The Treatment of a New Entity in Advanced Non-small Cell Lung Cancer: MET Exon 14 Skipping Mutation
- Authors: Rocco D.1, Gravara L.2, Palazzolo G.3, Gridelli C.4
-
Affiliations:
- Department of Pulmonary Oncology, AORN dei Colli Monaldi
- Department of Precision Medicine, Università degli studi della Campania "Luigi Vanvitelli"
- Division of Medical Oncology, ULSS 15 Cittadella
- Division of Medical Oncology, S.G. Moscati Hospital
- Issue: Vol 31, No 21 (2024)
- Pages: 3043-3056
- Section: Anti-Infectives and Infectious Diseases
- URL: https://j-morphology.com/0929-8673/article/view/644707
- DOI: https://doi.org/10.2174/0929867331666230803094432
- ID: 644707
Cite item
Full Text
Abstract
Background:MET (MET Proto-Oncogene, Receptor Tyrosine Kinase) exon 14 skipping mutation represents one of the most common MET alterations, accounting for approximately 1-3% of all mutations in advanced lung adenocarcinomas. While until 2020 no specific treatment was available for this subset of patients, as of today, three MET Tyrosine Kinase Inhibitors (TKIs) are currently approved in this setting, namely capmatinib, tepotinib and savolitinib.
Objective:This article aims to provide an extensive overview of the current therapeutic standard of care for exon 14 skipped advanced Non-small Cell Lung Cancer (NSCLC) patients, alongside with mentions of the main future challenges and opportunities.
Conclusion:FDA-approved MET-TKIs currently represent the best option for treating exon 14 skipped advanced NSCLC patients, thanks to their excellent efficacy profile, alongside their manageable safety and tolerability. However, we currently lack specific agents to treat patients progressing on capmatinib or tepotinib, due to a limited understanding of the mechanisms underlying both on- and off-target resistance. In this respect, on-target mutations presently constitute the most explored ones from a mechanistic point of view, and type II MET-TKIs are currently under investigation as the most promising agents capable of overcoming the acquired resistance.
About the authors
Danilo Rocco
Department of Pulmonary Oncology, AORN dei Colli Monaldi
Email: info@benthamscience.net
Luigi Gravara
Department of Precision Medicine, Università degli studi della Campania "Luigi Vanvitelli"
Email: info@benthamscience.net
Giovanni Palazzolo
Division of Medical Oncology, ULSS 15 Cittadella
Email: info@benthamscience.net
Cesare Gridelli
Division of Medical Oncology, S.G. Moscati Hospital
Author for correspondence.
Email: info@benthamscience.net
References
- Zhang, Y.; Xia, M.; Jin, K.; Wang, S.; Wei, H.; Fan, C.; Wu, Y.; Li, X.; Li, X.; Li, G.; Zeng, Z.; Xiong, W. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol. Cancer, 2018, 17(1), 45. doi: 10.1186/s12943-018-0796-y PMID: 29455668
- Giordano, S.; Di Renzo, M.F.; Narsimhan, R.P.; Cooper, C.S.; Rosa, C.; Comoglio, P.M. Biosynthesis of the protein encoded by the c-met proto-oncogene. Oncogene, 1989, 4(11), 1383-1388. PMID: 2554238
- Sierra, J.R.; Tsao, M.S. c-MET as a potential therapeutic target and biomarker in cancer. Ther. Adv. Med. Oncol., 2011, 3(S1), S21-S35. doi: 10.1177/1758834011422557 PMID: 22128285
- Safaie Qamsari, E.; Safaei Ghaderi, S.; Zarei, B.; Dorostkar, R.; Bagheri, S.; Jadidi-Niaragh, F.; Somi, M.H.; Yousefi, M. The c-Met receptor: Implication for targeted therapies in colorectal cancer. Tumour Biol., 2017, 39(5) doi: 10.1177/1010428317699118 PMID: 28459362
- Yang, X.; Liao, H.Y.; Zhang, H.H. Roles of MET in human cancer. Clin. Chim. Acta, 2022, 525, 69-83. doi: 10.1016/j.cca.2021.12.017 PMID: 34951962
- Matsumoto, K.; Umitsu, M.; De Silva, D.M.; Roy, A.; Bottaro, D.P. Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci., 2017, 108(3), 296-307. doi: 10.1111/cas.13156 PMID: 28064454
- Tolbert, W.D.; Daugherty-Holtrop, J.; Gherardi, E.; Vande Woude, G.; Xu, H.E. Structural basis for agonism and antagonism of hepatocyte growth factor. Proc. Natl. Acad. Sci., 2010, 107(30), 13264-13269. doi: 10.1073/pnas.1005183107 PMID: 20624990
- Zhang, J.; Babic, A. Regulation of the MET oncogene: Molecular mechanisms. Carcinogenesis., 2016, 37(4), 345-355. doi: 10.1093/carcin/bgw015 PMID: 26905592
- Linossi, E.M.; Estevam, G.O.; Oshima, M.; Fraser, J.S.; Collisson, E.A.; Jura, N. State of the structure address on MET receptor activation by HGF. Biochem. Soc. Trans., 2021, 49(2), 645-661. doi: 10.1042/BST20200394 PMID: 33860789
- Modi, V.; Dunbrack, R.L.Jr. Defining a new nomenclature for the structures of active and inactive kinases. Proc. Natl. Acad. Sci., 2019, 116(14), 6818-6827. doi: 10.1073/pnas.1814279116 PMID: 30867294
- Treiber, D.K.; Shah, N.P. Ins and outs of kinase DFG motifs. Chem. Biol., 2013, 20(6), 745-746. doi: 10.1016/j.chembiol.2013.06.001 PMID: 23790484
- Uchikawa, E.; Chen, Z.; Xiao, G.Y.; Zhang, X.; Bai, X. Structural basis of the activation of c-MET receptor. Nat. Commun., 2021, 12(1), 4074. doi: 10.1038/s41467-021-24367-3 PMID: 34210960
- Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol., 2011, 3(S1), S7-S19. doi: 10.1177/1758834011422556 PMID: 22128289
- Raj, S.; Kesari, K.K.; Kumar, A.; Rathi, B.; Sharma, A.; Gupta, P.K.; Jha, S.K.; Jha, N.K.; Slama, P.; Roychoudhury, S.; Kumar, D. Molecular mechanism(s) of regulation(s) of c-MET/HGF signaling in head and neck cancer. Mol. Cancer, 2022, 21(1), 31. doi: 10.1186/s12943-022-01503-1 PMID: 35081970
- Sachs, M.; Brohmann, H.; Zechner, D.; Müller, T.; Hülsken, J.; Walther, I.; Schaeper, U.; Birchmeier, C.; Birchmeier, W. Essential role of Gab1 for signaling by the c-Met receptor in vivo. J. Cell Biol., 2000, 150(6), 1375-1384. doi: 10.1083/jcb.150.6.1375 PMID: 10995442
- Park, T. Crk and CrkL as therapeutic targets for cancer treatment. Cells, 2021, 10(4), 739. doi: 10.3390/cells10040739 PMID: 33801580
- Hervieu, A.; Kermorgant, S. The role of PI3K in met driven cancer: A recap. Front. Mol. Biosci., 2018, 5, 86. doi: 10.3389/fmolb.2018.00086 PMID: 30406111
- Rivas, S.; Marín, A.; Samtani, S.; González-Feliú, E.; Armisén, R. MET signaling pathways, resistance mechanisms, and opportunities for target therapies. Int. J. Mol. Sci., 2022, 23(22), 13898. doi: 10.3390/ijms232213898 PMID: 36430388
- Trusolino, L.; Comoglio, P.M. Scatter-factor and semaphorin receptors: Cell signalling for invasive growth. Nat. Rev. Cancer, 2002, 2(4), 289-300. doi: 10.1038/nrc779 PMID: 12001990
- Andermarcher, E.; Surani, M.A.; Gherardi, E. Co-expression of theHGF/SF andc-met genes during early mouse embryogenesis precedes reciprocal expression in adjacent tissues during organogenesis. Dev. Genet., 1996, 18(3), 254-266. doi: 10.1002/(SICI)1520-6408(1996)18:33.0.CO;2-8 PMID: 8631159
- Kolatsi-Joannou, M.; Moore, R.; Winyard, P.J.D.; Woolf, A.S. Expression of hepatocyte growth factor/scatter factor and its receptor, MET, suggests roles in human embryonic organogenesis. Pediatr. Res., 1997, 41(5), 657-665. doi: 10.1203/00006450-199705000-00010 PMID: 9128288
- Neuss, S.; Becher, E.; Wöltje, M.; Tietze, L.; Jahnen-Dechent, W. Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells, 2004, 22(3), 405-414. doi: 10.1634/stemcells.22-3-405 PMID: 15153617
- Chmielowiec, J.; Borowiak, M.; Morkel, M.; Stradal, T.; Munz, B.; Werner, S.; Wehland, J.; Birchmeier, C.; Birchmeier, W. c-Met is essential for wound healing in the skin. J. Cell Biol., 2007, 177(1), 151-162. doi: 10.1083/jcb.200701086 PMID: 17403932
- Socinski, M.A.; Pennell, N.A.; Davies, K.D. MET Exon 14 skipping mutations in non-small-cell lung cancer: An overview of biology, clinical outcomes, and testing considerations. JCO Precis. Oncol., 2021, 5, 5. PMID: 34036238
- Fujino, T.; Suda, K.; Mitsudomi, T. Lung cancer with MET exon 14 skipping mutation: Genetic feature, current treatments, and future challenges. Lung. Cancer., 2021, 12, 35-50. doi: 10.2147/LCTT.S269307 PMID: 34295201
- Hu, H.; Mu, Q.; Bao, Z.; Chen, Y.; Liu, Y.; Chen, J.; Wang, K.; Wang, Z.; Nam, Y.; Jiang, B.; Sa, J.K.; Cho, H.J.; Her, N.G.; Zhang, C.; Zhao, Z.; Zhang, Y.; Zeng, F.; Wu, F.; Kang, X.; Liu, Y.; Qian, Z.; Wang, Z.; Huang, R.; Wang, Q.; Zhang, W.; Qiu, X.; Li, W.; Nam, D.H.; Fan, X.; Wang, J.; Jiang, T. Mutational landscape of secondary glioblastoma guides MET-targeted trial in brain tumor. Cell, 2018, 175(6), 1665-1678.e18. doi: 10.1016/j.cell.2018.09.038 PMID: 30343896
- Raghav, K.; Morris, V.; Tang, C.; Morelli, P.; Amin, H.M.; Chen, K.; Manyam, G.C.; Broom, B.; Overman, M.J.; Shaw, K.; Meric-Bernstam, F.; Maru, D.; Menter, D.; Ellis, L.M.; Eng, C.; Hong, D.; Kopetz, S. MET amplification in metastatic colorectal cancer: An acquired response to EGFR inhibition, not a de novo phenomenon. Oncotarget, 2016, 7(34), 54627-54631. doi: 10.18632/oncotarget.10559 PMID: 27421137
- Guo, R.; Luo, J.; Chang, J.; Rekhtman, N.; Arcila, M.; Drilon, A. MET-dependent solid tumours molecular diagnosis and targeted therapy. Nat. Rev. Clin. Oncol., 2020, 17(9), 569-587. doi: 10.1038/s41571-020-0377-z PMID: 32514147
- Maroun, C.R.; Rowlands, T. The Met receptor tyrosine kinase: A key player in oncogenesis and drug resistance. Pharmacol. Ther., 2014, 142(3), 316-338. doi: 10.1016/j.pharmthera.2013.12.014 PMID: 24384534
- Graveel, C.R.; Tolbert, D.; Vande Woude, G.F. MET: A critical player in tumorigenesis and therapeutic target. Cold Spring Harb. Perspect. Biol., 2013, 5(7), a009209. doi: 10.1101/cshperspect.a009209 PMID: 23818496
- Christensen, J.G.; Burrows, J.; Salgia, R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett., 2005, 225(1), 1-26. doi: 10.1016/j.canlet.2004.09.044 PMID: 15922853
- Gelsomino, F.; Facchinetti, F.; Haspinger, E.R.; Garassino, M.C.; Trusolino, L.; De Braud, F.; Tiseo, M. Targeting the MET gene for the treatment of non-small-cell lung cancer. Crit. Rev. Oncol. Hematol., 2014, 89(2), 284-299. doi: 10.1016/j.critrevonc.2013.11.006 PMID: 24355409
- Awad, M.M.; Oxnard, G.R.; Jackman, D.M.; Savukoski, D.O.; Hall, D.; Shivdasani, P.; Heng, J.C.; Dahlberg, S.E.; Jänne, P.A.; Verma, S.; Christensen, J.; Hammerman, P.S.; Sholl, L.M. MET Exon 14 mutations in nonsmall-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-met overexpression. J. Clin. Oncol., 2016, 34(7), 721-730. doi: 10.1200/JCO.2015.63.4600 PMID: 26729443
- Ma, P.C.; Jagadeeswaran, R.; Jagadeesh, S.; Tretiakova, M.S.; Nallasura, V.; Fox, E.A.; Hansen, M.; Schaefer, E.; Naoki, K.; Lader, A.; Richards, W.; Sugarbaker, D.; Husain, A.N.; Christensen, J.G.; Salgia, R. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res., 2005, 65(4), 1479-1488. doi: 10.1158/0008-5472.CAN-04-2650 PMID: 15735036
- Cortot, A.B.; Kherrouche, Z.; Descarpentries, C.; Wislez, M.; Baldacci, S.; Furlan, A.; Tulasne, D. Exon 14 deleted MET receptor as a new biomarker and target in cancers. J. Natl. Cancer Inst., 2017, 109(5) doi: 10.1093/jnci/djw262 PMID: 28376232
- Peschard, P.; Ishiyama, N.; Lin, T.; Lipkowitz, S.; Park, M. A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation. J. Biol. Chem., 2004, 279(28), 29565-29571. doi: 10.1074/jbc.M403954200 PMID: 15123609
- Lu, X.; Peled, N.; Greer, J.; Wu, W.; Choi, P.; Berger, A.H.; Wong, S.; Jen, K.Y.; Seo, Y.; Hann, B.; Brooks, A.; Meyerson, M.; Collisson, E.A. MET exon 14 mutation encodes an actionable therapeutic target in lung adenocarcinoma. Cancer Res., 2017, 77(16), 4498-4505. doi: 10.1158/0008-5472.CAN-16-1944 PMID: 28522754
- Hashigasako, A.; Machide, M.; Nakamura, T.; Matsumoto, K.; Nakamura, T. Bi-directional regulation of Ser-985 phosphorylation of c-met via protein kinase C and protein phosphatase 2A involves c-Met activation and cellular responsiveness to hepatocyte growth factor. J. Biol. Chem., 2004, 279(25), 26445-26452. doi: 10.1074/jbc.M314254200 PMID: 15075332
- Gandino, L.; Longati, P.; Medico, E.; Prat, M.; Comoglio, P.M. Phosphorylation of serine 985 negatively regulates the hepatocyte growth factor receptor kinase. J. Biol. Chem., 1994, 269(3), 1815-1820. doi: 10.1016/S0021-9258(17)42099-0 PMID: 8294430
- Awad, M.M.; Lee, J.K.; Madison, R.; Classon, A.; Kmak, J.; Frampton, G.M.; Alexander, B.M.; Venstrom, J.; Schrock, A.B. Characterization of 1,387 NSCLCs with MET exon 14 (METex14) skipping alterations (SA) and potential acquired resistance (AR) mechanisms. J. Clin. Oncol., 2020, 38(15_suppl), 9511. doi: 10.1200/JCO.2020.38.15_suppl.9511
- Cheng, T.; Gu, Z.; Song, D.; Liu, S.; Tong, X.; Wu, X.; Lin, Z.; Hong, W. Genomic and clinical characteristics of MET exon14 alterations in a large cohort of Chinese cancer patients revealed distinct features and a novel resistance mechanism for crizotinib. J. Cancer, 2021, 12(3), 644-651. doi: 10.7150/jca.49391 PMID: 33403024
- Gow, C.H.; Hsieh, M.S.; Wu, S.G.; Shih, J.Y. A comprehensive analysis of clinical outcomes in lung cancer patients harboring a MET exon 14 skipping mutation compared to other driver mutations in an East Asian population. Lung Cancer, 2017, 103, 82-89. doi: 10.1016/j.lungcan.2016.12.001 PMID: 28024701
- Lu, D.; Nagelberg, A.; Chow, J.L.M.; Chen, Y.T.; Michalchuk, Q.; Somwar, R.; Lockwood, W.W. MET exon 14 splice-site mutations preferentially activate KRAS signaling to drive tumourigenesis. Cancer., 2022, 14(6), 1378. doi: 10.3390/cancers14061378 PMID: 35326531
- Kim, S.Y.; Yin, J.; Bohlman, S.; Walker, P.; Dacic, S.; Kim, C.; Khan, H.; Liu, S.V.; Ma, P.C.; Nagasaka, M.; Reckamp, K.L.; Abraham, J.; Uprety, D.; Wang, F.; Xiu, J.; Zhang, J.; Cheng, H.; Halmos, B. Characterization of MET exon 14 skipping alterations (in NSCLC) and identification of potential therapeutic targets using whole transcriptome sequencing. JTO. Clin. Res. Rep., 2022, 3(9), 100381. doi: 10.1016/j.jtocrr.2022.100381 PMID: 36082279
- Liu, L.; Kalyani, F.S.; Yang, H.; Zhou, C.; Xiong, Y.; Zhu, S.; Yang, N.; Qu, J. Prognosis and concurrent genomic alterations in patients with advanced NSCLC harboring MET amplification or MET exon 14 skipping mutation treated with MET inhibitor: A retrospective study. Front. Oncol., 2021, 11, 649766. doi: 10.3389/fonc.2021.649766 PMID: 34249687
- Lee, J.K.; Madison, R.; Classon, A.; Gjoerup, O.; Rosenzweig, M.; Frampton, G.M.; Alexander, B.M.; Oxnard, G.R.; Venstrom, J.M.; Awad, M.M.; Schrock, A.B. Characterization of nonsmall-cell lung cancers with MET exon 14 skipping alterations detected in tissue or liquid: Clinicogenomics and real-world treatment patterns. JCO Precis. Oncol., 2021, 5(5), 1354-1376. doi: 10.1200/PO.21.00122 PMID: 34476332
- Jamme, P.; Fernandes, M.; Copin, M.C.; Descarpentries, C.; Escande, F.; Morabito, A.; Grégoire, V.; Jamme, M.; Baldacci, S.; Tulasne, D.; Kherrouche, Z.; Cortot, A.B. Alterations in the PI3K pathway drive resistance to MET inhibitors in NSCLC harboring MET exon 14 skipping mutations. J. Thorac. Oncol., 2020, 15(5), 741-751. doi: 10.1016/j.jtho.2020.01.027 PMID: 32169477
- Schrock, A.B.; Frampton, G.M.; Suh, J.; Chalmers, Z.R.; Rosenzweig, M.; Erlich, R.L.; Halmos, B.; Goldman, J.; Forde, P.; Leuenberger, K.; Peled, N.; Kalemkerian, G.P.; Ross, J.S.; Stephens, P.J.; Miller, V.A.; Ali, S.M.; Ou, S.H.I. Characterization of 298 patients with lung cancer harboring MET exon 14 skipping alterations. J. Thorac. Oncol., 2016, 11(9), 1493-1502. doi: 10.1016/j.jtho.2016.06.004 PMID: 27343443
- Sabari, J.K.; Leonardi, G.C.; Shu, C.A.; Umeton, R.; Montecalvo, J.; Ni, A.; Chen, R.; Dienstag, J.; Mrad, C.; Bergagnini, I.; Lai, W.V.; Offin, M.; Arbour, K.C.; Plodkowski, A.J.; Halpenny, D.F.; Paik, P.K.; Li, B.T.; Riely, G.J.; Kris, M.G.; Rudin, C.M.; Sholl, L.M.; Nishino, M.; Hellmann, M.D.; Rekhtman, N.; Awad, M.M.; Drilon, A. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann. Oncol., 2018, 29(10), 2085-2091. doi: 10.1093/annonc/mdy334 PMID: 30165371
- Hur, J.Y.; Ku, B.M.; Shim, J.H.; Jung, H.A.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; Ahn, M.J. Characteristics and clinical outcomes of non-small cell lung cancer patients in Korea with MET exon 14 skipping. In Vivo, 2020, 34(3), 1399-1406. doi: 10.21873/invivo.11920 PMID: 32354937
- Huang, C.; Zou, Q.; Liu, H.; Qiu, B.; Li, Q.; Lin, Y.; Liang, Y. Management of non-small cell lung cancer patients with MET exon 14 skipping mutations. Curr. Treat. Options Oncol., 2020, 21(4), 33. doi: 10.1007/s11864-020-0723-5 PMID: 32306194
- Bittoni, M.; Yang, J.C.H.; Shih, J.Y.; Peled, N.; Smit, E.F.; Camidge, D.R.; Arasada, R.R.; Oksen, D.; Boutmy, E.; Stroh, C.; Johne, A.; Carbone, D.P.; Paik, P.K. Real-world insights into patients with advanced NSCLC and MET alterations. Lung Cancer, 2021, 159, 96-106. doi: 10.1016/j.lungcan.2021.06.015 PMID: 34320421
- Wong, S.K.; Alex, D.; Bosdet, I.; Hughesman, C.; Karsan, A.; Yip, S.; Ho, C. MET exon 14 skipping mutation positive non-small cell lung cancer: Response to systemic therapy. Lung Cancer, 2021, 154, 142-145. doi: 10.1016/j.lungcan.2021.02.030 PMID: 33667719
- Brazel, D.; Zhang, S.; Nagasaka, M. Spotlight on tepotinib and capmatinib for non-small cell lung cancer with MET exon 14 skipping mutation. Lung. Cancer., 2022, 13, 33-45. doi: 10.2147/LCTT.S360574 PMID: 35592355
- Wise-Draper, T.M.; Gulati, S.; Palackdharry, S.; Hinrichs, B.H.; Worden, F.P.; Old, M.O.; Dunlap, N.E.; Kaczmar, J.M.; Patil, Y.; Riaz, M.K.; Tang, A.; Mark, J.; Zender, C.; Gillenwater, A.M.; Bell, D.; Kurtzweil, N.; Mathews, M.; Allen, C.L.; Mierzwa, M.L.; Casper, K.; Jandarov, R.; Medvedovic, M.; Lee, J.J.; Harun, N.; Takiar, V.; Gillison, M. Phase II clinical trial of neoadjuvant and adjuvant pembrolizumab in resectable localregionally advanced head and neck squamous cell carcinoma. Clin. Cancer Res., 2022, 28(7), 1345-1352. doi: 10.1158/1078-0432.CCR-21-3351 PMID: 35338369
- Mathieu, L.N.; Larkins, E.; Akinboro, O.; Roy, P.; Amatya, A.K.; Fiero, M.H.; Mishra-Kalyani, P.S.; Helms, W.S.; Myers, C.E.; Skinner, A.M.; Aungst, S.; Jin, R.; Zhao, H.; Xia, H.; Zirkelbach, J.F.; Bi, Y.; Li, Y.; Liu, J.; Grimstein, M.; Zhang, X.; Woods, S.; Reece, K.; Abukhdeir, A.M.; Ghosh, S.; Philip, R.; Tang, S.; Goldberg, K.B.; Pazdur, R.; Beaver, J.A.; Singh, H. FDA approval summary: Capmatinib and tepotinib for the treatment of metastatic NSCLC harboring MET exon 14 skipping mutations or alterations. Clin. Cancer Res., 2022, 28(2), 249-254. doi: 10.1158/1078-0432.CCR-21-1566 PMID: 34344795
- Dhillon, S. Capmatinib: First approval. Drugs, 2020, 80(11), 1125-1131. doi: 10.1007/s40265-020-01347-3 PMID: 32557339
- Markham, A. Tepotinib: First approval. Drugs, 2020, 80(8), 829-833. doi: 10.1007/s40265-020-01317-9 PMID: 32361823
- Jia, H.; Dai, G.; Weng, J.; Zhang, Z.; Wang, Q.; Zhou, F.; Jiao, L.; Cui, Y.; Ren, Y.; Fan, S.; Zhou, J.; Qing, W.; Gu, Y.; Wang, J.; Sai, Y.; Su, W. Discovery of (S)-1-(1-(Imidazo1,2-apyridin-6-yl)ethyl)-6-(1-methyl-1H-pyrazol-4-yl)-1H-1,2,3triazolo4,5-bpyrazine (volitinib) as a highly potent and selective mesenchymal-epithelial transition factor (c-Met) inhibitor in clinical development for treatment of cancer. J. Med. Chem., 2014, 57(18), 7577-7589. doi: 10.1021/jm500510f PMID: 25148209
- Zhu, X.; Lu, Y.; Lu, S. Landscape of savolitinib development for the treatment of non-small cell lung cancer with MET alterationa narrative review. Cancers., 2022, 14(24), 6122. doi: 10.3390/cancers14246122 PMID: 36551608
- Wolf, J.; Seto, T.; Han, J.Y.; Reguart, N.; Garon, E.B.; Groen, H.J.M.; Tan, D.S.W.; Hida, T.; de Jonge, M.; Orlov, S.V.; Smit, E.F.; Souquet, P.J.; Vansteenkiste, J.; Hochmair, M.; Felip, E.; Nishio, M.; Thomas, M.; Ohashi, K.; Toyozawa, R.; Overbeck, T.R.; de Marinis, F.; Kim, T.M.; Laack, E.; Robeva, A.; Le Mouhaer, S.; Waldron-Lynch, M.; Sankaran, B.; Balbin, O.A.; Cui, X.; Giovannini, M.; Akimov, M.; Heist, R.S. Capmatinib in MET exon 14mutated or MET-amplified nonsmall-cell lung cancer. N. Engl. J. Med., 2020, 383(10), 944-957. doi: 10.1056/NEJMoa2002787 PMID: 32877583
- Wolf, J; Garon, EB; Groen, HJM; Tan, DS-W; Robeva, A; Mouhaer, SL Capmatinib in MET exon 14-mutated, advanced NSCLC: Updated results from the GEOMETRY mono-1 study. N Engl J Med., 2021, 39(S15), 9020.
- Paik, P.K.; Felip, E.; Veillon, R.; Sakai, H.; Cortot, A.B.; Garassino, M.C.; Mazieres, J.; Viteri, S.; Senellart, H.; Van Meerbeeck, J.; Raskin, J.; Reinmuth, N.; Conte, P.; Kowalski, D.; Cho, B.C.; Patel, J.D.; Horn, L.; Griesinger, F.; Han, J.Y.; Kim, Y.C.; Chang, G.C.; Tsai, C.L.; Yang, J.C.H.; Chen, Y.M.; Smit, E.F.; van der Wekken, A.J.; Kato, T.; Juraeva, D.; Stroh, C.; Bruns, R.; Straub, J.; Johne, A.; Scheele, J.; Heymach, J.V.; Le, X. Tepotinib in nonsmall-cell lung cancer with MET exon 14 skipping mutations. N. Engl. J. Med., 2020, 383(10), 931-943. doi: 10.1056/NEJMoa2004407 PMID: 32469185
- Veillon, R; Sakai, H; Le, X; Felip, E; Garassino, MC; Cortot, A Tepotinib safety in MET Exon 14 (METex14) skipping NSCLC: Updated results from the VISION trial. J Thorac Oncol, 2021, 16(3), S231.
- Le, X.; Sakai, H.; Felip, E.; Veillon, R.; Garassino, M.C.; Raskin, J.; Cortot, A.B.; Viteri, S.; Mazieres, J.; Smit, E.F.; Thomas, M.; Iams, W.T.; Cho, B.C.; Kim, H.R.; Yang, J.C.H.; Chen, Y.M.; Patel, J.D.; Bestvina, C.M.; Park, K.; Griesinger, F.; Johnson, M.; Gottfried, M.; Britschgi, C.; Heymach, J.; Sikoglu, E.; Berghoff, K.; Schumacher, K.M.; Bruns, R.; Otto, G.; Paik, P.K. Tepotinib efficacy and safety in patients with MET exon 14 skipping NSCLC: outcomes in patient subgroups from the VISION study with relevance for clinical practice. Clin. Cancer Res., 2022, 28(6), 1117-1126. doi: 10.1158/1078-0432.CCR-21-2733 PMID: 34789481
- Lu, S.; Fang, J.; Li, X.; Cao, L.; Zhou, J.; Guo, Q.; Liang, Z.; Cheng, Y.; Jiang, L.; Yang, N.; Han, Z.; Shi, J.; Chen, Y.; Xu, H.; Zhang, H.; Chen, G.; Ma, R.; Sun, S.; Fan, Y.; Li, J.; Luo, X.; Wang, L.; Ren, Y.; Su, W. Once-daily savolitinib in Chinese patients with pulmonary sarcomatoid carcinomas and other non-small-cell lung cancers harbouring MET exon 14 skipping alterations: a multicentre, single-arm, open-label, phase 2 study. Lancet Respir. Med., 2021, 9(10), 1154-1164. doi: 10.1016/S2213-2600(21)00084-9 PMID: 34166627
- Prabhash, K.; Noronha, V.; Joshi, A.; Desai, S.; Sahu, A. Crizotinib: A comprehensive review. South Asian J. Cancer, 2013, 2(2), 91-97. doi: 10.4103/2278-330X.110506 PMID: 24455567
- Drilon, A.E.; Camidge, D.R.; Ou, S.H.I.; Clark, J.W.; Socinski, M.A.; Weiss, J.; Riely, G.J.; Winter, M.; Wang, S.C.; Monti, K.; Wilner, K.D.; Paik, P.K. Efficacy and safety of crizotinib in patients (pts) with advanced MET exon 14-altered non-small cell lung cancer (NSCLC). J. Clin. Oncol., 2016, 34(S15), 108. doi: 10.1200/JCO.2016.34.15_suppl.108
- Drilon, A.; Clark, J.W.; Weiss, J.; Ou, S.H.I.; Camidge, D.R.; Solomon, B.J.; Otterson, G.A.; Villaruz, L.C.; Riely, G.J.; Heist, R.S.; Awad, M.M.; Shapiro, G.I.; Satouchi, M.; Hida, T.; Hayashi, H.; Murphy, D.A.; Wang, S.C.; Li, S.; Usari, T.; Wilner, K.D.; Paik, P.K. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat. Med., 2020, 26(1), 47-51. doi: 10.1038/s41591-019-0716-8 PMID: 31932802
- Landi, L.; Chiari, R.; Tiseo, M.; DIncà, F.; Dazzi, C.; Chella, A.; Delmonte, A.; Bonanno, L.; Giannarelli, D.; Cortinovis, D.L.; de Marinis, F.; Borra, G.; Morabito, A.; Gridelli, C.; Galetta, D.; Barbieri, F.; Grossi, F.; Capelletto, E.; Minuti, G.; Mazzoni, F.; Verusio, C.; Bria, E.; Alì, G.; Bruno, R.; Proietti, A.; Fontanini, G.; Crinò, L.; Cappuzzo, F. Crizotinib in MET -Deregulated or ROS1 -rearranged pretreated nonsmall cell lung cancer (METROS): A phase II, prospective, multicenter, two-arms trial. Clin. Cancer Res., 2019, 25(24), 7312-7319. doi: 10.1158/1078-0432.CCR-19-0994 PMID: 31416808
- Moro-Sibilot, D.; Cozic, N.; Pérol, M.; Mazières, J.; Otto, J.; Souquet, P.J.; Bahleda, R.; Wislez, M.; Zalcman, G.; Guibert, S.D.; Barlési, F.; Mennecier, B.; Monnet, I.; Sabatier, R.; Bota, S.; Dubos, C.; Verriele, V.; Haddad, V.; Ferretti, G.; Cortot, A.; De Fraipont, F.; Jimenez, M.; Hoog-Labouret, N.; Vassal, G. Crizotinib in c-MET- or ROS1-positive NSCLC: Results of the AcSé phase II trial. Ann. Oncol., 2019, 30(12), 1985-1991. doi: 10.1093/annonc/mdz407 PMID: 31584608
- Middleton, G.; Fletcher, P.; Popat, S.; Savage, J.; Summers, Y.; Greystoke, A.; Gilligan, D.; Cave, J.; ORourke, N.; Brewster, A.; Toy, E.; Spicer, J.; Jain, P.; Dangoor, A.; Mackean, M.; Forster, M.; Farley, A.; Wherton, D.; Mehmi, M.; Sharpe, R.; Mills, T.C.; Cerone, M.A.; Yap, T.A.; Watkins, T.B.K.; Lim, E.; Swanton, C.; Billingham, L. The national lung matrix trial of personalized therapy in lung cancer. Nature, 2020, 583(7818), 807-812. doi: 10.1038/s41586-020-2481-8 PMID: 32669708
- Study of crizotinib for ROS1 and MET activated lung cancer. NCT04084717, 2019.
- Targeted therapy directed by genetic testing in treating patients with advanced refractory solid tumors, lymphomas, or multiple myeloma. NCT02465060, 2023.
- APL-101 study of subjects with NSCLC with c-Met EXON 14 skip mutations and c-Met dysregulation advanced solid tumors (SPARTA). NCT03175224, 2022.
- Study of TPX-0022 in patients with advanced NSCLC, gastric cancer or solid tumors harboring genetic alterations in MET (SHIELD-1). NCT03993873, 2023.
- Cabozantinib in patients with RET fusion-positive advanced non-small cell lung cancer and those with other genotypes: ROS1 or NTRK fusions or increased MET or AXL activity. NCT01639508, 2023.
- Merestinib In non-small cell lung cancer and solid tumors. NCT02920996, 2023.
- Assessment of anti-tumor and safety in glumetinib in patients with c-MET-positive non-small cell lung cancer. NCT04270591, 2022.
- Singh, N.; Temin, S.; Baker, S., Jr; Blanchard, E.; Brahmer, J.R.; Celano, P.; Duma, N.; Ellis, P.M.; Elkins, I.B.; Haddad, R.Y.; Hesketh, P.J.; Jain, D.; Johnson, D.H.; Leighl, N.B.; Mamdani, H.; Masters, G.; Moffitt, P.R.; Phillips, T.; Riely, G.J.; Robinson, A.G.; Rosell, R.; Schiller, J.H.; Schneider, B.J.; Spigel, D.R.; Jaiyesimi, I.A. Therapy for stage IV nonsmall-cell lung cancer with driver alterations: ASCO living guideline. J. Clin. Oncol., 2022, 40(28), 3310-3322. doi: 10.1200/JCO.22.00824 PMID: 35816666
- Hanna, N.H.; Robinson, A.G.; Temin, S.; Baker, S., Jr; Brahmer, J.R.; Ellis, P.M.; Gaspar, L.E.; Haddad, R.Y.; Hesketh, P.J.; Jain, D.; Jaiyesimi, I.; Johnson, D.H.; Leighl, N.B.; Moffitt, P.R.; Phillips, T.; Riely, G.J.; Rosell, R.; Schiller, J.H.; Schneider, B.J.; Singh, N.; Spigel, D.R.; Tashbar, J.; Masters, G. Therapy for stage IV nonsmall-cell lung cancer with driver alterations: ASCO and OH (CCO) joint guideline update. J. Clin. Oncol., 2021, 39(9), 1040-1091. doi: 10.1200/JCO.20.03570 PMID: 33591844
- Rocco, D.; Battiloro, C.; Gravara, L.D.; Gridelli, C. Advanced non-small cell lung cancer with activating epidermal growth factor receptor mutation: First line treatment and beyond. Rev. Recent Clin. Trials, 2019, 14(2), 120-128. doi: 10.2174/1574887114666181205155211 PMID: 30520383
- Lin, J.J.; Choudhury, N.J.; Yoda, S.; Zhu, V.W.; Johnson, T.W.; Sakhtemani, R.; Dagogo-Jack, I.; Digumarthy, S.R.; Lee, C.; Do, A.; Peterson, J.; Prutisto-Chang, K.; Malik, W.; Hubbeling, H.G.; Langenbucher, A.; Schoenfeld, A.J.; Falcon, C.J.; Temel, J.S.; Sequist, L.V.; Yeap, B.Y.; Lennerz, J.K.; Shaw, A.T.; Lawrence, M.S.; Ou, S.H.I.; Hata, A.N.; Drilon, A.; Gainor, J.F. Spectrum of mechanisms of resistance to crizotinib and lorlatinib in ROS1 fusionpositive lung cancer. Clin. Cancer Res., 2021, 27(10), 2899-2909. doi: 10.1158/1078-0432.CCR-21-0032 PMID: 33685866
- Facchinetti, F.; Lacroix, L.; Mezquita, L.; Scoazec, J.Y.; Loriot, Y.; Tselikas, L.; Gazzah, A.; Rouleau, E.; Adam, J.; Michiels, S.; Massard, C.; André, F.; Olaussen, K.A.; Vassal, G.; Howarth, K.; Besse, B.; Soria, J.C.; Friboulet, L.; Planchard, D. Molecular mechanisms of resistance to BRAF and MEK inhibitors in BRAFV600E nonsmall cell lung cancer. Eur. J. Cancer, 2020, 132, 211-223. doi: 10.1016/j.ejca.2020.03.025 PMID: 32388065
- Rocco, D.; Battiloro, C.; Della Gravara, L.; Gridelli, C. Safety and tolerability of anaplastic lymphoma kinase inhibitors in non-small-cell lung cancer. Drug Saf., 2019, 42(2), 199-209. doi: 10.1007/s40264-018-0771-y PMID: 30649741
- Addeo, A.; Banna, G.L.; Friedlaender, A. KRAS G12C mutations in NSCLC: From target to resistance. Cancers., 2021, 13(11), 2541. doi: 10.3390/cancers13112541 PMID: 34064232
- Rocco, D.; Sapio, L.; Della Gravara, L.; Naviglio, S.; Gridelli, C. Treatment of advanced non-small cell lung cancer with RET fusions: Reality and hopes. Int. J. Mol. Sci., 2023, 24(3), 2433. doi: 10.3390/ijms24032433 PMID: 36768754
- Fujino, T.; Kobayashi, Y.; Suda, K.; Koga, T.; Nishino, M.; Ohara, S.; Chiba, M.; Shimoji, M.; Tomizawa, K.; Takemoto, T.; Mitsudomi, T. Sensitivity and resistance of MET exon 14 mutations in lung cancer to eight MET tyrosine kinase inhibitors in vitro. J. Thorac. Oncol., 2019, 14(10), 1753-1765. doi: 10.1016/j.jtho.2019.06.023 PMID: 31279006
- Vijayan, R.S.K.; He, P.; Modi, V.; Duong-Ly, K.C.; Ma, H.; Peterson, J.R.; Dunbrack, R.L., Jr; Levy, R.M. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. J. Med. Chem., 2015, 58(1), 466-479. doi: 10.1021/jm501603h PMID: 25478866
- Fujino, T.; Suda, K.; Koga, T.; Hamada, A.; Ohara, S.; Chiba, M.; Shimoji, M.; Takemoto, T.; Soh, J.; Mitsudomi, T. Foretinib can overcome common on-target resistance mutations after capmatinib/tepotinib treatment in NSCLCs with MET exon 14 skipping mutation. J. Hematol. Oncol., 2022, 15(1), 79. doi: 10.1186/s13045-022-01299-z PMID: 35690785
- Recondo, G.; Bahcall, M.; Spurr, L.F.; Che, J.; Ricciuti, B.; Leonardi, G.C.; Lo, Y.C.; Li, Y.Y.; Lamberti, G.; Nguyen, T.; Milan, M.S.D.; Venkatraman, D.; Umeton, R.; Paweletz, C.P.; Albayrak, A.; Cherniack, A.D.; Price, K.S.; Fairclough, S.R.; Nishino, M.; Sholl, L.M.; Oxnard, G.R.; Jänne, P.A.; Awad, M.M. Molecular mechanisms of acquired resistance to MET tyrosine kinase inhibitors in patients with MET exon 14mutant NSCLC. Clin. Cancer Res., 2020, 26(11), 2615-2625. doi: 10.1158/1078-0432.CCR-19-3608 PMID: 32034073
- Bahcall, M.; Paweletz, C.P.; Kuang, Y.; Taus, L.J.; Sim, T.; Kim, N.D.; Dholakia, K.H.; Lau, C.J.; Gokhale, P.C.; Chopade, P.R.; Hong, F.; Wei, Z.; Köhler, J.; Kirschmeier, P.T.; Guo, J.; Guo, S.; Wang, S.; Jänne, P.A. Combination of type I and type II MET tyrosine kinase inhibitors as therapeutic approach to prevent resistance. Mol. Cancer Ther., 2022, 21(2), 322-335. doi: 10.1158/1535-7163.MCT-21-0344 PMID: 34789563
- Rotow, J.K.; Gui, P.; Wu, W.; Raymond, V.M.; Lanman, R.B.; Kaye, F.J.; Peled, N.; Fece de la Cruz, F.; Nadres, B.; Corcoran, R.B.; Yeh, I.; Bastian, B.C.; Starostik, P.; Newsom, K.; Olivas, V.R.; Wolff, A.M.; Fraser, J.S.; Collisson, E.A.; McCoach, C.E.; Camidge, D.R.; Pacheco, J.; Bazhenova, L.; Li, T.; Bivona, T.G.; Blakely, C.M. Co-occurring alterations in the RASMAPK pathway limit response to MET inhibitor treatment in MET exon 14 skipping mutation-positive lung cancer. Clin. Cancer Res., 2020, 26(2), 439-449. doi: 10.1158/1078-0432.CCR-19-1667 PMID: 31548343
- Guo, R.; Offin, M.; Brannon, A.R.; Chang, J.; Chow, A.; Delasos, L.; Girshman, J.; Wilkins, O.; McCarthy, C.G.; Makhnin, A.; Falcon, C.; Scott, K.; Tian, Y.; Cecchi, F.; Hembrough, T.; Alex, D.; Shen, R.; Benayed, R.; Li, B.T.; Rudin, C.M.; Kris, M.G.; Arcila, M.E.; Rekhtman, N.; Paik, P.; Zehir, A.; Drilon, A. MET exon 14altered lung cancers and MET inhibitor resistance. Clin. Cancer Res., 2021, 27(3), 799-806. doi: 10.1158/1078-0432.CCR-20-2861 PMID: 33172896
- Drusbosky, L.M.; Dawar, R.; Rodriguez, E.; Ikpeazu, C.V. Therapeutic strategies in METex14 skipping mutated non-small cell lung cancer. J. Hematol. Oncol., 2021, 14(1), 129. doi: 10.1186/s13045-021-01138-7 PMID: 34425853
- Suzawa, K.; Offin, M.; Lu, D.; Kurzatkowski, C.; Vojnic, M.; Smith, R.S.; Sabari, J.K.; Tai, H.; Mattar, M.; Khodos, I.; de Stanchina, E.; Rudin, C.M.; Kris, M.G.; Arcila, M.E.; Lockwood, W.W.; Drilon, A.; Ladanyi, M.; Somwar, R. Activation of KRAS mediates resistance to targeted therapy in MET exon 14mutant nonsmall cell lung cancer. Clin. Cancer Res., 2019, 25(4), 1248-1260. doi: 10.1158/1078-0432.CCR-18-1640 PMID: 30352902
- Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.M.E.; Lee, C.K.; Sebastian, M.; Templeton, A.; Mann, H.; Marotti, M.; Ghiorghiu, S.; Papadimitrakopoulou, V.A. Osimertinib or platinumpemetrexed in EGFR T790Mpositive lung cancer. N. Engl. J. Med., 2017, 376(7), 629-640. doi: 10.1056/NEJMoa1612674 PMID: 27959700
- Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer, 2019, 121(9), 725-737. doi: 10.1038/s41416-019-0573-8 PMID: 31564718
- Pan, Y.; Deng, C.; Qiu, Z.; Cao, C.; Wu, F. The resistance mechanisms and treatment strategies for ALK-rearranged non-small cell lung cancer. Front. Oncol., 2021, 11, 713530. doi: 10.3389/fonc.2021.713530 PMID: 34660278
- Solomon, B.J.; Besse, B.; Bauer, T.M.; Felip, E.; Soo, R.A.; Camidge, D.R.; Chiari, R.; Bearz, A.; Lin, C.C.; Gadgeel, S.M.; Riely, G.J.; Tan, E.H.; Seto, T.; James, L.P.; Clancy, J.S.; Abbattista, A.; Martini, J.F.; Chen, J.; Peltz, G.; Thurm, H.; Ou, S.H.I.; Shaw, A.T. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol., 2018, 19(12), 1654-1667. doi: 10.1016/S1470-2045(18)30649-1 PMID: 30413378
- Lin, J.J.; Shaw, A.T. Refining precision cancer therapy in ALK-positive NSCLC. EBioMedicine, 2019, 41, 9-10. doi: 10.1016/j.ebiom.2019.01.059 PMID: 30737082
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D. Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol., 2018, 29(S4), iv192-iv237. doi: 10.1093/annonc/mdy275
- Nieva, J.; Reckamp, K.L.; Potter, D.; Taylor, A.; Sun, P. Retrospective analysis of real-world management of EGFR-mutated advanced NSCLC, after first-line EGFR-TKI treatment: US treatment patterns, attrition, and survival data. Drugs Real World Outcomes, 2022, 9(3), 333-345. doi: 10.1007/s40801-022-00302-w PMID: 35661118
- Cortellini, A.; Ficorella, C.; Crisci, R.; Divisi, D. A reflection on the actual place of osimertinib in the treatment algorithm of EGFR-positive non-small cell lung cancer patients. J. Thorac. Dis., 2020, 12(10), 6107-6111. doi: 10.21037/jtd-20-1733 PMID: 33209443
- Lee, C.S.; Milone, M.; Seetharamu, N. Osimertinib in EGFR-mutated lung cancer: A review of the existing and emerging clinical data. OncoTargets Ther., 2021, 14, 4579-4597. doi: 10.2147/OTT.S227032 PMID: 34471361
- Lazzari, C.; Gregorc, V.; Karachaliou, N.; Rosell, R.; Santarpia, M. Mechanisms of resistance to osimertinib. J. Thorac. Dis., 2020, 12(5), 2851-2858. doi: 10.21037/jtd.2019.08.30 PMID: 32642198
- Yu, H.; Goldberg, S.; Le, X. ORCHARD: A phase II platform study in patients with advanced NSCLC who have progressed on first-line osimertinib therapy. J Thorac Oncol., 2019, 14(10), S647. doi: 10.1016/j.jtho.2019.08.1366
- Phase 2 Platform Study in Patients with Advanced Non-Small Lung Cancer who Progressed on First-Line Osimertinib Therapy (ORCHARD) (ORCHARD); clinicaltrials.org internet. ClinicalTrials.gov Identifier: NCT03944772 Available from: https://www.clinicaltrials.gov/ct2/show/NCT03944772. Accessed May 2023
Supplementary files
