Anti-gout and Urate-lowering Potentials of Curcumin: A Review from Bench to Beside
- Authors: Jafari-Nozad A.M.1, Jafari A.2, Yousefi S.3, Bakhshi H.4, Farkhondeh T.5, Samarghandian S.6
-
Affiliations:
- Student Research Committee, Birjand University of Medical Sciences
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University,
- Faculty of Veterinary Medicine,, Shahrekord Branch, Islamic Azad University,
- Vector-borne Diseases Research Center,, North Khorasan University of Medical Sciences
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences
- Issue: Vol 31, No 24 (2024)
- Pages: 3715-3732
- Section: Anti-Infectives and Infectious Diseases
- URL: https://j-morphology.com/0929-8673/article/view/644841
- DOI: https://doi.org/10.2174/0929867331666230721154653
- ID: 644841
Cite item
Full Text
Abstract
Background:Gouty arthritis is a complex form of inflammatory arthritis, triggered by the sedimentation of monosodium urate crystals in periarticular tissues, synovial joints, and other sites in the body. Curcumin is a natural polyphenol compound, isolated from the rhizome of the plant Curcuma longa, possessing countless physiological features, including antioxidant, anti-inflammatory, and anti-rheumatic qualities.
Objective:This study aimed to discuss the beneficial impacts of curcumin and its mechanism in treating gout disease.
Methods:Ten English and Persian databases were used to conduct a thorough literature search. Studies examining the anti-gouty arthritis effects of curcumin and meeting the inclusion criteria were included.
Results:According to the studies, curcumin has shown xanthine oxidase and urate transporter- 1 inhibitory properties, uric acid inhibitory characteristics, and antioxidant and anti- inflammatory effects. However, some articles found no prominent reduction in uric acid levels.
Conclusion:In this review, we emphasized the potency of curcumin and its compounds against gouty arthritis. Despite the potency, we suggest an additional well-designed evaluation of curcumin, before its therapeutic effectiveness is completely approved as an antigouty arthritis agent.
Keywords
About the authors
Amir Masoud Jafari-Nozad
Student Research Committee, Birjand University of Medical Sciences
Email: info@benthamscience.net
Amirsajad Jafari
Department of Basic Sciences, School of Veterinary Medicine, Shiraz University,
Email: info@benthamscience.net
Saman Yousefi
Faculty of Veterinary Medicine,, Shahrekord Branch, Islamic Azad University,
Email: info@benthamscience.net
Hasan Bakhshi
Vector-borne Diseases Research Center,, North Khorasan University of Medical Sciences
Email: info@benthamscience.net
Tahereh Farkhondeh
Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Saeed Samarghandian
Healthy Ageing Research Centre, Neyshabur University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Talebi, M.; Talebi, M.; Farkhondeh, T.; Samarghandian, S. Molecular mechanism-based therapeutic properties of honey. Biomed. Pharmacother., 2020, 130, 110590. doi: 10.1016/j.biopha.2020.110590
- Galvão, I.; Dias, A.C.F.; Tavares, L.D.; Rodrigues, I.P.S.; Queiroz-Junior, C.M.; Costa, V.V.; Reis, A.C.; Ribeiro Oliveira, R.D.; Louzada-Junior, P.; Souza, D.G.; Leng, L.; Bucala, R.; Sousa, L.P.; Bozza, M.T.; Teixeira, M.M.; Amaral, F.A. Macrophage migration inhibitory factor drives neutrophil accumulation by facilitating IL-1β production in a murine model of acute gout. J. Leukoc. Biol., 2016, 99(6), 1035-1043. doi: 10.1189/jlb.3MA0915-418R PMID: 26868525
- Bhole, V.; de Vera, M.; Rahman, M.M.; Krishnan, E.; Choi, H. Epidemiology of gout in women: Fifty-two-year followup of a prospective cohort. Arthritis Rheum., 2010, 62(4), 1069-1076. doi: 10.1002/art.27338 PMID: 20131266
- Patil, T.; Soni, A.; Acharya, S. A brief review on in vivo models for gouty arthritis. Metabolism. Open, 2021, 11, 100100. doi: 10.1016/j.metop.2021.100100 PMID: 34189452
- Desai, J.; Steiger, S. Molecular pathophysiology of gout. Trends Mol. Med., 2017, 23(8), 756-768. doi: 10.1016/j.molmed.2017.06.005. PMID: 28732688
- Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol., 2020, 16(7), 380-390. doi: 10.1038/s41584-020-0441-1 PMID: 32541923
- Johnson, R.J.; Nakagawa, T.; Sanchez-Lozada, L.G.; Shafiu, M.; Sundaram, S.; Le, M.; Ishimoto, T.; Sautin, Y.Y.; Lanaspa, M.A. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes, 2013, 62(10), 3307-3315. doi: 10.2337/db12-1814 PMID: 24065788
- Bugyei-Twum, A.; Abadeh, A.; Thai, K.; Zhang, Y.; Mitchell, M.; Kabir, G.; Connelly, K.A. Suppression of NLRP3 inflammasome activation ameliorates chronic kidney disease-induced cardiac fibrosis and diastolic dysfunction. Sci. Rep., 2016, 6(1), 1-11. doi: 10.1038/srep39551 PMID: 28000751
- Dinesh, P.; Rasool, M. Berberine, an isoquinoline alkaloid suppresses TXNIP mediated NLRP3 inflammasome activation in MSU crystal stimulated RAW 264.7 macrophages through the upregulation of Nrf2 transcription factor and alleviates MSU crystal induced inflammation in rats. Int. Immunopharmacol., 2017, 44, 26-37. doi: 10.1016/j.intimp.2016.12.031. PMID: 28068647
- Martin, W.J.; Walton, M.; Harper, J.J.A. Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal-induced murine peritoneal model of acute gout. Arthritis. Rheum., 2009, 60(1), 281-9. doi: 10.1002/art.24185. PMID: 19116939
- Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J.J.N. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, 440(7081), 237-41. doi: 10.1038/nature04516 PMID: 16407889
- Cronstein, B.N.; Sunkureddi, P. Mechanistic aspects of inflammation and clinical management of inflammation in acute gouty arthritis. J. Clin. Rheumatol., 2013, 19(1), 19-29. doi: 10.1097/RHU.0b013e31827d8790 PMID: 23319019
- Shehzad, A.; Lee, Y.J.D.F. Curcumin: Multiple molecular targets mediate multiple pharmacological actions- A review. Drugs Future, 2010, 35(2), 113.
- Jafari-Nozad, A.M.; Jafari, A.; Aschner, M.; Farkhondeh, T.; Samarghandian, S. Curcumin combats against organophosphate pesticides toxicity: A review of the current evidence and molecular pathways. Curr. Med. Chem., 2022, 30(20), 2312-2339. PMID: 35980068
- Aldebasi, Y.H.; Aly, S.M.; Rahmani, A. Therapeutic implications of curcumin in the prevention of diabetic retinopathy via modulation of anti-oxidant activity and genetic pathways. Int. J. Physiol. Pathophysiol. Pharmacol., 2013, 5(4), 194-202. PMID: 24379904
- Rahmani, A.H.; Alsahli, M.A.; Aly, S.M.; Khan, M.A.; Aldebasi, Y.H. Role of curcumin in disease prevention and treatment. Adv. Biomed. Res., 2018, 7, 38. PMID: 29629341
- Sankhwar, R.; Yadav, S.; Kumar, A.; Kr. Gupta, R. Application of nano-curcumin as a natural antimicrobial agent against gram-positive pathogens. J. Appl. Nat. Sci., 2021, 13(1), 126.
- Samarghandian, S.; Borji, A.; Hidar Tabasi, S. Effects of Cichorium intybus linn on blood glucose, lipid constituents and selected oxidative stress parameters in streptozotocin-induced diabetic rats. Cardiovasc. Haematological Disord. Drug Targets. (Formerly Current Drug Targets-Cardiovasc. Hematol. Disord.), 2013, 13(3), 231-236.
- Mathews, V.; Binu, P.; Paul, M.S.; Abhilash, M.; Manju, A. Hepatoprotective efficacy of curcumin against arsenic trioxide toxicity. Asian Pac. J. Trop. Biomed., 2012, 2(2), S706-S711.
- Mokhtari-Zaer, A.; Marefati, N.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. The protective role of curcumin in myocardial ischemiareperfusion injury. J. Cell. Physiol., 2019, 234(1), 214-222. doi: 10.1002/jcp.26848 PMID: 29968913
- Singh, S. From exotic spice to modern drug? Cell, 2007, 130(5), 765-768. doi: 10.1016/j.cell.2007.08.024 PMID: 17803897
- Jafari-Nozad, A.M.; Jafari, A.; Zangooie, A.; Behdadfard, M.; Zangouei, A.S.; Aschner, M. Curcumin combats against gastrointestinal cancer: A review of current knowledge regarding epigenetics mechanisms with a focus on DNA methylation. Curr. Med. Chem., 2023, 30(38), 4374-4388.
- Epstein, J.; Sanderson, I.R. Curcumin as a therapeutic agent: The evidence from in vitro, animal and human studies. Br. J. Nutr., 2010, 103(11), 1545-57.
- Shaterzadeh-Yazdi, H.; Noorbakhsh, M.F.; Hayati, F.; Samarghandian, S.; Farkhondeh, T. Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovasc. Haematological. Disord. Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders). 2018, 18(1), 52-60.
- Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J. Cell Physiol., 2019, 234(5), 5728-5740. doi: 10.1002/jcp.27442. PMID: 30317564
- Gupte, P.A.; Giramkar, S.A.; Harke, S.M.; Kulkarni, S.K.; Deshmukh, A.P.; Hingorani, L.L.; Mahajan, M.P.; Bhalerao, S.S. Evaluation of the efficacy and safety of Capsule Longvida® Optimized curcumin (solid lipid curcumin particles) in knee osteoarthritis: A pilot clinical study. J. Inflamm. Res., 2019, 12, 145-152.
- Samarghandian, S.; Samini, F.; Azimi-Nezhad, M.; Farkhondeh, T. Anti-oxidative effects of safranal on immobilization-induced oxidative damage in rat brain. Neurosci Lett.2017; 659:26-32. doi: 10.1016/j.neulet.2017.08.065
- Gaffo, A.L.; Jacobs, D.R., J.r.; Lewis, C.E.; Mikuls, T.R.; Saag, K.G. Association between being African-American, serum urate levels and the risk of developing hyperuricemia: Findings from the Coronary Artery Risk Development in Young Adults cohort. Arthritis Res. Ther., 2012, 14(1), R4. doi: 10.1186/ar3552 PMID: 22225548
- Edwards, N.L. The role of hyperuricemia and gout in kidney and cardiovascular disease. Cleve. Clin. J. Med., 2008, 75(Suppl. 5), S13-S16. doi: 10.3949/ccjm.75.Suppl_5.S13 PMID: 18822470
- Yamanaka, H. Japanese guideline for the management of hyperuricemia and gout: Second edition. Nucleosides Nucleotides Nucleic Acids, 2011, 30(12), 1018-1029. doi: 10.1080/15257770.2011.596496 PMID: 22132951
- Nuki, G.; Simkin, P.A. A concise history of gout and hyperuricemia and their treatment. Arthritis Res. Ther., 2006, 8(Suppl 1), S1. doi: 10.1186/ar1906 PMID: 16820040
- Pauff, J.M.; Hille, R. Inhibition studies of bovine xanthine oxidase by luteolin, silibinin, quercetin, and curcumin. J. Nat. Prod., 2009, 72(4), 725-731. doi: 10.1021/np8007123 PMID: 19388706
- Bupparenoo, P.; Pakchotanon, R.; Narongroeknawin, P.; Asavatanabodee, P.; Chaiamnuay, S. Effect of curcumin on serum urate in asymptomatic hyperuricemia: A randomized placebo-controlled trial. J. Diet. Suppl., 2021, 18(3), 248-260. doi: 10.1080/19390211.2020.1757798 PMID: 32420786
- Lin, J.K.; Shih, C.A. Inhibitory effect of curcumin on xanthine dehydrogenase/oxidase induced by phorbol-12-myristate-13-acetate in NJH3T3 cells. Carcinogenesis, 1994, 15(8), 1717-1721. doi: 10.1093/carcin/15.8.1717 PMID: 8055654
- Shen, L.; Ji, H.F. Insights into the inhibition of xanthine oxidase by curcumin. Bioorg. Med. Chem. Lett., 2009, 19(21), 5990-5993. doi: 10.1016/j.bmcl.2009.09.076 PMID: 19800788
- Ao, G.Z.; Zhou, M.Z.; Li, Y.Y.; Li, S.N.; Wang, H.N.; Wan, Q.W.; Li, H.Q.; Hu, Q.H. Discovery of novel curcumin derivatives targeting xanthine oxidase and urate transporter 1 as anti-hyperuricemic agents. Bioorg. Med. Chem., 2017, 25(1), 166-174. doi: 10.1016/j.bmc.2016.10.022 PMID: 28340987
- Kong, L.D.; Cai, Y.; Huang, W.W.; Cheng, C.H.K.; Tan, R.X. Inhibition of xanthine oxidase by some Chinese medicinal plants used to treat gout. J. Ethnopharmacol., 2000, 73(1-2), 199-207. doi: 10.1016/S0378-8741(00)00305-6 PMID: 11025157
- Cos, P.; Ying, L.; Calomme, M.; Hu, J.P.; Cimanga, K.; Van Poel, B.; Pieters, L.; Vlietinck, A.J.; Berghe, D.V. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Nat. Prod., 1998, 61(1), 71-76. doi: 10.1021/np970237h PMID: 9461655
- Lin, C.M.; Chen, C.S.; Chen, C.T.; Liang, Y.C.; Lin, J.K. Molecular modeling of flavonoids that inhibits xanthine oxidase. Biochem. Biophys. Res. Commun., 2002, 294(1), 167-172. doi: 10.1016/S0006-291X(02)00442-4 PMID: 12054758
- Wang, F.; Yang, L.; Huang, K.; Li, X.; Hao, X.; Stöckigt, J.; Zhao, Y. Preparation of ferulic acid derivatives and evaluation of their xanthine oxidase inhibition activity. Nat. Prod. Res., 2007, 21(3), 196-202. doi: 10.1080/14786410601129648 PMID: 17365708
- Chuengsamarn, S.; Rattanamongkolgul, S.; Phonrat, B.; Tungtrongchitr, R.; Jirawatnotai, S. Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: A randomized controlled trial. J. Nutr. Biochem., 2014, 25(2), 144-150. doi: 10.1016/j.jnutbio.2013.09.013 PMID: 24445038
- Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Curcumin lowers serum lipids and uric acid in subjects with nonalcoholic fatty liver disease: A randomized controlled trial. J. Cardiovasc. Pharmacol., 2016, 68(3), 223-229. doi: 10.1097/FJC.0000000000000406 PMID: 27124606
- Malik, N.; Dhiman, P.; Khatkar, A. In silico design and synthesis of targeted curcumin derivatives as xanthine oxidase inhibitors. Curr. Drug Targets, 2019, 20(5), 593-603. doi: 10.2174/1389450120666181122100511 PMID: 30465499
- Peng, F.; Tao, Q.; Wu, X.; Dou, H.; Spencer, S.; Mang, C.; Xu, L.; Sun, L.; Zhao, Y.; Li, H.; Zeng, S.; Liu, G.; Hao, X. Cytotoxic, cytoprotective and antioxidant effects of isolated phenolic compounds from fresh ginger. Fitoterapia, 2012, 83(3), 568-585. doi: 10.1016/j.fitote.2011.12.028 PMID: 22248534
- Wempe, M.F.; Jutabha, P.; Quade, B.; Iwen, T.J.; Frick, M.M.; Ross, I.R.; Rice, P.J.; Anzai, N.; Endou, H. Developing potent human uric acid transporter 1 (hURAT1) inhibitors. J. Med. Chem., 2011, 54(8), 2701-2713. doi: 10.1021/jm1015022 PMID: 21449597
- Kang, B.Y.; Song, Y.J.; Kim, K.M.; Choe, Y.K.; Hwang, S.Y.; Kim, T.S. Curcumin inhibits Th1 cytokine profile in CD4 + T cells by suppressing interleukin-12 production in macrophages. Br. J. Pharmacol., 1999, 128(2), 380-384. doi: 10.1038/sj.bjp.0702803 PMID: 10510448
- Mathy-Hartert, M.; Jacquemond-Collet, I.; Priem, F.; Sanchez, C.; Lambert, C.; Henrotin, Y. Curcumin inhibits pro-inflammatory mediators and metalloproteinase-3 production by chondrocytes. Inflamm. Res., 2009, 58(12), 899-908. doi: 10.1007/s00011-009-0063-1 PMID: 19579007
- Miquel, J.; Bernd, A.; Sempere, J.M.; Díaz-Alperi, J.; Ramírez, A. The curcuma antioxidants: Pharmacological effects and prospects for future clinical use. A review. Arch. Gerontol. Geriatr., 2002, 34(1), 37-46. doi: 10.1016/S0167-4943(01)00194-7 PMID: 14764309
- Pourhabibi-Zarandi, F.; Shojaei-Zarghani, S.; Rafraf, M. Curcumin and rheumatoid arthritis: A systematic review of literature. Int. J. Clin. Pract., 2021, 75(10), e14280. doi: 10.1111/ijcp.14280 PMID: 33914984
- Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa). J. Altern. Complement. Med., 2003, 9(1), 161-168. doi: 10.1089/107555303321223035 PMID: 12676044
- Samarghandian, S.; Shoshtari, M.E.; Sargolzaei, J.; Hossinimoghadam, H.; Farahzad, J.A. Anti-tumor activity of safranal against neuroblastoma cells. Pharmacogn. Mag., 2014, 10(Suppl 2), S419.
- Gu, Y.; Zhu, Y.; Deng, G.; Liu, S.; Sun, Y.; Lv, W. Curcumin analogue AI-44 alleviates MSU-induced gouty arthritis in mice via inhibiting cathepsin B-mediated NLRP3 inflammasome activation. Int. Immunopharmacol., 2021, 93, 107375. doi: 10.1016/j.intimp.2021.107375 PMID: 33517224
- Liu, X.; Jin, X.; Yu, D.; Liu, G. Suppression of NLRP3 and NF-κB signaling pathways by α-Cyperone via activating SIRT1 contributes to attenuation of LPS-induced acute lung injury in mice. Int. Immunopharmacol., 2019, 76, 105886. doi: 10.1016/j.intimp.2019.105886 PMID: 31520990
- Yang, G.; Lee, H.E.; Moon, S.J.; Ko, K.M.; Koh, J.H.; Seok, J.K.; Min, J.K.; Heo, T.H.; Kang, H.C.; Cho, Y.Y.; Lee, H.S.; Fitzgerald, K.A.; Lee, J.Y. Direct binding to NLRP3 pyrin domain as a novel strategy to prevent NLRP3-driven inflammation and gouty arthritis. Arthritis Rheumatol., 2020, 72(7), 1192-1202. doi: 10.1002/art.41245 PMID: 32134203
- Yuan, X.; Fan, Y.S.; Xu, L.; Xie, G.Q.; Feng, X.H.; Qian, K. Jia-Wei-Si-Miao-Wan alleviates acute gouty arthritis by targeting NLRP3 inflammasome. J. Biol. Regul. Homeost. Agents, 2019, 33(1), 63-71. PMID: 30697988
- Samarghandian, S.; Azimi-Nezhad, M.; Samini, F.; Preventive effect of safranal against oxidative damage in aged male rat brain. Experimental Animals. 2015; 64(1):65-71. doi: 10.1538/expanim.14-0027 PMID: 25312506
- Mijanović, O.; Branković, A.; Panin, A.N.; Savchuk, S.; Timashev, P.; Ulasov, I.; Lesniak, M.S. Cathepsin B: A sellsword of cancer progression. Cancer Lett., 2019, 449, 207-214. doi: 10.1016/j.canlet.2019.02.035 PMID: 30796968
- Peng, S.; Gao, J.; Liu, W.; Jiang, C.; Yang, X.; Sun, Y.; Guo, W.; Xu, Q. Andrographolide ameliorates OVA-induced lung injury in mice by suppressing ROS-mediated NF-κB signaling and NLRP3 inflammasome activation. Oncotarget, 2016, 7(49), 80262-80274. doi: 10.18632/oncotarget.12918 PMID: 27793052
- Amaral, E.P.; Riteau, N.; Moayeri, M.; Maier, N.; Mayer-Barber, K.D.; Pereira, R.M.; Lage, S.L.; Kubler, A.; Bishai, W.R.; DImpério-Lima, M.R.; Sher, A.; Andrade, B.B. Lysosomal cathepsin release is required for NLRP3-inflammasome activation by Mycobacterium tuberculosis in infected macrophages. Front. Immunol., 2018, 9, 1427. doi: 10.3389/fimmu.2018.01427 PMID: 29977244
- Nidorf, S.M.; Fiolet, A.; Abela, G.S. Viewing atherosclerosis through a crystal lens: How the evolving structure of cholesterol crystals in atherosclerotic plaque alters its stability. J. Clin. Lipidol., 2020, 14(5), 619-630. doi: 10.1016/j.jacl.2020.07.003 PMID: 32792218
- Wang, D.; Zhang, J.; Jiang, W.; Cao, Z.; Zhao, F.; Cai, T.; Aschner, M.; Luo, W. The role of NLRP3-CASP1 in inflammasome-mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability. Autophagy, 2017, 13(5), 914-927. doi: 10.1080/15548627.2017.1293766 PMID: 28318352
- Shao, B.Z.; Xu, Z.Q.; Han, B.Z.; Su, D.F.; Liu, C. NLRP3 inflammasome and its inhibitors: A review. Front. Pharmacol., 2015, 6, 262. doi: 10.3389/fphar.2015.00262 PMID: 26594174
- Mirzaei, S.; Zarrabi, A.; Asnaf, S.E.; Hashemi, F.; Zabolian, A.; Hushmandi, K.; Raei, M.; Goharrizi MASB, Makvandi P, Samarghandian S, Najafi M, Ashrafizadeh M, Aref AR, Hamblin MR. The role of microRNA-338-3p in cancer: growth, invasion, chemoresistance, and mediators. Life Sci. 2021; 268:119005. doi: 10.1016/j.lfs.2020.119005.
- Wang, S.; Zhao, X.; Yang, S.; Chen, B.; Shi, J. Salidroside alleviates high glucose-induced oxidative stress and extracellular matrix accumulation in rat glomerular mesangial cells by the TXNIP-NLRP3 inflammasome pathway. Chem. Biol. Interact., 2017, 278, 48-53. doi: 10.1016/j.cbi.2017.10.012 PMID: 29031534
- Shaterzadeh-Yazdi, H.; Noorbakhsh, M.F.; Hayati, F.; Samarghandian, S.; Farkhondeh, T. Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovasc. Hematol. Disord. Drug Targets. 2018; 18(1), 52-60. doi: 10.2174/1871529X18666180212114816.
- Gong, Z.; Zhao, S.; Zhou, J.; Yan, J.; Wang, L.; Du, X.; Li, H.; Chen, Y.; Cai, W.; Wu, J. Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1β production. Mol. Immunol., 2018, 104, 11-19. doi: 10.1016/j.molimm.2018.09.004 PMID: 30396035
- Li, X.; Xu, D.Q.; Sun, D.Y.; Zhang, T.; He, X.; Xiao, D.M. Curcumin ameliorates monosodium urate-induced gouty arthritis through nod-like receptor 3 inflammasome mediation via inhibiting nuclear factor-kappa B signaling. J. Cell. Biochem., 2019, 120(4), 6718-6728. doi: 10.1002/jcb.27969 PMID: 30592318
- Chen, Y.; Li, C.; Duan, S.; Yuan, X.; Liang, J.; Hou, S. Curcumin attenuates potassium oxonate-induced hyperuricemia and kidney inflammation in mice. Biomed. Pharmacother., 2019, 118, 109195. doi: 10.1016/j.biopha.2019.109195 PMID: 31362244
- Chen, B.; Li, H.; Ou, G.; Ren, L.; Yang, X.; Zeng, M. Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IκBα and blocking mitochondrial damage. Arthritis Res. Ther., 2019, 21(1), 193. doi: 10.1186/s13075-019-1974-z PMID: 30606217
- Banerjee, S.; Ji, C.; Mayfield, J.E.; Goel, A. Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2. Proc. National Aca. Sci., 2018, 115(32), 201806797.
- Fan, Z.; Jing, H.; Yao, J.; Li, Y.; Hu, X.; Shao, H.; Shen, G.; Pan, J.; Luo, F.; Tian, X. The protective effects of curcumin on experimental acute liver lesion induced by intestinal ischemia-reperfusion through inhibiting the pathway of NF-κB in a rat model. Oxid. Med. Cell Longev., 2014, 2014, 191624. doi: 10.1155/2014/191624 PMID: 25215173
- Ni, H.; Jin, W.; Zhu, T.; Wang, J.; Yuan, B.; Jiang, J.; Liang, W.; Ma, Z. Curcumin modulates TLR4/NF-κB inflammatory signaling pathway following traumatic spinal cord injury in rats. J. Spinal Cord Med., 2015, 38(2), 199-206. doi: 10.1179/2045772313Y.0000000179 PMID: 24621048
- Yin, H.; Guo, Q.; Li, X.; Tang, T.; Li, C.; Wang, H.; Sun, Y.; Feng, Q.; Ma, C.; Gao, C.; Yi, F.; Peng, J. Curcumin suppresses IL-1β secretion and prevents inflammation through inhibition of the NLRP3 inflammasome. J. Immunol., 2018, 200(8), 2835-2846. doi: 10.4049/jimmunol.1701495 PMID: 29549176
- Leemans, J.C.; Cassel, S.L.; Sutterwala, F.S. Sensing damage by the NLRP3 inflammasome. Immunol. Rev., 2011, 243(1), 152-162. doi: 10.1111/j.1600-065X.2011.01043.x PMID: 21884174
- Ghosh, S.; Karin, M. Missing pieces in the NF-kappaB puzzle. Cell, 2002, 109(2), S81-S96. doi: 10.1016/S0092-8674(02)00703-1 PMID: 11983155
- Hayden, M.S.; Ghosh, S. Signaling to NF-κB. Genes Dev., 2004, 18(18), 2195-2224. doi: 10.1101/gad.1228704 PMID: 15371334
- Tak, P.P.; Firestein, G.S. NF-κB: A key role in inflammatory diseases. J. Clin. Invest., 2001, 107(1), 7-11. doi: 10.1172/JCI11830 PMID: 11134171
- Mohamed, D.A.; Al-Okbi, S.Y. Evaluation of anti-gout activity of some plant food extracts. Pol. J. Food Nutr. Sci., 2008, 58(3)
- Urano, W.; Yamanaka, H.; Tsutani, H.; Nakajima, H.; Matsuda, Y.; Taniguchi, A.; Hara, M.; Kamatani, N. The inflammatory process in the mechanism of decreased serum uric acid concentrations during acute gouty arthritis. J. Rheumatol., 2002, 29(9), 1950-1953. PMID: 12233891
- Jackson, J.K.; Higo, T.; Hunter, W.L.; Burt, H.M. The antioxidants curcumin and quercetin inhibit inflammatory processes associated with arthritis. Inflamm. Res., 2006, 55(4), 168-175. doi: 10.1007/s00011-006-0067-z PMID: 16807698
- Ammon, H.P.T.; Safayhi, H.; Mack, T.; Sabieraj, J. Mechanism of antiinflammatory actions of curcumine and boswellic acids. J. Ethnopharmacol., 1993, 38(2-3), 105-112. doi: 10.1016/0378-8741(93)90005-P PMID: 8510458
- Flynn, D.L.; Rafferty, M.F.; Boctor, A.M. Inhibition of 5-hydroxy-eicosatetraenoic acid (5-HETE) formation in intact human neutrophils by naturally-occurring diarylheptanoids: Inhibitory activities of curcuminoids and yakuchinones. Prostaglandins Leukot. Med., 1986, 22(3), 357-360. doi: 10.1016/0262-1746(86)90146-0 PMID: 3460103
- Madan, B.; Ghosh, B. Diferuloylmethane inhibits neutrophil infiltration and improves survival of mice in high-dose endotoxin shock. Shock, 2003, 19(1), 91-96. doi: 10.1097/00024382-200301000-00017 PMID: 12558151
- Limasset, B.; Le Doucen, C.; Dore, J.C.; Ojasoo, T.; Damon, M.; De Paulet, A.C. Effects of flavonoids on the release of reactive oxygen species by stimulated human neutrophils. Biochem. Pharmacol., 1993, 46(7), 1257-1271. doi: 10.1016/0006-2952(93)90476-D PMID: 8216378
- Bisset, S.; Sobhi, W.; Bensouici, C.; Khenchouche, A. Chain-breaking/preventive antioxidant, urate-lowering, and anti-inflammatory effects of pure curcumin. Curr. Nutr. Food Sci., 2020, 17(1), 66-74. doi: 10.2174/1573401316999200421095134
- Umar, H.I.; Ajayi, A.; Josiah, S.S.; Saliu, T.; Danjuma, J.B.; Chukwuemeka, P.O. In silico molecular docking of selected polyphenols against interleukin-17A target in gouty arthritis. Eur. J. Biol. Res., 2020, 10(4), 352-367.
- Liu, S.; Song, X.; Chrunyk, B.A.; Shanker, S.; Hoth, L.R.; Marr, E.S. Crystal structures of interleukin 17A and its complex with IL-17 receptor A. Nat. Commun., 2013, 4, 1888.
- Chang, S.H.; Reynolds, J.M.; Pappu, B.P.; Chen, G.; Martinez, G.J.; Dong, C. Interleukin-17C promotes Th17 cell responses and autoimmune disease via interleukin-17 receptor E. Immunity, 2011, 35(4), 611-621. doi: 10.1016/j.immuni.2011.09.010 PMID: 21982598
- Gaffen, SLJNRI. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol., 2009, 9(8), 556-67.
- Raucci, F.; Iqbal, A.J.; Saviano, A.; Minosi, P.; Piccolo, M.; Irace, C. IL-17A neutralizing antibody regulates monosodium urate crystal-induced gouty inflammation. Pharmacol. Res., 2019, 147, 104351. doi: 10.1016/j.phrs.2019.104351 PMID: 31315067
- Cavalcanti, N.G.; Marques, C.D.L.; Lins e Lins, T.U.; Pereira, M.C. Cytokine profile in gout: Inflammation driven by IL-6 and IL-18? Immunol. Invest., 2016, 45(5), 383-95. doi: 10.3109/08820139.2016.1153651 PMID: 27219123
- Liu, Y.; Zhao, Q.; Yin, Y.; McNutt, M.A.; Zhang, T.; Cao, Y. Serum levels of IL-17 are elevated in patients with acute gouty arthritis. Biochem. Biophys. Res. Commun., 2018, 497(3), 897-902. doi: 10.1016/j.bbrc.2018.02.166 PMID: 29476737
- Miossec, P. Update on interleukin-17: A role in the pathogenesis of inflammatory arthritis and implication for clinical practice. RMD Open, 2017, 3(1), e000284. doi: 10.1136/rmdopen-2016-000284. PMID: 28243466
- Zhang, X.; Angkasekwinai, P.; Dong, C.; Tang, H.J.P. Structure and function of interleukin-17 family cytokines. Protein Cell, 2011, 2(1), 26-40. doi: 10.1007/s13238-011-1006-5. PMID: 21337007
- Le Goff, B.; Bouvard, B.; Lequerre, T.; Lespessailles, E.; Marotte, H.; Pers, Y.M.; Cortet, B. Implication of IL-17 in bone loss and structural damage in inflammatory rheumatic diseases. Mediators Inflamm., 2019, 2019, 8659302. doi: 10.1155/2019/8659302 PMID: 31485194
- Kuwabara, T.; Ishikawa, F.; Kondo, M. The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm., 2017, 2017, 3908061. doi: 10.1155/2017/3908061. PMID: 28316374
- Zhou, Z.; Li, X.; Li, H.; Guo, M.; Liu, S. Genetic analysis of IL-17 gene polymorphisms in gout in a male Chinese Han population. PLoS One, 2016, 11(2), e0148082. doi: 10.1371/journal.pone.0148082. PMID: 26890073
- Ranade, S.Y.; Gaud, R.S. Current strategies in herbal drug delivery for arthritis: An overview. Int. J. Pharm. Sci. Res., 2013, 4(10), 3782.
- Hussain, Y.; Alam, W.; Ullah, H.; Dacrema, M.; Daglia, M.; Khan, H.; Arciola, C.R. Antimicrobial potential of curcumin: Therapeutic potential and challenges to clinical applications. Antibiotics, 2022, 11(3), 322. doi: 10.3390/antibiotics11030322 PMID: 35326785
- Sohn, S.I.; Priya, A.; Balasubramaniam, B.; Muthuramalingam, P.; Sivasankar, C.; Selvaraj, A.; Valliammai, A.; Jothi, R.; Pandian, S. Biomedical applications and bioavailability of curcumin-An updated overview. Pharmaceutics, 2021, 13(12), 2102. doi: 10.3390/pharmaceutics13122102 PMID: 34959384
- Mustafa Kiyani, M.M.; Sohail, M.F.; Shahnaz, G.; Rehman, H.; Akhtar, M.F.; Nawaz, I.; Mahmood, T.; Manzoor, M.; Imran Bokhari, S.A. Evaluation of turmeric nanoparticles as anti-gout agent: Modernization of a traditional drug. Medicina, 2019, 55(1), 10. doi: 10.3390/medicina55010010 PMID: 30642012
- Walsh, A.S.; Yin, H.; Erben, C.M.; Wood, M.J.A.; Turberfield, A.J. DNA cage delivery to mammalian cells. ACS Nano, 2011, 5(7), 5427-5432. doi: 10.1021/nn2005574 PMID: 21696187
- Appelboom, T.; MsciBiost, C.M. MsciBiost CM. Flexofytol, a purified curcumin extract, in fibromyalgia and gout: A retrospective study. Open J. Rheumatol. Autoimmune Dis., 2013, 3(2), 104-107. doi: 10.4236/ojra.2013.32015
- WHO. The burden of musculoskeletal conditions at the start of the new millenium: Report of a WHO scientific group. 2003. Available from: https://apps.who.int/iris/handle/10665/42721
- Xu, Y.T.; Leng, Y.R.; Liu, M.M.; Dong, R.F.; Bian, J.; Yuan, L.L.; Zhang, J.; Xia, Y.Z.; Kong, L.Y. MicroRNA and long noncoding RNA involvement in gout and prospects for treatment. Int. Immunopharmacol., 2020, 87, 106842. doi: 10.1016/j.intimp.2020.106842 PMID: 32738598
- Wortmann, R.L. The management of gout: It should be crystal clear. J. Rheumatol., 2006, 33(10), 1921-1922. PMID: 17014007
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int. J. Mol. Sci., 2019, 20(13), 3328. doi: 10.3390/ijms20133328 PMID: 31284572
- Sutterwala, F.S.; Haasken, S.; Cassel, S.L. Mechanism of NLRP3 inflammasome activation. Ann. N. Y. Acad. Sci., 2014, 1319(1), 82-95. doi: 10.1111/nyas.12458 PMID: 24840700
- Wu, M.; Tian, Y.; Wang, Q.; Guo, C. Gout: A disease involved with complicated immunoinflammatory responses: A narrative review. Clin. Rheumatol., 2020, 39(10), 2849-2859. doi: 10.1007/s10067-020-05090-8 PMID: 32382830
- Dinarello, C.A. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat. Rev. Rheumatol., 2019, 15(10), 612-632. doi: 10.1038/s41584-019-0277-8 PMID: 31515542
- Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev., 2018, 281(1), 8-27. doi: 10.1111/imr.12621 PMID: 29247995
- Migliorini, P.; Italiani, P.; Pratesi, F.; Puxeddu, I.; Boraschi, D. The IL-1 family cytokines and receptors in autoimmune diseases. Autoimmun. Rev., 2020, 19(9), 102617. doi: 10.1016/j.autrev.2020.102617 PMID: 32663626
- Fields, J.K.; Günther, S.; Sundberg, E.J. Structural basis of IL-1 family cytokine signaling. Front. Immunol., 2019, 10, 1412. doi: 10.3389/fimmu.2019.01412 PMID: 31281320
- Yasuda, K.; Nakanishi, K.; Tsutsui, H. Interleukin-18 in health and disease. Int. J. Mol. Sci., 2019, 20(3), 649. doi: 10.3390/ijms20030649 PMID: 30717382
- Kaplanski, G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol. Rev., 2018, 281(1), 138-153. doi: 10.1111/imr.12616 PMID: 29247988
- Nakanishi, K. Unique action of interleukin-18 on T cells and other immune cells. Front. Immunol., 2018, 9, 763. doi: 10.3389/fimmu.2018.00763 PMID: 29731751
- Choe, J.Y.; Choi, C.H.; Park, K.Y.; Kim, S.K. High-mobility group box 1 is responsible for monosodium urate crystal-induced inflammation in human U937 macrophages. Biochem. Biophys. Res. Commun., 2018, 503(4), 3248-3255. doi: 10.1016/j.bbrc.2018.08.139 PMID: 30166062
- Son, C.N.; Bang, S.Y.; Kim, J.H.; Choi, C.B.; Kim, T.H.; Jun, J.B. Caspase-1 level in synovial fluid is high in patients with spondyloarthropathy but not in patients with gout. J. Korean Med. Sci., 2013, 28(9), 1289-1292. doi: 10.3346/jkms.2013.28.9.1289 PMID: 24015032
- Chen, C.J.; Shi, Y.; Hearn, A.; Fitzgerald, K.; Golenbock, D.; Reed, G.; Akira, S.; Rock, K.L. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest., 2006, 116(8), 2262-2271. doi: 10.1172/JCI28075 PMID: 16886064
- Trøseid, M.; Seljeflot, I.; Hjerkinn, E.M.; Arnesen, H. Interleukin-18 is a strong predictor of cardiovascular events in elderly men with the metabolic syndrome: Synergistic effect of inflammation and hyperglycemia. Diabetes Care, 2009, 32(3), 486-492. doi: 10.2337/dc08-1710 PMID: 19092166
- Schlesinger, N.; Brunetti, L. Beyond urate lowering: Analgesic and anti-inflammatory properties of allopurinol. Semin. Arthritis. Rheum., 2020, 50(3), 444-450. doi: 10.1016/j.semarthrit.2019.11.009
- Yin, C.; Liu, B.; Li, Y.; Li, X.; Wang, J.; Chen, R.; Tai, Y.; Shou, Q.; Wang, P.; Shao, X.; Liang, Y.; Zhou, H.; Mi, W.; Fang, J.; Liu, B. IL-33/ST2 induces neutrophil-dependent reactive oxygen species production and mediates gout pain. Theranostics, 2020, 10(26), 12189-12203. doi: 10.7150/thno.48028 PMID: 33204337
- Yin, C.; Liu, B.; Wang, P.; Li, X.; Li, Y.; Zheng, X.; Tai, Y.; Wang, C.; Liu, B. Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis. Br. J. Pharmacol., 2020, 177(9), 2042-2057. doi: 10.1111/bph.14967 PMID: 31883118
- Trevisan, G.; Hoffmeister, C.; Rossato, M.F.; Oliveira, S.M.; Silva, M.A.; Silva, C.R.; Fusi, C.; Tonello, R.; Minocci, D.; Guerra, G.P.; Materazzi, S.; Nassini, R.; Geppetti, P.; Ferreira, J. TRPA1 receptor stimulation by hydrogen peroxide is critical to trigger hyperalgesia and inflammation in a model of acute gout. Free Radic. Biol. Med., 2014, 72, 200-209. doi: 10.1016/j.freeradbiomed.2014.04.021 PMID: 24780252
- Trevisan, G.; Hoffmeister, C.; Rossato, M.F.; Oliveira, S.M.; Silva, M.A.; Ineu, R.P.; Guerra, G.P.; Materazzi, S.; Fusi, C.; Nassini, R.; Geppetti, P.; Ferreira, J. Transient receptor potential ankyrin 1 receptor stimulation by hydrogen peroxide is critical to trigger pain during monosodium urate-induced inflammation in rodents. Arthritis Rheum., 2013, 65(11), 2984-2995. doi: 10.1002/art.38112 PMID: 23918657
- Dostert, C.; Pétrilli, V.; Van Bruggen, R.; Steele, C.; Mossman, B.T.; Tschopp, J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science, 2008, 320(5876), 674-677. doi: 10.1126/science.1156995 PMID: 18403674
- Zhou, R.; Yazdi, A.S.; Menu, P.; Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature, 2011, 469(7329), 221-225. doi: 10.1038/nature09663 PMID: 21124315
- Alberts, B.M.; Bruce, C.; Basnayake, K.; Ghezzi, P.; Davies, K.A.; Mullen, L.M. Secretion of IL-1β from monocytes in gout is redox independent. Front. Immunol., 2019, 10, 70. doi: 10.3389/fimmu.2019.00070 PMID: 30761138
- Yanai, H.; Adachi, H.; Hakoshima, M.; Katsuyama, H. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease. Int. J. Mol. Sci., 2021, 22(17), 9221. doi: 10.3390/ijms22179221 PMID: 34502127
- Mitroulis, I.; Kambas, K.; Ritis, K. Neutrophils, IL-1β, and gout: Is there a link? Semin. Immunopathol., 2013, 35(4), 501-12. doi: 10.1007/s00281-013-0361-0
- Liu, M.L.; Lyu, X.; Werth, V.P. Recent progress in the mechanistic understanding of NET formation in neutrophils. FEBS J., 2022, 289(14), 3954-3966. doi: 10.1111/febs.16036 PMID: 34042290
- Daily, JW.; Yang, M.; Park, S. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: A systematic review and meta-analysis of randomized clinical trials. J. Med. food, 2016, 19(8), 717-29.
- Chandran, B.; Goel, A. A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother. Res., 2012, 26(11), 1719-1725. doi: 10.1002/ptr.4639 PMID: 22407780
- Nakagawa, Y.; Mukai, S.; Yamada, S.; Matsuoka, M.; Tarumi, E.; Hashimoto, T.; Tamura, C.; Imaizumi, A.; Nishihira, J.; Nakamura, T. Short-term effects of highly-bioavailable curcumin for treating knee osteoarthritis: A randomized, double-blind, placebo-controlled prospective study. J. Orthop. Sci., 2014, 19(6), 933-939. doi: 10.1007/s00776-014-0633-0 PMID: 25308211
- Dewangan, A.K.; Varkey, S.; Mazumder, S. Synthesis of curcumin loaded CMCAB nanoparticles for treatment of rheumatoid arthritis. International Conference on Chemical, Environmental and Biological Sciences (CEBS), Dubai (UAE) 18-19, 2015.
- Coradini, K.; Friedrich, R.B.; Fonseca, F.N.; Vencato, M.S.; Andrade, D.F.; Oliveira, C.M.; Battistel, A.P.; Guterres, S.S.; da Rocha, M.I.U.M.; Pohlmann, A.R.; Beck, R.C.R. A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: In vivo studies. Eur. J. Pharm. Sci., 2015, 78, 163-170. doi: 10.1016/j.ejps.2015.07.012 PMID: 26206297
- Arora, R.; Kuhad, A.; Kaur, I.P.; Chopra, K. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats. Eur. J. Pain, 2015, 19(7), 940-952. doi: 10.1002/ejp.620 PMID: 25400173
- Xiang, B.; Dong, D-W.; Shi, N-Q.; Gao, W.; Yang, Z-Z.; Cui, Y.; Cao, D-Y.; Qi, X-R. PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials, 2013, 34(28), 6979-91. doi: 10.1016/j.biomaterials.2013.05.055 PMID: 23777916
- Khezri, K.; Saeedi, M.; Mohammadamini, H.; Zakaryaei, A.S. A comprehensive review of the therapeutic potential of curcumin nanoformulations. Phytother Res., 2021, 35(10), 5527-5563. doi: 10.1002/ptr.7190 PMID: 34131980
- Sun, H.; Zhan, M.; Mignani, S.; Shcharbin, D.; Majoral, J-P.; Rodrigues, J.; Shi, X.; Shen, M. Modulation of macrophages using nanoformulations with curcumin to treat inflammatory diseases: A concise review. Pharmaceutics, 2022, 14(10), 2239. doi: 10.3390/pharmaceutics14102239 PMID: 36297677
- Liu, C.; Rokavec, M.; Huang, Z.; Hermeking, H. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis. Cell Death Differ., 2023, 1-15.
- Huang, J.; Wu, T.; Zhong, Y.; Huang, J.; Kang, Z.; Zhou, B.; Zhao, H.; Liu, D. Effect of curcumin on regulatory B cells in chronic colitis mice involving TLR / MYD88 signaling pathway. Phytother. Res., 2023, 37(2), 731-742. doi: 10.1002/ptr.7656 PMID: 36196887
- Miyazaki, K.; Morine, Y.; Xu, C.; Nakasu, C.; Wada, Y.; Teraoku, H. Curcumin-mediated resistance to lenvatinib via EGFR signaling pathway in hepatocellular carcinoma. Cells, 2023, 12(4), 612. doi: 10.3390/cells12040612
- Zhang, H.; Li, H.; Wang, H.; Lei, S.; Yan, LJB. Overexpression of TRPM7 promotes the therapeutic effect of curcumin in wound healing through the STAT3/SMAD3 signaling pathway in human fibroblasts. Burns, 2023, 49(4), 889-900. doi: 10.1016/j.burns.2022.06.016 PMID: 35850880
- Benameur, T.; Frota Gaban, S.V.; Giacomucci, G.; Filannino, F.M.; Trotta, T.; Polito, R.; Messina, G.; Porro, C.; Panaro, M.A. The effects of curcumin on inflammasome: Latest update. Molecules, 2023, 28(2), 742. doi: 10.3390/molecules28020742 PMID: 36677800
- Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T. Curcumin: An inflammasome silencer. Pharmacol. Res., 2020, 159, 104921. doi: 10.1016/j.phrs.2020.104921. PMID: 32464325
Supplementary files
