminal vs. n-terminal domain, a review. Int. J. Mol. Sci., 2019, 20(14), 3606. doi: 10.3390/ijms20143606 PMID: 31340582
- Asante, E.A.; Linehan, J.M.; Tomlinson, A.; Jakubcova, T.; Hamdan, S.; Grimshaw, A.; Smidak, M.; Jeelani, A.; Nihat, A.; Mead, S.; Brandner, S.; Wadsworth, J.D.F.; Collinge, J. Spontaneous generation of prions and transmissible PrP amyloid in a humanised transgenic mouse model of A117V GSS. PLoS Biol., 2020, 18(6), e3000725. doi: 10.1371/journal.pbio.3000725 PMID: 32516343
- Brown, P.; Brandel, J.P.; Sato, T.; Nakamura, Y.; MacKenzie, J.; Will, R.G.; Ladogana, A.; Pocchiari, M.; Leschek, E.W.; Schonberger, L.B. Iatrogenic Creutzfeldt-Jakob disease, final assessment. Emerg. Infect. Dis., 2012, 18(6), 901-907. doi: 10.3201/eid1806.120116 PMID: 22607808
- Llorens, F.; Villar-Piqué, A.; Hermann, P.; Schmitz, M.; Calero, O.; Stehmann, C.; Sarros, S.; Moda, F.; Ferrer, I.; Poleggi, A.; Pocchiari, M.; Catania, M.; Klotz, S.; ORegan, C.; Brett, F.; Heffernan, J.; Ladogana, A.; Collins, S.J.; Calero, M.; Kovacs, G.G.; Zerr, I. Diagnostic accuracy of prion disease biomarkers in iatrogenic creutzfeldt-jakob disease. Biomolecules, 2020, 10(2), 290. doi: 10.3390/biom10020290 PMID: 32059611
- Watson, N.; Brandel, J.P.; Green, A.; Hermann, P.; Ladogana, A.; Lindsay, T.; Mackenzie, J.; Pocchiari, M.; Smith, C.; Zerr, I.; Pal, S. The importance of ongoing international surveillance for CreutzfeldtJakob disease. Nat. Rev. Neurol., 2021, 17(6), 362-379. doi: 10.1038/s41582-021-00488-7 PMID: 33972773
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; Fleischmann-Struzek, C.; Machado, F.R.; Reinhart, K.K.; Rowan, K.; Seymour, C.W.; Watson, R.S.; West, T.E.; Marinho, F.; Hay, S.I.; Lozano, R.; Lopez, A.D.; Angus, D.C.; Murray, C.J.L.; Naghavi, M. Global, regional, and national sepsis incidence and mortality, 19902017: analysis for the Global Burden of Disease Study. Lancet, 2020, 395(10219), 200-211. doi: 10.1016/S0140-6736(19)32989-7 PMID: 31954465
- Hermann, P.; Appleby, B.; Brandel, J.P.; Caughey, B.; Collins, S.; Geschwind, M.D.; Green, A.; Haïk, S.; Kovacs, G.G.; Ladogana, A.; Llorens, F.; Mead, S.; Nishida, N.; Pal, S.; Parchi, P.; Pocchiari, M.; Satoh, K.; Zanusso, G.; Zerr, I. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol., 2021, 20(3), 235-246. doi: 10.1016/S1474-4422(20)30477-4 PMID: 33609480
- Li, B.; Chen, M.; Zhu, C. Neuroinflammation in prion disease. Int. J. Mol. Sci., 2021, 22(4), 2196. doi: 10.3390/ijms22042196 PMID: 33672129
- Ragagnin, A.M.G.; Shadfar, S.; Vidal, M.; Jamali, M.S.; Atkin, J.D. Motor neuron susceptibility in ALS/FTD. Front. Neurosci., 2019, 13, 532. doi: 10.3389/fnins.2019.00532 PMID: 31316328
- De Marchi, F.; Carrarini, C.; De Martino, A.; Diamanti, L.; Fasano, A.; Lupica, A.; Russo, M.; Salemme, S.; Spinelli, E.G.; Bombaci, A. Cognitive dysfunction in amyotrophic lateral sclerosis: Can we predict it? Neurol. Sci., 2021, 42(6), 2211-2222. doi: 10.1007/s10072-021-05188-0 PMID: 33772353
- Benbrika, S.; Desgranges, B.; Eustache, F.; Viader, F. Cognitive, emotional and psychological manifestations in amyotrophic lateral sclerosis at baseline and overtime: A review. Front. Neurosci., 2019, 13, 951. doi: 10.3389/fnins.2019.00951 PMID: 31551700
- Potter, H.; Chial, H.J.; Caneus, J.; Elos, M.; Elder, N.; Borysov, S.; Granic, A. Chromosome instability and mosaic aneuploidy in neurodegenerative and neurodevelopmental disorders. Front. Genet., 2019, 10, 1092. doi: 10.3389/fgene.2019.01092 PMID: 31788001
- Shin, J.W.; Kim, K.H.; Chao, M.J.; Atwal, R.S.; Gillis, T.; MacDonald, M.E.; Gusella, J.F.; Lee, J.M. Permanent inactivation of Huntingtons disease mutation by personalized allele-specific CRISPR/Cas9. Hum. Mol. Genet., 2016, 25(20), ddw286. doi: 10.1093/hmg/ddw286 PMID: 28172889
- Nopoulos, P.C. Huntington disease: A single-gene degenerative disorder of the striatum. Dialogues Clin. Neurosci., 2016, 18(1), 91-98. doi: 10.31887/DCNS.2016.18.1/pnopoulos PMID: 27069383
- Delatycki, M.B.; Bandmann, O. Huntington disease. Neurology, 2016, 87(3), 247-248. doi: 10.1212/WNL.0000000000002874 PMID: 27335111
- Caron, N.S.; Wright, G.E.B.; Hayden, M.R.; Frcp, C. Huntington Disease Summary Suggestive Findings; GeneReviews, 2019, pp. 1-34.
- Ready, R.E.; Boileau, N.R.; Barton, S.K.; Lai, J.S.; McCormack, M.K.; Cella, D.; Fritz, N.E.; Paulsen, J.S.; Carlozzi, N.E. Positive affect and well-being in Huntingtons disease moderates the association between functional impairment and HRQOL outcomes. J. Huntingtons Dis., 2019, 8(2), 221-232. doi: 10.3233/JHD-180341 PMID: 31045519
- Irfan, Z.; Khanam, S.; Karmakar, V.; Firdous, S.M.; El Khier, B.S.I.A.; Khan, I.; Rehman, M.U.; Khan, A. Pathogenesis of Huntingtons disease: An emphasis on molecular pathways and prevention by natural remedies. Brain Sci., 2022, 12(10), 1389. doi: 10.3390/brainsci12101389 PMID: 36291322
- Feustel, A.C.; MacPherson, A.; Fergusson, D.A.; Kieburtz, K.; Kimmelman, J. Risks and benefits of unapproved disease-modifying treatments for neurodegenerative disease. Neurology, 2020, 94(1), e1-e14. doi: 10.1212/WNL.0000000000008699 PMID: 31792092
- Cummings, J.; Ritter, A.; Zhong, K. Clinical trials for disease-modifying therapies in Alzheimers disease: A primer, lessons learned, and a blueprint for the future. J. Alzheimers Dis., 2018, 64(s1), S3-S22. doi: 10.3233/JAD-179901 PMID: 29562511
- Ellerby, L.M. Repeat expansion disorders: Mechanisms and therapeutics. Neurotherapeutics, 2019, 16(4), 924-927. doi: 10.1007/s13311-019-00823-3 PMID: 31907874
- Park, J.Y.; Joo, K.; Woo, S.J. Ophthalmic manifestations and genetics of the polyglutamine autosomal dominant spinocerebellar ataxias: A review. Front. Neurosci., 2020, 14, 892. doi: 10.3389/fnins.2020.00892 PMID: 32973440
- Storey, E. Spinocerebellar Ataxia Type 15 Summary Genetic Counseling Clinical Diagnosis; GeneReviews, 2019, pp. 1-12.
- Perlman, S. Hereditary Ataxia Overview 1; Clinical Characteristics of Primary Hereditary Ataxia, 2022, pp. 1-20.
- Anon. Inheriting Genetic Conditions. Me, Help Genetics, Understand Services, Human; , 2012, pp. 10-11.
- Matsuura, T.; Ashizawa, T. Spinocerebellar Ataxia Type 10 Summary Genetic Counseling Suggestive Findings; GeneReviews, 2019, pp. 1-20.
- Chintalaphani, S.R.; Pineda, S.S.; Deveson, I.W.; Kumar, K.R. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol. Commun., 2021, 9(1), 98. doi: 10.1186/s40478-021-01201-x PMID: 34034831
- Tisdale, S.; Pellizzoni, L. Disease mechanisms and therapeutic approaches in spinal muscular atrophy. J. Neurosci., 2015, 35(23), 8691-8700. doi: 10.1523/JNEUROSCI.0417-15.2015 PMID: 26063904
- Tisdale, S.; Pellizzoni, L. Spinal muscular atrophy: Mutations, testing, and clinical relekeinath, Melissa C. prior, devivance. Appl. Clin. Genet., 2021, 14, 11-25. doi: 10.2147/TACG.S239603
- Keinath, M.C.; Prior, D.E.; Prior, T.W. Spinal muscular atrophy: Mutations, testing, and clinical relevance. Appl. Clin. Genet., 2021, 14, 11-25. doi: 10.2147/TACG.S239603 PMID: 33531827
- Butchbach, M.E.R. Copy number variations in the survival motor neuron genes: Implications for spinal muscular atrophy and other neurodegenerative diseases. Front. Mol. Biosci., 2016, 3, 7. doi: 10.3389/fmolb.2016.00007 PMID: 27014701
- Kraszewski, J.N.; Kay, D.M.; Stevens, C.F.; Koval, C.; Haser, B.; Ortiz, V.; Albertorio, A.; Cohen, L.L.; Jain, R.; Andrew, S.P.; Young, S.D.; LaMarca, N.M.; De Vivo, D.C.; Caggana, M.; Chung, W.K. Pilot study of population-based newborn screening for spinal muscular atrophy in New York state. Genet. Med., 2018, 20(6), 608-613. doi: 10.1038/gim.2017.152 PMID: 29758563
- Vijzelaar, R.; Snetselaar, R.; Clausen, M.; Mason, A.G.; Rinsma, M.; Zegers, M.; Molleman, N.; Boschloo, R.; Yilmaz, R.; Kuilboer, R.; Lens, S.; Sulchan, S.; Schouten, J. The frequency of SMN gene variants lacking exon 7 and 8 is highly population dependent. PLoS One, 2019, 14(7), e0220211. doi: 10.1371/journal.pone.0220211 PMID: 31339938
- Niba, E.T.E.; Ar Rochmah, M.; Harahap, N.I.F.; Awano, H.; Morioka, I.; Iijima, K.; Saito, T.; Saito, K.; Takeuchi, A.; Lai, P.S.; Bouike, Y.; Nishio, H.; Shinohara, M. SMA diagnosis: Detection of SMN1 deletion with real-time mCOP-PCR system using fresh blood DNA. Kobe J. Med. Sci., 2017, 63(3), E80-E83. PMID: 29434179
- Pellecchia, M.T.; Stankovic, I.; Fanciulli, A.; Krismer, F.; Meissner, W.G.; Palma, J.A.; Panicker, J.N.; Seppi, K.; Wenning, G.K.; Barone, P.; Kostic, V.; Sabanovic, M.; Bajaj, S.; Kaufmann, H.; Quinn, N.; Antonini, A.; Bang, J.; Pantelyat, A.; Berardelli, A.; Berg, D.; Biaggioni, I.; Bloem, B.; Brooks, D.J.; Calandra-Buonaura, G.; Cortelli, P.; Colosimo, C.; Ferreira, J.; Fox, S.; Frauscher, B.; Freeman, R.; Fung, V.; Gasser, T.; Gerhard, A.; Goldstein, D.; Hallett, M.; Halliday, G.; Höglinger, G.U.; Holton, J.L.; Houlden, H.; Iodice, V.; Klockgether, T.; Lang, A.; Ling, H.; Low, P.; Litvan, I.; Miki, Y.; Nomura, T.; Orimo, S.; Ozawa, T.; Postuma, R.; Rascol, O.; Robertson, D.; Sakakibara, R.; Sampaio, C.; Schmahmann, J.D.; Scholz, S.; Senard, J-M.; Sharma, M.; Singer, W.; Stamelou, M.; Takeda, A.; Tolosa, E.; Tsuji, S.; Vignatelli, L.; Walter, U.; Watanabe, H.; Weintraub, D.; Siebert, U.; Poewe, W. Can autonomic testing and imaging contribute to the early diagnosis of multiple system atrophy? a systematic review and recommendations by the movement disorder society multiple system atrophy study group. Mov. Disord. Clin. Pract., 2020, 7(7), 750-762. doi: 10.1002/mdc3.13052 PMID: 33043073
- Jellinger, K.A. Multiple system atrophy: An oligodendroglioneural synucleinopathy1. J. Alzheimers Dis., 2018, 62(3), 1141-1179. doi: 10.3233/JAD-170397 PMID: 28984582
- Kim, H.J.; Jeon, B.; Fung, V.S.C. Role of magnetic resonance imaging in the diagnosis of multiple system atrophy. Mov. Disord. Clin. Pract., 2017, 4(1), 12-20. doi: 10.1002/mdc3.12404 PMID: 30363358
- Blesa, J.; Trigo-Damas, I.; Dileone, M.; del Rey, N.L.G.; Hernandez, L.F.; Obeso, J.A. Compensatory mechanisms in Parkinsons disease: Circuits adaptations and role in disease modification. Exp. Neurol., 2017, 298(Pt B), 148-161. doi: 10.1016/j.expneurol.2017.10.002 PMID: 28987461
- Kim, M.; Ahn, J.H.; Cho, Y.; Kim, J.S.; Youn, J.; Cho, J.W. Differential value of brain magnetic resonance imaging in multiple system atrophy cerebellar phenotype and spinocerebellar ataxias. Sci. Rep., 2019, 9(1), 17329. doi: 10.1038/s41598-019-53980-y PMID: 31758059
- Chen, H.J.; Gao, Y.Q.; Che, C.H.; Lin, H.; Ruan, X.L. Diffusion tensor imaging with tract-based spatial statistics reveals white matter abnormalities in patients with vascular cognitive impairment. Front. Neuroanat., 2018, 12, 53. doi: 10.3389/fnana.2018.00053 PMID: 29997482
- Zhang, Y.; Burock, M.A. Corrigendum: Diffusion tensor imaging in Parkinsons disease and parkinsonian syndrome: A systematic review. Front. Neurol., 2020, 11, 612069. doi: 10.3389/fneur.2020.612069
- Cao, Z.; Wu, Y.; Liu, G.; Jiang, Y.; Wang, X.; Wang, Z.; Feng, T. Differential diagnosis of multiple system atrophy-parkinsonism and Parkinsons disease using α-synuclein and external anal sphincter electromyography. Front. Neurol., 2020, 11, 1043. doi: 10.3389/fneur.2020.01043 PMID: 33041984
- Compagnoni, G.M.; Di Fonzo, A. Understanding the pathogenesis of multiple system atrophy: state of the art and future perspectives. Acta Neuropathol. Commun., 2019, 7(1), 113. doi: 10.1186/s40478-019-0730-6 PMID: 31300049
- Lechtzin, N. Predicting respiratory failure in amyotrophic lateral sclerosis: recruiting a few good pulmonologists. Eur. Respir. J., 2019, 53(4), 1900360. doi: 10.1183/13993003.00360-2019 PMID: 31000666
- Soiza, R.L.; Donaldson, A.I.C.; Myint, P.K. Vaccine against arteriosclerosis: An update. Ther. Adv. Vaccines, 2018, 9, 259-261.
- Masrori, P.; Van Damme, P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol., 2020, 27(10), 1918-1929. doi: 10.1111/ene.14393 PMID: 32526057
- Re, D.B.; Yan, B.; Calderón-Garcidueñas, L.; Andrew, A.S.; Tischbein, M.; Stommel, E.W. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: Identifying exposures determining higher ALS risk. J. Neurol., 2022, 269(5), 2359-2377. doi: 10.1007/s00415-021-10928-5 PMID: 34973105
- Alzheimers disease facts and figures. Alzheimers Dement., 2020, 16(3), 391-460. doi: 10.1002/alz.12068
- Bonanni, L.; Franciotti, R.; Pizzi, S.D.; Thomas, A.; Onofrj, M. Lewy Body Dementia. NeurodegeneratIve Diseases: Clinical Aspects; Molecular Genetics and Biomarkers, 2018, pp. 297-312. doi: 10.1007/978-3-319-72938-1_14
- Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W.; Unit, M.D.; Service, N.; Barcelona, U.; De Challenges in the diagnosis of Parkinsons disease. Lancet Neurol, 2022, 20, 385-397.
- Outeiro, T.F.; Koss, D.J.; Erskine, D.; Walker, L.; Kurzawa-Akanbi, M.; Burn, D.; Donaghy, P.; Morris, C.; Taylor, J.P.; Thomas, A.; Attems, J.; McKeith, I. Dementia with Lewy bodies: An update and outlook. Mol. Neurodegener., 2019, 14(1), 5. doi: 10.1186/s13024-019-0306-8 PMID: 30665447
- Alzheimers disease facts and figures. Alzheimers Dement., 2021, 17(3), 327-406. doi: 10.1002/alz.12328 PMID: 33756057
- Jellinger, K.A.; Korczyn, A.D. Are dementia with Lewy bodies and Parkinsons disease dementia the same disease? BMC Med., 2018, 16(1), 34. doi: 10.1186/s12916-018-1016-8 PMID: 29510692
- Capouch, S.D.; Farlow, M.R.; Brosch, J.R. A review of dementia with Lewy bodies impact, diagnostic criteria and treatment. Neurol. Ther., 2018, 7(2), 249-263. doi: 10.1007/s40120-018-0104-1 PMID: 29987534
- Ruangritchankul, S.; Gray, L.C. Adverse drug reactions of acetylcholinesterase inhibitors in older people living with dementia : A comprehensive literature review. Ther Clin Risk Manag, 2021, 17, 927-949. doi: 10.2147/TCRM.S323387
- Parra, H.H.; Cortés, H.; Arturo, J.; Fuentes, A.; Del, M.; Audelo, P.; Florán, B.; Gómez, G.L.; Rad, J.S.; Cho, W.C. Repositioning of drugs for Parkinsons disease and pharmaceutical nanotechnology tools for their optimization. J. Nanobiotechnology, 2022, 20(1), 413.
- Budayr, A.; Tan, T.C.; Lo, J.C.; Zaroff, J.G.; Tabada, G.H.; Yang, J.; Go, A.S. Cardiac valvular abnormalities associated with use and cumulative exposure of cabergoline for hyperprolactinemia: The CATCH study. BMC Endocr Disord, 2020, 20(1), 25.
- Cepeda, C.; Murphy, K.P.S.; Parent, M.; Levine, M.S.; Disabilities, D.; Behavior, H.; Keynes, M.; City, Q. The role of dopamine in Huntingtons disease. Prog Brain Res, 2015, 211, 235-254. doi: 10.1016/B978-0-444-63425-2.00010-6 PMID: 24968783
- Sellner, J.; Hauer, L.; Illes, Z.; Warnke, C.; Laurent, S.; Levy, M. Immunological aspects of approved MS therapeutics. Front. Immunol., 2019, 10, 1-24.
- Cong, W.; Bai, R.; Li, Y.F.; Wang, L.; Chen, C. Selenium nanoparticles as an efficient nanomedicine for the therapy of Huntingtons disease. ACS Appl. Mater. Interfaces, 2019, 11(38), 34725-34735. doi: 10.1021/acsami.9b12319 PMID: 31479233
- Monge-Fuentes, V.; Biolchi Mayer, A.; Lima, M.R.; Geraldes, L.R.; Zanotto, L.N.; Moreira, K.G.; Martins, O.P.; Piva, H.L.; Felipe, M.S.S.; Amaral, A.C.; Bocca, A.L.; Tedesco, A.C.; Mortari, M.R. Dopamine-loaded nanoparticle systems circumvent the bloodbrain barrier restoring motor function in mouse model for Parkinsons disease. Sci. Rep., 2021, 11(1), 15185. doi: 10.1038/s41598-021-94175-8 PMID: 34312413
- Díaz-García, D.; Ferrer-Donato, Á.; Méndez-Arriaga, J.M.; Cabrera-Pinto, M.; Díaz-Sánchez, M.; Prashar, S.; Fernandez-Martos, C.M.; Gómez-Ruiz, S. Design of mesoporous silica nanoparticles for the treatment of amyotrophic lateral sclerosis (ALS) with a therapeutic cocktail based on leptin and pioglitazone. ACS Biomater. Sci. Eng., 2022, 8(11), 4838-4849. doi: 10.1021/acsbiomaterials.2c00865 PMID: 36240025
- Wang, Z.; Cheng, Y.; Zhao, D.; Pliss, A.; Liu, J.; Luan, P. Synergic treatment of Alzheimers disease with brain targeted nanoparticles incorporating NgR-siRNA and brain derived neurotrophic factor. Smart Materials in Medicine, 2020, 1, 125-130. doi: 10.1016/j.smaim.2020.08.001
- Bhattacharya, T.; Soares, G.A.B.; Chopra, H.; Rahman, M.M.; Hasan, Z.; Swain, S.S.; Cavalu, S. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials, 2022, 15(3), 804. doi: 10.3390/ma15030804 PMID: 35160749
- Pinheiro, R.G.R.; Coutinho, A.J.; Pinheiro, M.; Neves, A.R. Nanoparticles for targeted brain drug delivery: What do we know? Int. J. Mol. Sci., 2021, 22(21), 11654. doi: 10.3390/ijms222111654 PMID: 34769082
- Satapathy, M.K.; Yen, T.L.; Jan, J.S.; Tang, R.D.; Wang, J.Y.; Taliyan, R.; Yang, C.H. Solid lipid nanoparticles (SLNs): An advanced drug delivery system targeting brain through BBB. Pharmaceutics, 2021, 13(8), 1183. doi: 10.3390/pharmaceutics13081183 PMID: 34452143
- Bellettato, C.M.; Scarpa, M. Possible strategies to cross the bloodbrain barrier. Ital. J. Pediatr., 2018, 44(S2), 131. doi: 10.1186/s13052-018-0563-0 PMID: 30442184
- Niu, X.; Chen, J.; Gao, J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J. Pharm. Sci., 2019, 14(5), 480-496. doi: 10.1016/j.ajps.2018.09.005 PMID: 32104476
- Delello, L.; Filippo, D.; Duarte, J.L.; Luiz, M.T.; Thayanne, J.; Araújo, C.; De; Chorilli, M. Drug delivery nanosystems in glioblastoma multiforme treatment: Current state of the art. Curr. Neuropharmacol, 2021, 19(6), 787-812.
- Acidic, G.F. Drug Delivery Nanosystems in Glioblastoma Multiforme Treatment: Current state of the Art.M Curr Neuropharmacol, 2021, 19(6), 787-812.
- Krzyzowska, M.; Janicka, M.; Tomaszewska, E.; Ranoszek-soliwoda, K.; Celichowski, G.; Grobelny, J.; Szymanski, P. Lactoferrin-conjugated nanoparticles as new antivirals. Pharmaceutics., 2022, 14(9), 1862. doi: 10.3390/pharmaceutics14091862
- Haney, M.J.; Zhao, Y.; Fay, J.; Duhyeong, H.; Wang, M.; Wang, H.; Li, Z.; Lee, Y.Z.; Karuppan, M.K.; El-Hage, N.; Kabanov, A.V.; Batrakova, E.V. Genetically modified macrophages accomplish targeted gene delivery to the inflamed brain in transgenic Parkin Q311X(A) mice: Importance of administration routes. Sci. Rep., 2020, 10(1), 11818. doi: 10.1038/s41598-020-68874-7 PMID: 32678262
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124. doi: 10.1038/s41573-020-0090-8 PMID: 33277608
- Khan, N.H.; Mir, M.; Ngowi, E.E.; Zafar, U.; Khakwani, M.M.A.K.; Khattak, S.; Zhai, Y.K.; Jiang, E.S.; Zheng, M.; Duan, S.F.; Wei, J.S.; Wu, D.D.; Ji, X.Y. Nanomedicine: A promising way to manage alzheimers disease. Front. Bioeng. Biotechnol., 2021, 9, 630055. doi: 10.3389/fbioe.2021.630055 PMID: 33996777
- Wang, W.W.; Zhang, X.R.; Lin, J.Y.; Zhang, Z.R.; Wang, Z.; Chen, S.Y.; Xie, C.L. Levodopa/benserazide PLGA microsphere prevents l-dopainduced dyskinesia via lower β-arrestin2 in 6-hydroxydopamine Parkinsons rats. Front. Pharmacol., 2019, 10, 660. doi: 10.3389/fphar.2019.00660 PMID: 31275144
- Rahman, M.M.; Lendel, C. Extracellular protein components of amyloid plaques and their roles in Alzheimers disease pathology. Mol. Neurodegener., 2021, 16(1), 59. doi: 10.1186/s13024-021-00465-0 PMID: 34454574
- Miculas, D.C.; Negru, P.A.; Bungau, S.G.; Behl, T.; Hassan, S.S.; Tit, D.M. Pharmacotherapy evolution in Alzheimers disease: Current framework and relevant directions. Cells, 2022, 12(1), 131. doi: 10.3390/cells12010131 PMID: 36611925
- Visanji, N.P.; Lang, A.E.; Kovacs, G.G. Beyond the synucleinopathies: Alpha synuclein as a driving force in neurodegenerative comorbidities. Transl. Neurodegener., 2019, 8(1), 28. doi: 10.1186/s40035-019-0172-x PMID: 31508228
- Mar, H.; Widman, E.; Johansson, A. Personalized medicine approach in treating Parkinsons disease, using oral administration of levodopa/carbidopa microtablets in clinical practice. J. Pers. Med., 2021, 11(8), 720.
- Mahul-Mellier, A.L.; Burtscher, J.; Maharjan, N.; Weerens, L.; Croisier, M.; Kuttler, F.; Leleu, M.; Knott, G.W.; Lashuel, H.A. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc. Natl. Acad. Sci., 2020, 117(9), 4971-4982. doi: 10.1073/pnas.1913904117 PMID: 32075919
- Taylor, J.P.; McKeith, I.G.; Burn, D.J.; Boeve, B.F.; Weintraub, D.; Bamford, C.; Allan, L.M.; Thomas, A.J.; OBrien, J.T. New evidence on the management of Lewy body dementia. Lancet Neurol., 2020, 19(2), 157-169. doi: 10.1016/S1474-4422(19)30153-X PMID: 31519472
- Lee, H.J.; Ricarte, D.; Ortiz, D.; Lee, S.J. Models of multiple system atrophy. Exp. Mol. Med., 2019, 51(11), 1-10. PMID: 31740682
- Ortiz, J.F.; Betté, S.; Tambo, W.; Tao, F.; Cozar, J.C.; Isaacson, S. Multiple system atrophy cerebellar type: clinical picture and treatment of an often-overlooked disorder. Cureus, 2020, 12. doi: 10.7759/cureus.10741
- Hickman, R.A.; Faust, P.L.; Marder, K.; Yamamoto, A.; Vonsattel, J.P. The distribution and density of Huntingtin inclusions across the Huntington disease neocortex: regional correlations with Huntingtin repeat expansion independent of pathologic grade. Acta Neuropathol. Commun., 2022, 10(1), 55. doi: 10.1186/s40478-022-01364-1 PMID: 35440014
- Claassen, D.O.; Ayyagari, R.; Garcia-Horton, V.; Zhang, S.; Alexander, J.; Leo, S. Real-world adherence to tetrabenazine or deutetrabenazine among patients with Huntingtons disease: A retrospective database analysis. Neurol. Ther., 2022, 11(1), 435-448. doi: 10.1007/s40120-021-00309-5 PMID: 34905160
- Suk, T.R.; Rousseaux, M.W.C. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol. Neurodegener., 2020, 15(1), 45. doi: 10.1186/s13024-020-00397-1 PMID: 32799899
- Xu, X.; Shen, D.; Gao, Y.; Zhou, Q.; Ni, Y.; Meng, H.; Shi, H.; Le, W.; Chen, S.; Chen, S. A perspective on therapies for amyotrophic lateral sclerosis: Can disease progression be curbed? Transl. Neurodegener., 2021, 10(1), 29. doi: 10.1186/s40035-021-00250-5 PMID: 34372914
Supplementary files
