Alkaloids as Additional Weapons in the Fight against Breast Cancer: A Review


Cite item

Full Text

Abstract

:Breast carcinoma is among the most frequent cancerous tumour in females around the globe. The major modalities now employed in the therapeutic management of breast cancer include surgeries, chemotherapy, and specialized medicines. Despite their potential to help individuals' problems, they are also associated with many negative impacts. As a result, natural products are increasingly regarded to be a preferable alternative. Alkaloids are essential biochemical substances that can be used to develop new drugs. Numerous alkaloids that originate from natural plants have been shown in vitro and in vivo to have anti-proliferation and anti-metastasis actions on different kinds of carcinoma. According to the data collected in this study, the utilization of alkaloids as anti-tumor medicines appears to be extremely potent; nevertheless, extensive studies and clinical trials are required before utilizing individual alkaloids. In this overview, we provide a detailed and vital exploration of pre-existing alkaloids possessing anti-tumor activities due to bioactive compounds. This study also includes an overview of synthesized analogues and pharmacological characteristics that will be beneficial to scientists working on alkaloids for medicinal purposes. In a recent survey of the literature, alkaloids are an important component of plantderived antitumor medicines that hold great potential for the future development of cancer therapy and preventive therapies. We have also discussed structural analysis relationship (SAR) studies. Moreover, it covers clinical trial medications and FDA-approved medicines from the last five years that will be useful in further research.

About the authors

Chahat

Department of Pharmaceutical Chemistry, ISF College of Pharmacy

Email: info@benthamscience.net

Keshav Jha

Department of Pharmaceutical Chemistr, ISF College of Pharmacy

Email: info@benthamscience.net

Rohit Bhatia

Department of Pharmaceutical Chemistry, ISF College of Pharmacy

Email: info@benthamscience.net

Pooja Chawla

Department of Pharmaceutical Chemistry, ISF College of Pharmacy,

Author for correspondence.
Email: info@benthamscience.net

References

  1. Chahat, B.; Bhatia, R.; Kumar, B. p53 as a potential target for treatment of cancer: A perspective on recent advancements in small molecules with structural insights and SAR studies. Eur. J. Med. Chem., 2023, 247, 115020. doi: 10.1016/j.ejmech.2022.115020 PMID: 36543034
  2. Taruneshwar Jha, K.; Shome, A. Chahat; Chawla, P.A. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship. Bioorg. Chem., 2023, 138, 106680. doi: 10.1016/j.bioorg.2023.106680 PMID: 37336103
  3. Dhyani, P.; Quispe, C.; Sharma, E.; Bahukhandi, A.; Sati, P.; Attri, D.C.; Szopa, A.; Sharifi-Rad, J.; Docea, A.O.; Mardare, I.; Calina, D.; Cho, W.C. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int., 2022, 22(1), 206. doi: 10.1186/s12935-022-02624-9 PMID: 35655306
  4. Vidyasekar, P.; Shyamsunder, P.; Arun, R.; Santhakumar, R.; Kapadia, N.K.; Kumar, R.; Verma, R.S. Genome wide expression profiling of cancer cell lines cultured in microgravity reveals significant dysregulation of cell cycle and MicroRNA gene networks. PLoS One, 2015, 10(8), e0135958. doi: 10.1371/journal.pone.0135958 PMID: 26295583
  5. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  6. El-Helby, A.G.A.; Sakr, H.; Ayyad, R.R.; Mahdy, H.A.; Khalifa, M.M.; Belal, A.; Rashed, M.; El-Sharkawy, A.; Metwaly, A.M.; Elhendawy, M.A.; Radwan, M.M.; ElSohly, M.A.; Eissa, I.H. Design, synthesis, molecular modeling, in vivo studies and anticancer activity evaluation of new phthalazine derivatives as potential DNA intercalators and topoisomerase II inhibitors. Bioorg. Chem., 2020, 103, 104233. doi: 10.1016/j.bioorg.2020.104233 PMID: 32882440
  7. WHO. Assessing national capacity for the prevention and control of noncommunicable diseases: Report of the 2019 global survey. , 2020. Available from: https://www.who.int/publications/i/item/9789240002319
  8. Kaushik, I.; Ramachandran, S.; Prasad, S.; Srivastava, S.K. Drug rechanneling: A novel paradigm for cancer treatment. In: Seminars in Cancer Biology; Elsevier, 2021; 68, pp. 279-290.
  9. Kulothungan, V.; Sathishkumar, K.; Leburu, S.; Ramamoorthy, T.; Stephen, S.; Basavarajappa, D.; Tomy, N.; Mohan, R.; Menon, G.R.; Mathur, P. Burden of cancers in India - estimates of cancer crude incidence, YLLs, YLDs and DALYs for 2021 and 2025 based on National Cancer Registry Program. BMC Cancer, 2022, 22(1), 527. doi: 10.1186/s12885-022-09578-1 PMID: 34979993
  10. Kumar, B.; Singh, S.; Skvortsova, I.; Kumar, V. Promising targets in anti-cancer drug development: Recent updates. Curr. Med. Chem., 2017, 24(42), 4729-4752. PMID: 28393696
  11. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
  12. Wulfkuhle, J.D.; Liotta, L.A.; Petricoin, E.F. Proteomic applications for the early detection of cancer. Nat. Rev. Cancer, 2003, 3(4), 267-275. doi: 10.1038/nrc1043 PMID: 12671665
  13. Hortobagyi, G.N.; de la Garza Salazar, J.; Pritchard, K.; Amadori, D.; Haidinger, R.; Hudis, C.A.; Khaled, H.; Liu, M.C.; Martin, M.; Namer, M.; O’Shaughnessy, J.A.; Shen, Z.Z.; Albain, K.S. The global breast cancer burden: Variations in epidemiology and survival. Clin. Breast Cancer, 2005, 6(5), 391-401. doi: 10.3816/CBC.2005.n.043 PMID: 16381622
  14. Lei, S.; Zheng, R.; Zhang, S.; Chen, R.; Wang, S.; Sun, K.; Zeng, H.; Wei, W.; He, J. Breast cancer incidence and mortality in women in China: Temporal trends and projections to 2030. Cancer Biol. Med., 2021, 18(3), 900-909. doi: 10.20892/j.issn.2095-3941.2020.0523 PMID: 34002584
  15. Smith, R.A.; von Eschenbach, A.C.; Wender, R.; Levin, B.; Byers, T.; Rothenberger, D.; Brooks, D.; Creasman, W.; Cohen, C.; Runowicz, C.; Saslow, D.; Cokkinides, V.; Eyre, H. American Cancer Society guidelines for the early detection of cancer: Update of early detection guidelines for prostate, colorectal, and endometrial cancers. Also: Update 2001--testing for early lung cancer detection. CA Cancer J. Clin., 2001, 51(1), 38-75. doi: 10.3322/canjclin.51.1.38 PMID: 11577479
  16. Alzain, A.A.; Brisson, L.; Delaye, P.O.; Pénichon, M.; Chadet, S.; Besson, P.; Chevalier, S.; Allouchi, H.; Mohamed, M.A.; Roger, S.; Enguehard-Gueiffier, C. Bioinspired imidazo1,2-a:4,5-c′dipyridines with dual antiproliferative and anti-migrative properties in human cancer cells: The SAR investigation. Eur. J. Med. Chem., 2021, 218, 113258. doi: 10.1016/j.ejmech.2021.113258 PMID: 33813152
  17. Sun, M.; Zhang, Y.; Qin, J.; Ba, M.; Yao, Y.; Duan, Y.; Liu, H.; Yu, D. Synthesis and biological evaluation of new 2-methoxyestradiol derivatives: Potent inhibitors of angiogenesis and tubulin polymerization. Bioorg. Chem., 2021, 113, 104988. doi: 10.1016/j.bioorg.2021.104988 PMID: 34034135
  18. Bonapace, L.; Coissieux, M.M.; Wyckoff, J.; Mertz, K.D.; Varga, Z.; Junt, T.; Bentires-Alj, M. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature, 2014, 515(7525), 130-133. doi: 10.1038/nature13862 PMID: 25337873
  19. Niu, Y.; Bao, L.; Chen, Y.; Wang, C.; Luo, M.; Zhang, B.; Zhou, M.; Wang, J.E.; Fang, Y.V.; Kumar, A.; Xing, C.; Wang, Y.; Luo, W. HIF2-induced long noncoding RNA RAB11B-AS1 promotes hypoxia-mediated angiogenesis and breast cancer metastasis. Cancer Res., 2020, 80(5), 964-975. doi: 10.1158/0008-5472.CAN-19-1532 PMID: 31900259
  20. Lucas, M.C.; Tan, S.L. Small-molecule inhibitors of spleen tyrosine kinase as therapeutic agents for immune disorders: Will promise meet expectations? Future Med. Chem., 2014, 6(16), 1811-1827. doi: 10.4155/fmc.14.126 PMID: 25407369
  21. Beutler, J.A. Natural products as a foundation for drug discovery. Curr. Protocols Pharmacol., 2009, 46(1), 11-19. doi: 10.1002/0471141755.ph0911s46
  22. Sharifi-Rad, J.; Quispe, C.; Imran, M.; Rauf, A.; Nadeem, M.; Gondal, T.A.; Ahmad, B.; Atif, M.; Mubarak, M.S.; Sytar, O. Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits. Oxid. Med. Cell. Longev., 2021, 2021, 3268136. doi: 10.1155/2021/3268136
  23. Croteau, R.; Kutchan, T.M.; Lewis, N.G. Natural products (secondary metabolites). Plant Mol. Biol., 2000, 24, 1250-1319.
  24. Williams, D.H.; Stone, M.J.; Hauck, P.R.; Rahman, S.K. Why are secondary metabolites (natural products) biosynthesized? J. Nat. Prod., 1989, 52(6), 1189-1208. doi: 10.1021/np50066a001 PMID: 2693613
  25. Rajput, A.; Sharma, R.; Bharti, R. Pharmacological activities and toxicities of alkaloids on human health. Mater. Today Proc., 2022, 48, 1407-1415. doi: 10.1016/j.matpr.2021.09.189
  26. Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem., 2018, 9, 56-72. doi: 10.1016/j.mtchem.2018.05.001
  27. Berchtold, M.W.; Villalobo, A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochim. Biophys. Acta Mol. Cell Res., 2014, 1843(2), 398-435. doi: 10.1016/j.bbamcr.2013.10.021 PMID: 24188867
  28. Reed, J.C. Apoptosis-targeted therapies for cancer. Cancer Cell, 2003, 3(1), 17-22. doi: 10.1016/S1535-6108(02)00241-6 PMID: 12559172
  29. Kato, Y.; Maeda, T.; Suzuki, A.; Baba, Y. Cancer metabolism: New insights into classic characteristics. Jpn. Dent. Sci. Rev., 2018, 54(1), 8-21. doi: 10.1016/j.jdsr.2017.08.003 PMID: 29628997
  30. Habli, Z.; Toumieh, G.; Fatfat, M.; Rahal, O.; Gali-Muhtasib, H. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms. Molecules, 2017, 22(2), 250. doi: 10.3390/molecules22020250 PMID: 28208712
  31. Mohapatra, P.; Singh, P.; Singh, D.; Sahoo, S.; Sahoo, S.K. Phytochemical based nanomedicine: A panacea for cancer treatment, present status and future prospective. In: Open- Nano; Elsevier, 2022; 7, p. 100055.
  32. Khatoon, E.; Banik, K.; Harsha, C.; Sailo, B.L.; Thakur, K.K.; Khwairakpam, A.D.; Vikkurthi, R.; Devi, T.B.; Gupta, S.C.; Kunnumakkara, A.B. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives. Semin. Cancer Biol., 2022, 80, 306-339. doi: 10.1016/j.semcancer.2020.06.014 PMID: 32610149
  33. Thundimadathil, J. Cancer treatment using peptides: Current therapies and future prospects. J. Amino Acids, 2012, 2012, 967347.
  34. Kim, D.B.; Lee, D.K.; Cheon, C.; Ribeiro, R.I.M.A.; Kim, B. Natural products for liver cancer treatment: From traditional medicine to modern drug discovery. Nutrients, 2022, 14(20), 4252. doi: 10.3390/nu14204252 PMID: 36296934
  35. Usman, M.; Khan, W.R.; Yousaf, N.; Akram, S.; Murtaza, G.; Kudus, K.A.; Ditta, A.; Rosli, Z.; Rajpar, M.N.; Nazre, M. Exploring the phytochemicals and anti-cancer potential of the members of Fabaceae family: A comprehensive review. Molecules, 2022, 27(12), 3863. doi: 10.3390/molecules27123863 PMID: 35744986
  36. Pandrangi, S.L.; Chalumuri, S.S.; Garimella, S. Emerging therapeutic efficacy of alkaloids as anticancer agents. Ann. Rom. Soc. Cell Biol., 2022, 26(01), 64-74.
  37. Bhattacharya, R.; Naitam, P. Green anticancer drugs-An review. Res. J. Pharmacogn. Phytochem., 2019, 11(4), 231-243. doi: 10.5958/0975-4385.2019.00040.2
  38. Levy, A. In CRC Handbook of Flowering; CRC Press, 2019, pp. 5-8. doi: 10.1201/9781351072564-3
  39. Waller, G. Alkaloid biology and metabolism in plants; Springer, 2012.
  40. Evans, W.C. Trease and Evans’ pharmacognosy; Elsevier, 2009.
  41. Dey, P.; Kundu, A.; Kumar, A.; Gupta, M. Recent advances in natural products analysis; Elsevier, 2020, pp. 505-567. doi: 10.1016/B978-0-12-816455-6.00015-9
  42. Phillipson, J.D. Phytochemistry and medicinal plants. Phytochemistry, 2001, 56(3), 237-243. doi: 10.1016/S0031-9422(00)00456-8 PMID: 11243450
  43. Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1-2), 72-79. doi: 10.1016/j.jep.2005.05.011 PMID: 16009521
  44. Jain, C.; Khatana, S.; Vijayvergia, R. Bioactivity of secondary metabolites of various plants: A review. Int. J. Pharm. Sci. Res., 2019, 10(2), 494-504.
  45. Chen, J.J.; Chang, Y.L.; Teng, C.M.; Chen, I.S. Anti-platelet aggregation alkaloids and lignans from Hernandia nymphaeifolia. Planta Med., 2000, 66(3), 251-256. doi: 10.1055/s-2000-8562 PMID: 10821052
  46. Gurung, P.; De, P. Spectrum of biological properties of Cinchona alkaloids: A brief review. J. Pharmacogn. Phytochem., 2017, 6(4), 162-166.
  47. Oyama, T.; Isono, T.; Suzuki, Y.; Hayakawa, Y. Anti-nociceptive effects of aconiti tuber and its alkaloids. Am. J. Chin. Med., 1994, 22(2), 175-182. doi: 10.1142/S0192415X94000218 PMID: 7992817
  48. Santos, F.A.; Rao, V.S.N. A study of the anti-pyretic effect of quinine, an alkaloid effective against cerebral malaria, on fever induced by bacterial endotoxin and yeast in rats. J. Pharm. Pharmacol., 2011, 50(2), 225-229. doi: 10.1111/j.2042-7158.1998.tb06180.x PMID: 9530992
  49. Fu, M.; Zou, B.; An, K.; Yu, Y.; Tang, D.; Wu, J.; Xu, Y.; Ti, H. Anti-asthmatic activity of alkaloid compounds from Pericarpium Citri Reticulatae (Citrus reticulata ‘Chachi’). Food Funct., 2019, 10(2), 903-911. doi: 10.1039/C8FO01753K PMID: 30694283
  50. Chemler, S. Phenanthroindolizidines and phenanthroquinolizidines: Promising alkaloids for anti-cancer therapy. Curr. Bioact. Compd., 2009, 5(1), 2-19. doi: 10.2174/157340709787580928 PMID: 20160962
  51. Wangchuk, P.; Sastraruji, T.; Taweechotipatr, M.; Keller, P.A.; Pyne, S.G. Anti-inflammatory, anti-bacterial and anti-acetylcholinesterase activities of two isoquinoline alkaloids–Scoulerine and Cheilanthifoline. Nat. Prod. Commun., 2016, 11(12), 1934578X1601101207. doi: 10.1177/1934578X1601101207
  52. Sinha, S.; Sharma, A.; Reddy, P.H.; Rathi, B.; Prasad, N.V.S.R.K.; Vashishtha, A. Evaluation of phytochemical and pharmacological aspects of Holarrhena antidysenterica (Wall.): A comprehensive review. J. Pharm. Res., 2013, 6(4), 488-492. doi: 10.1016/j.jopr.2013.04.004
  53. Arora, S.; Narayan, P.; Osgood, C.L.; Wedam, S.; Prowell, T.M.; Gao, J.J.; Shah, M.; Krol, D.; Wahby, S.; Royce, M.; Ghosh, S.; Philip, R.; Ison, G.; Berman, T.; Brus, C.; Bloomquist, E.W.; Fiero, M.H.; Tang, S.; Pazdur, R.; Ibrahim, A.; Amiri-Kordestani, L.; Beaver, J.A.US FDA drug approvals for breast cancer: A decade in review. Clin. Cancer Res., 2022, 28(6), 1072-1086. doi: 10.1158/1078-0432.CCR-21-2600 PMID: 34711632
  54. Rafferty, C.M. Everolimus: A new treatment for hormone receptor–positive advanced breast cancer. TON, 2013, 6(4)
  55. Chang, D.Y.; Ma, W.L.; Lu, Y.S. Role of Alpelisib in the treatment of PIK3CA-mutated breast cancer: Patient selection and clinical perspectives. Ther. Clin. Risk Manag., 2021, 17, 193-207. doi: 10.2147/TCRM.S251668 PMID: 33707948
  56. Narayan, P.; Prowell, T.M.; Gao, J.J.; Fernandes, L.L.; Li, E.; Jiang, X.; Qiu, J.; Fan, J.; Song, P.; Yu, J.; Zhang, X.; King-Kallimanis, B.L.; Chen, W.; Ricks, T.K.; Gong, Y.; Wang, X.; Windsor, K.; Rhieu, S.Y.; Geiser, G.; Banerjee, A.; Chen, X.; Reyes Turcu, F.; Chatterjee, D.K.; Pathak, A.; Seidman, J.; Ghosh, S.; Philip, R.; Goldberg, K.B.; Kluetz, P.G.; Tang, S.; Amiri-Kordestani, L.; Theoret, M.R.; Pazdur, R.; Beaver, J.A. FDA approval summary: Alpelisib plus fulvestrant for patients with HR-positive, HER2-negative, PIK3CA-mutated, advanced or metastatic breast cancer. Clin. Cancer Res., 2021, 27(7), 1842-1849. doi: 10.1158/1078-0432.CCR-20-3652 PMID: 33168657
  57. André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; Yamashita, T.; Lu, Y.S.; Inoue, K.; Takahashi, M.; Pápai, Z.; Longin, A.S.; Mills, D.; Wilke, C.; Hirawat, S.; Juric, D. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med., 2019, 380(20), 1929-1940. doi: 10.1056/NEJMoa1813904 PMID: 31091374
  58. Johnson, K.C.C.; Quiroga, D.; Sudheendra, P.; Wesolowski, R. Treatment of small (T1mic, T1a, and T1b) node-negative HER2+ breast cancer – a review of current evidence for and against the use of anti-HER2 treatment regimens. Expert Rev. Anticancer Ther., 2022, 22(5), 505-522. doi: 10.1080/14737140.2022.2063844 PMID: 35389302
  59. Narayan, P.; Osgood, C.L.; Singh, H.; Chiu, H.J.; Ricks, T.K.; Chiu Yuen Chow, E.; Qiu, J.; Song, P.; Yu, J.; Namuswe, F.; Guiterrez-Lugo, M.; Hou, S.; Pierce, W.F.; Goldberg, K.B.; Tang, S.; Amiri-Kordestani, L.; Theoret, M.R.; Pazdur, R.; Beaver, J.A. FDA approval summary: Fam-trastuzumab deruxtecan-nxki for the treatment of unresectable or metastatic HER2-Positive breast cancer. Clin. Cancer Res., 2021, 27(16), 4478-4485. doi: 10.1158/1078-0432.CCR-20-4557 PMID: 33753456
  60. Saura, C.; Oliveira, M.; Feng, Y.H.; Dai, M.S.; Chen, S.W.; Hurvitz, S.A.; Kim, S.B.; Moy, B.; Delaloge, S.; Gradishar, W.; Masuda, N.; Palacova, M.; Trudeau, M.E.; Mattson, J.; Yap, Y.S.; Hou, M.F.; De Laurentiis, M.; Yeh, Y.M.; Chang, H.T.; Yau, T.; Wildiers, H.; Haley, B.; Fagnani, D.; Lu, Y.S.; Crown, J.; Lin, J.; Takahashi, M.; Takano, T.; Yamaguchi, M.; Fujii, T.; Yao, B.; Bebchuk, J.; Keyvanjah, K.; Bryce, R.; Brufsky, A. Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive metastatic breast cancer previously treated with≥ 2 HER2-directed regimens: Phase III NALA trial. J. Clin. Oncol., 2020, 38(27), 3138-3149. doi: 10.1200/JCO.20.00147 PMID: 32678716
  61. Shah, M.; Wedam, S.; Cheng, J.; Fiero, M.H.; Xia, H.; Li, F.; Fan, J.; Zhang, X.; Yu, J.; Song, P.; Chen, W.; Ricks, T.K.; Chen, X.H.; Goldberg, K.B.; Gong, Y.; Pierce, W.F.; Tang, S.; Theoret, M.R.; Pazdur, R.; Amiri-Kordestani, L.; Beaver, J.A. FDA approval summary: Tucatinib for the treatment of patients with advanced or metastatic HER2-positive breast cancer. Clin. Cancer Res., 2021, 27(5), 1220-1226. doi: 10.1158/1078-0432.CCR-20-2701 PMID: 33055172
  62. Crespo, J.; Sun, H.; Wu, J.; Ding, Q.Q.; Tang, G.; Robinson, M.K.; Chen, H.; Sahin, A.A.; Lim, B. Rate of reclassification of HER2-equivocal breast cancer cases to HER2-negative per the 2018 ASCO/CAP guidelines and response of HER2-equivocal cases to anti-HER2 therapy. PLoS One, 2020, 15(11), e0241775. doi: 10.1371/journal.pone.0241775 PMID: 33180796
  63. Markham, A. Margetuximab: First approval. Drugs, 2021, 81(5), 599-604. doi: 10.1007/s40265-021-01485-2 PMID: 33761116
  64. Rugo, H.S. Im, S.A.; Cardoso, F.; Cortés, J.; Curigliano, G.; Musolino, A.; Pegram, M.D.; Wright, G.S.; Saura, C.; Escrivá-de-Romaní, S.; De Laurentiis, M.; Levy, C.; Brown-Glaberman, U.; Ferrero, J.M.; de Boer, M.; Kim, S.B.; Petráková, K.; Yardley, D.A.; Freedman, O.; Jakobsen, E.H.; Kaufman, B.; Yerushalmi, R.; Fasching, P.A.; Nordstrom, J.L.; Bonvini, E.; Koenig, S.; Edlich, S.; Hong, S.; Rock, E.P.; Gradishar, W.J. Efficacy of margetuximab vs trastuzumab in patients with pretreated ERBB2-positive advanced breast cancer: A phase 3 randomized clinical trial. JAMA Oncol., 2021, 7(4), 573-584. doi: 10.1001/jamaoncol.2020.7932 PMID: 33480963
  65. Narayan, P.; Wahby, S.; Gao, J.J.; Amiri-Kordestani, L.; Ibrahim, A.; Bloomquist, E.; Tang, S.; Xu, Y.; Liu, J.; Fu, W.; Song, P.; King-Kallimanis, B.L.; Hou, S.; Gong, Y.; Kalavar, S.; Ghosh, S.; Philip, R.; Goldberg, K.B.; Theoret, M.R.; Blumenthal, G.M.; Kluetz, P.G.; Sridhara, R.; Pazdur, R.; Beaver, J.A. FDA approval summary: Atezolizumab plus paclitaxel protein-bound for the treatment of patients with advanced or metastatic TNBC whose tumors express PD-L1. Clin. Cancer Res., 2020, 26(10), 2284-2289. doi: 10.1158/1078-0432.CCR-19-3545 PMID: 32001481
  66. McCann, K.E.; Hurvitz, S.A.; McAndrew, N. Advances in targeted therapies for triple-negative breast cancer. Drugs, 2019, 79(11), 1217-1230. doi: 10.1007/s40265-019-01155-4 PMID: 31254268
  67. Cortes, J.; Cescon, D.W.; Rugo, H.S.; Nowecki, Z.; Im, S.A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Holgado, E.; Iwata, H.; Masuda, N.; Otero, M.T.; Gokmen, E.; Loi, S.; Guo, Z.; Zhao, J.; Aktan, G.; Karantza, V.; Schmid, P.; Luis, F.; Gonzalo, G.A.; Diego, K.; Ruben, K.; Matias, M.; Mirta, V.; Sally, B-H.; Stephen, B.; Philip, C.; Sherene, L.; Dhanusha, S.; Andrea, G.; Donatienne, T.; Carlos, B.; Leandro, B.; Fabiano, C.; Ruffo, F.J.; Roberto, H.; Domicio Carvalho, L.; Fernando Cezar Toniazzi, L.; Roberto Odebrecht, R.; Antonio Orlando, S.N.; Felipe, S.; David, C.; Danielle, C.; Cristiano, F.; Xinni, S.; Joanne, Y.; Alejandro, A.; Carlos, G.; Claudio, S.; Cesar, S.; Eduardo, Y.; Alvaro, G.D.; Jesus, S.; Petra, H.; Zdenek, K.; Bohuslav, M.; Katarina, P.; Jana, P.; Vesna, G.; Erik, J.; Jeanette, J.; Soren, L.; Tamas, L.; Herve, B.; Isabelle, D.; Anthony, G.; Anne-Claire, H-B.; Luis, T.; Jens-Uwe, B.; Peter, F.; Dirk, F.; Nadia, H.; Jens, H.; Anna, K.F.S.; Christian, K.; Sibylle, L.; Diana, L.; Tjoung-Won, P-S.; Raquel Von, S.; Pauline, W.; Louis, C.; Ava, K.; Kai Cheong Roger, N.; Peter, A.; Tibor, C.; Zsuzsanna, K.; Laszlo, L.; Karoly, M.; Gabor, R.; John, C.; Catherine, K.; Seamus, O.R.; Saverio, C.; Antonietta, D.A.; Enrico, R.; Tomoyuki, A.; Takaaki, F.; Kenichi, I.; Takashi, I.; Yoshinori, I.; Tsutomu, I.; Hiroji, I.; Yoshimasa, K.; Koji, M.; Yasuo, M.; Hirofumi, M.; Seigo, N.; Naoki, N.; Shoichiro, O.; Akihiko, O.; Yasuaki, S.; Eiji, S.; Masato, T.; Yuko, T.; Kenji, T.; Koichiro, T.; Junichiro, W.; Naohito, Y.; Yutaka, Y.; Teruo, Y.; Anita, B.; Mastura, M.Y.; Angel, G.V.; Alejandro, J.R.; Jorge, M.R.; Flavia, M-V.; Jessica, R.C.; Karin, B.; Vivianne, T-H.; David, P.; Ewa, C.; Ewa, N-Z.; Zbigniew, N.; Barbara, R.; Joanna, S.; Cezary, S.; Rafal, T.; Bogdan, Z.; Alexander, A.; Natalia, F.; Oleg, L.; Andrey, M.; Vladimir, M.; Guzel, M.; Jin Hee, A.; Seock-Ah, I.; Keun Seok, L.; Kwong Hwa, P.; Yeon Hee, P.; Begona, B.H.; Javier, C.; Josefina, C.J.; Luis, C.M.; Jose, G.S.; Maria, G.; Esther, H.; Esther, Z.A.; Chien-Ting, L.; Mei-Ching, L.; Chiun-Sheng, H.; Chao-Jung, T.; Ling-Ming, T.; Cagatay, A.; Gul, B.; Irfan, C.; Erhan, G.; Seyda, G.; Nil, M.M.; Mustafa, O.; Ozgur, O.; Sinan, Y.; Steve, C.; Janine, G.; Iain, M.P.; Peter, S.; Nicholas, T.; Mark, T.; Christopher, T.; Duncan, W.; Hryhoriy, A.; Oleksandr, B.; Igor, B.; Oleksii, K.; Olena, K.; Hanna, K.; Anna, K.; Iurii, L.; Alla, N.; Natalya, O.; Olga, P.; Andrii, R.; Sergii, S.; Yaroslav, S.; Dmytro, T.; Grygorii, U.; Ihor, V.; Sibel, B.; Madhu, C.; Michael, C.; Patrick, C.; Scott, C.; Jennifer, D.; Keerthi, G.; Jeffrey, H.; Kent, H.; William, I.; Randa, L.; Janice, L.; Raul, M.; Susan, M.; Rita, N.; Ira, O.; Coral, O.; Timothy, P.; Amit, P.; Brian, P.; Hope, R.; Irina, R.; Michael, S.; Robert, S.; Michael, S.; Laura, S.; Bradley, S.; Michaela, T.; Frances, V-A. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): A randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet, 2020, 396(10265), 1817-1828. doi: 10.1016/S0140-6736(20)32531-9 PMID: 33278935
  68. Wahby, S.; Fashoyin-Aje, L.; Osgood, C.L.; Cheng, J.; Fiero, M.H.; Zhang, L.; Tang, S.; Hamed, S.S.; Song, P.; Charlab, R.; Dorff, S.E.; Ricks, T.K.; Barnett-Ringgold, K.; Dinin, J.; Goldberg, K.B.; Theoret, M.R.; Pazdur, R.; Amiri-Kordestani, L.; Beaver, J.A. FDA approval summary: Accelerated approval of sacituzumab govitecan-hziy for third-line treatment of metastatic triple-negative breast cancer. Clin. Cancer Res., 2021, 27(7), 1850-1854. doi: 10.1158/1078-0432.CCR-20-3119 PMID: 33168656
  69. Robson, M.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; Wu, W.; Goessl, C.; Runswick, S.; Conte, P. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl. J. Med., 2017, 377(6), 523-533. doi: 10.1056/NEJMoa1706450 PMID: 28578601
  70. Yardley, D.A.; McCleod, M.; Schreiber, F.; Murphy, P.; Patton, J.; Thompson, D.S.; Shastry, M.; Rubin, M.; Melnik, M.; Burris, H.A.; Hainsworth, J.D. A phase II trial of vinflunine as monotherapy or in combination with trastuzumab as first-line treatment of metastatic breast cancer. Cancer Invest., 2010, 28(9), 925-931. doi: 10.3109/07357907.2010.496755 PMID: 20690806
  71. Rampogu, S.; Balasubramaniyam, T.; Lee, J.H. Phytotherapeutic applications of alkaloids in treating breast cancer. Biomed. Pharmacother., 2022, 155, 113760. doi: 10.1016/j.biopha.2022.113760 PMID: 36271547
  72. An, B.; Zhang, S.; Hu, J.; Pan, T.; Huang, L.; Tang, J.C.; Li, X.; Chan, A.S.C. The design, synthesis and evaluation of selenium-containing 4-anilinoquinazoline hybrids as anticancer agents and a study of their mechanism. Org. Biomol. Chem., 2018, 16(25), 4701-4714. doi: 10.1039/C8OB00875B PMID: 29900452
  73. Arya, K.R.; Rajendra Prasad, K.J. Rational eco-compatible synthesis and biological screening of new highly functionalized pyrido2,3- acarbazole derivatives: A novel class of antioxidant and anticancer agents. Synth. Commun., 2018, 48(12), 1465-1481. doi: 10.1080/00397911.2018.1455211
  74. Parrino, B.; Ullo, S.; Attanzio, A.; Cascioferro, S.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Cirrincione, G.; Tesoriere, L.; Diana, P. Synthesis of 5H-pyrido3,2-bpyrrolizin-5-one tripentone analogs with antitumor activity. Eur. J. Med. Chem., 2018, 158, 236-246. doi: 10.1016/j.ejmech.2018.09.017 PMID: 30218909
  75. Chate, A.V.; Kamdi, S.P.; Bhagat, A.N.; Jadhav, C.K.; Nipte, A.; Sarkate, A.P.; Tiwari, S.V.; Gill, C.H. Design, synthesis and SAR study of novel spiro pyrimido5,4-bquinoline-10,5′-pyrrolo2,3-dpyrimidine derivatives as promising anticancer agents. J. Heterocycl. Chem., 2018, 55(10), 2297-2302. doi: 10.1002/jhet.3286
  76. Chen, S.; Yong, T.; Xiao, C.; Su, J.; Zhang, Y.; Jiao, C.; Xie, Y. Pyrrole alkaloids and ergosterols from Grifola frondosa exert anti-α-glucosidase and anti-proliferative activities. J. Funct. Foods, 2018, 43, 196-205. doi: 10.1016/j.jff.2018.02.007
  77. Fang, J.; Huang, T.; Xia, M.; Deng, L.; Hao, X.; Wang, Y.; Mu, S. Design and synthesis of novel monoterpenoid indole alkaloid-like analogues and their antitumour activities in vitro. Org. Biomol. Chem., 2018, 16(16), 3026-3037. doi: 10.1039/C8OB00677F PMID: 29634066
  78. Ghanbarimasir, Z.; Bekhradnia, A.; Morteza-Semnani, K.; Rafiei, A.; Razzaghi-Asl, N.; Kardan, M. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 194, 21-35. doi: 10.1016/j.saa.2017.12.063 PMID: 29310028
  79. Jha, K.K.; Dutta, S.; Sar, S.; Sen, S.; Munshi, P. Harnessing sun for catalyst and sensitizer free regio- and stereo-selective 2+2 cycloaddition. Tetrahedron, 2018, 74(51), 7326-7334. doi: 10.1016/j.tet.2018.10.065
  80. Guo, L.; Chen, W.; Cao, R.; Fan, W.; Ma, Q.; Zhang, J.; Dai, B. Synthesis and structure-activity relationships of asymmetric dimeric β-carboline derivatives as potential antitumor agents. Eur. J. Med. Chem., 2018, 147, 253-265. doi: 10.1016/j.ejmech.2018.02.003 PMID: 29448140
  81. Kumari, P.; Narayana, C.; Dubey, S.; Gupta, A.; Sagar, R. Stereoselective synthesis of natural product inspired carbohydrate fused pyrano3,2- cquinolones as antiproliferative agents. Org. Biomol. Chem., 2018, 16(12), 2049-2059. doi: 10.1039/C7OB03186F PMID: 29411817
  82. Chen, K.; Zhang, Y.L.; Fan, J.; Ma, X.; Qin, Y.J.; Zhu, H.L. Novel nicotinoyl pyrazoline derivates bearing N-methyl indole moiety as antitumor agents: Design, synthesis and evaluation. Eur. J. Med. Chem., 2018, 156, 722-737. doi: 10.1016/j.ejmech.2018.07.044 PMID: 30041136
  83. Lan, J.; Huang, L.; Lou, H.; Chen, C.; Liu, T.; Hu, S.; Yao, Y.; Song, J.; Luo, J.; Liu, Y.; Xia, B.; Xia, L.; Zeng, X.; Ben-David, Y.; Pan, W. Design and synthesis of novel C14-urea-tetrandrine derivatives with potent anti-cancer activity. Eur. J. Med. Chem., 2018, 143, 1968-1980. doi: 10.1016/j.ejmech.2017.11.007 PMID: 29133049
  84. Li, W.S.; Yang, Y.; Liu, J.J.; Shen, L.; Shi, Z.; Wu, J. Scaffold diversity-oriented synthesis of limonoid dimers: Discovery of an axially chiral agent with in vivo anti-breast cancer activity. Org. Chem. Front., 2018, 5(7), 1079-1091. doi: 10.1039/C8QO00154E
  85. Budovská, M.; Baláž, M.; Mezencev, R.; Tischlerová, V.; Zigová, M.; Mojžiš, J. Design, synthesis and anticancer activity of trifluoromethylphenylamino substituted spiroindoles. J. Fluor. Chem., 2018, 216, 24-32. doi: 10.1016/j.jfluchem.2018.09.011
  86. Li, Y.; Yan, W.; Yang, J.; Yang, Z.; Hu, M.; Bai, P.; Tang, M.; Chen, L. Discovery of novel β-carboline/acylhydrazone hybrids as potent antitumor agents and overcome drug resistance. Eur. J. Med. Chem., 2018, 152, 516-526. doi: 10.1016/j.ejmech.2018.05.003 PMID: 29754076
  87. Murali, K.; Sparkes, H.A.; Rajendra Prasad, K.J. Regio- and stereoselective synthesis of dispirooxindole-pyrrolocarbazole hybrids via 1,3-dipolar cycloaddition reactions: Cytotoxic activity and SAR studies. Eur. J. Med. Chem., 2018, 143, 292-305. doi: 10.1016/j.ejmech.2017.11.039 PMID: 29197734
  88. Satheeshkumar, R.; Muthusankar, A.; Edatt, L.; Sameer Kumar, V.B.; Sparkes, H.A.; Rajendra Prasad, K.J. Synthesis of heteroannulated cyclopent bindoles: Exploration of in vitro cytotoxicity and molecular docking studies. Synth. Commun., 2018, 48(4), 447-461. doi: 10.1080/00397911.2017.1407792
  89. Sathish, M.; Kavitha, B.; Nayak, V.L.; Tangella, Y.; Ajitha, A.; Nekkanti, S.; Alarifi, A.; Shankaraiah, N.; Nagesh, N.; Kamal, A. Synthesis of podophyllotoxin linked β-carboline congeners as potential anticancer agents and DNA topoisomerase II inhibitors. Eur. J. Med. Chem., 2018, 144, 557-571. doi: 10.1016/j.ejmech.2017.12.055 PMID: 29289881
  90. Thirunavukkarasu, T.; Sparkes, H.A.; Natarajan, K. Quinoline based Pd(II) complexes: Synthesis, characterization and evaluation of DNA/protein binding, molecular docking and in vitro anticancer activity. Inorg. Chim. Acta, 2018, 482, 229-239. doi: 10.1016/j.ica.2018.06.003
  91. Stefański, T.; Mikstacka, R.; Kurczab, R.; Dutkiewicz, Z.; Kucińska, M.; Murias, M.; Zielińska-Przyjemska, M.; Cichocki, M.; Teubert, A.; Kaczmarek, M.; Hogendorf, A.; Sobiak, S. Design, synthesis, and biological evaluation of novel combretastatin A-4 thio derivatives as microtubule targeting agents. Eur. J. Med. Chem., 2018, 144, 797-816. doi: 10.1016/j.ejmech.2017.11.050 PMID: 29291446
  92. Hekal, M.H.; Abu El-Azm, F.S.M.; Sallam, H.A. Synthesis, spectral characterization, and in vitro biological evaluation of some novel isoquinolinone-based heterocycles as potential antitumor agents. J. Heterocycl. Chem., 2019, 56(3), 795-803. doi: 10.1002/jhet.3448
  93. Bondock, S.; Alqahtani, S.; Fouda, A.M. Convenient synthesis and antitumor evaluation of some new 9-ethyl-3-(hetaryl)carbazoles. Synth. Commun., 2019, 49(17), 2188-2202. doi: 10.1080/00397911.2019.1616759
  94. Pan, X.; Liang, L.; Si, R.; Wang, J.; Zhang, Q.; Zhou, H.; Zhang, L.; Zhang, J. Discovery of novel anti-angiogenesis agents. Part 10: Multi-target inhibitors of VEGFR-2, Tie-2 and EphB4 incorporated with 1,2,3-triazol. Eur. J. Med. Chem., 2019, 163, 1-9. doi: 10.1016/j.ejmech.2018.11.042 PMID: 30503935
  95. Mustafa, M.; Anwar, S.; Elgamal, F.; Ahmed, E.R.; Aly, O.M. Potent combretastatin A-4 analogs containing 1,2,4-triazole: Synthesis, antiproliferative, anti-tubulin activity, and docking study. Eur. J. Med. Chem., 2019, 183, 111697. doi: 10.1016/j.ejmech.2019.111697 PMID: 31536891
  96. Pang, Y.; Lin, H.; Ou, C.; Cao, Y.; An, B.; Yan, J.; Li, X. Design, synthesis, and biological evaluation of novel benzodiazepine derivatives as anticancer agents through inhibition of tubulin polymerization in vitro and in vivo. Eur. J. Med. Chem., 2019, 182, 111670. doi: 10.1016/j.ejmech.2019.111670 PMID: 31499359
  97. Patel, O.P.S.; Arun, A.; Singh, P.K.; Saini, D.; Karade, S.S.; Chourasia, M.K.; Konwar, R.; Yadav, P.P. Pyranocarbazole derivatives as potent anti-cancer agents triggering tubulin polymerization stabilization induced activation of caspase-dependent apoptosis and downregulation of Akt/mTOR in breast cancer cells. Eur. J. Med. Chem., 2019, 167, 226-244. doi: 10.1016/j.ejmech.2019.02.003 PMID: 30772606
  98. Ceramella, J.; Caruso, A.; Occhiuzzi, M.A.; Iacopetta, D.; Barbarossa, A.; Rizzuti, B.; Dallemagne, P.; Rault, S.; El-Kashef, H.; Saturnino, C.; Grande, F.; Sinicropi, M.S. Benzothienoquinazolinones as new multi-target scaffolds: Dual inhibition of human Topoisomerase I and tubulin polymerization. Eur. J. Med. Chem., 2019, 181, 111583. doi: 10.1016/j.ejmech.2019.111583 PMID: 31400710
  99. Varró, G.; Pálchuber, P.; Pogrányi, B.; Simon, A.; Hegedűs, L.; Kádas, I. (±)-trans-Dihydronarciclasine and (±)-trans-dihydrolycoricidine analogues modified in their ring A: Evaluation of their anticancer activity and a SAR study. Eur. J. Med. Chem., 2019, 173, 76-89. doi: 10.1016/j.ejmech.2019.04.010 PMID: 30986573
  100. Piechowska, K.; Świtalska, M.; Cytarska, J.; Jaroch, K.; Łuczykowski, K.; Chałupka, J.; Wietrzyk, J.; Misiura, K.; Bojko, B.; Kruszewski, S.; Łączkowski, K.Z. Discovery of tropinone-thiazole derivatives as potent caspase 3/7 activators, and noncompetitive tyrosinase inhibitors with high antiproliferative activity: Rational design, one-pot tricomponent synthesis, and lipophilicity determination. Eur. J. Med. Chem., 2019, 175, 162-171. doi: 10.1016/j.ejmech.2019.05.006 PMID: 31082763
  101. Li, L.; Quan, D.; Chen, J.; Ding, J.; Zhao, J.; Lv, L.; Chen, J. Design, synthesis, and biological evaluation of 1-substituted -2-aryl imidazoles targeting tubulin polymerization as potential anticancer agents. Eur. J. Med. Chem., 2019, 184, 111732. doi: 10.1016/j.ejmech.2019.111732 PMID: 31610372
  102. Venkatesh, R.; Kasaboina, S.; Jain, N.; Janardhan, S.; Holagunda, U.D.; Nagarapu, L. Design and synthesis of novel sulphamide tethered quinazolinone hybrids as potential antitumor agents. J. Mol. Struct., 2019, 1181, 403-411. doi: 10.1016/j.molstruc.2018.12.098
  103. Venkat Swamy, P.; Kiran Kumar, V.; Radhakrishnam Raju, R.; Venkata Reddy, R.; Chatterjee, A.; Kiran, G.; Sridhar, G. Amide derivatives of 4-azaindole: Design, synthesis, and EGFR targeting anticancer agents. Synth. Commun., 2020, 50(1), 71-84. doi: 10.1080/00397911.2019.1683206
  104. Yavuz, S.Ç.; Akkoç, S.; Sarıpınar, E. The cytotoxic activities of imidazole derivatives prepared from various guanylhydrazone and phenylglyoxal monohydrate. Synth. Commun., 2019, 49(22), 3198-3209. doi: 10.1080/00397911.2019.1661481
  105. Shen, Q.K.; Deng, H.; Wang, S.B.; Tian, Y.S.; Quan, Z.S. Synthesis, and evaluation of in vitro and in vivo anticancer activity of 14-substituted oridonin analogs: A novel and potent cell cycle arrest and apoptosis inducer through the p53-MDM2 pathway. Eur. J. Med. Chem., 2019, 173, 15-31. doi: 10.1016/j.ejmech.2019.04.005 PMID: 30981113
  106. Mahanti, S.; Sunkara, S.; Bhavani, R. Synthesis, biological evaluation and computational studies of fused acridine containing 1,2,4-triazole derivatives as anticancer agents. Synth. Commun., 2019, 49(13), 1729-1740. doi: 10.1080/00397911.2019.1608450
  107. Nishtala, V.B.; Gandamalla, D.; Yellu, N.R.; Basavoju, S. Synthesis of spirooxindoles promoted by the deep eutectic solvent, ZnCl2+ urea via the pseudo four-component reaction: Anticancer, antioxidant, and molecular docking studies. Synth. Commun., 2019, 49(20), 2671-2682. doi: 10.1080/00397911.2019.1639193
  108. Mirzaei, S.; Eisvand, F.; Hadizadeh, F.; Mosaffa, F.; Ghasemi, A.; Ghodsi, R. Design, synthesis and biological evaluation of novel 5,6,7-trimethoxy-N-aryl-2-styrylquinolin-4-amines as potential anticancer agents and tubulin polymerization inhibitors. Bioorg. Chem., 2020, 98, 103711. doi: 10.1016/j.bioorg.2020.103711 PMID: 32179282
  109. Donthiboina, K.; Anchi, P.; Gurram, S.; Sai, M. G.; Lakshmi Uppu, J.; Godugu, C.; Shankaraiah, N.; Kamal, A. Synthesis and biological evaluation of substituted N-(2-(1H-benzodimidazol-2-yl)phenyl)cinnamides as tubulin polymerization inhibitors. Bioorg. Chem., 2020, 103, 104191. doi: 10.1016/j.bioorg.2020.104191 PMID: 32891862
  110. George, R.F.; Kandeel, M.; El-Ansary, D.Y.; El Kerdawy, A.M. Some 1,3,5-trisubstituted pyrazoline derivatives targeting breast cancer: Design, synthesis, cytotoxic activity, EGFR inhibition and molecular docking. Bioorg. Chem., 2020, 99, 103780. doi: 10.1016/j.bioorg.2020.103780 PMID: 32224337
  111. Gür, M.; Yerlikaya, S.; Şener, N.; Özkınalı, S.; Baloglu, M.C.; Gökçe, H.; Altunoglu, Y.C.; Demir, S.; Şener, İ. Antiproliferative-antimicrobial properties and structural analysis of newly synthesized Schiff bases derived from some 1,3,4-thiadiazole compounds. J. Mol. Struct., 2020, 1219, 128570. doi: 10.1016/j.molstruc.2020.128570
  112. Desai, S.; Desai, V.; Shingade, S. In-vitro Anti-cancer assay and apoptotic cell pathway of newly synthesized benzoxazole-N-heterocyclic hybrids as potent tyrosine kinase inhibitors. Bioorg. Chem., 2020, 94, 103382. doi: 10.1016/j.bioorg.2019.103382 PMID: 31662214
  113. Mirzaei, S.; Hadizadeh, F.; Eisvand, F.; Mosaffa, F.; Ghodsi, R. Synthesis, structure-activity relationship and molecular docking studies of novel quinoline-chalcone hybrids as potential anticancer agents and tubulin inhibitors. J. Mol. Struct., 2020, 1202, 127310. doi: 10.1016/j.molstruc.2019.127310
  114. Kouba, S.; Braire, J.; Félix, R.; Chantôme, A.; Jaffrès, P.A.; Lebreton, J.; Dubreuil, D.; Pipelier, M.; Zhang, X.; Trebak, M.; Vandier, C.; Mathé-Allainmat, M.; Potier-Cartereau, M. Lipidic synthetic alkaloids as SK3 channel modulators. Synthesis and biological evaluation of 2-substituted tetrahydropyridine derivatives with potential anti-metastatic activity. Eur. J. Med. Chem., 2020, 186, 111854. doi: 10.1016/j.ejmech.2019.111854 PMID: 31753515
  115. Zhou, S.; Huang, G. Design, synthesis and biological evaluation of novel 7H-benzo c 1, 3 dioxolo 4, 5-f chromen-7-one derivatives with potential anti-tumor activity. Bioorg. Chem., 2020, 105, 104381. doi: 10.1016/j.bioorg.2020.104381 PMID: 33113412
  116. Xue, H.; Svatek, H.; Bertonha, A.F.; Reisenauer, K.; Robinson, J.; Kim, M.; Ingros, A.; Ho, M.; Taube, J.; Romo, D. Synthesis of agelastatin A and derivatives premised on a hidden symmetry element leading to analogs displaying anticancer activity. Tetrahedron, 2021, 94, 132340. doi: 10.1016/j.tet.2021.132340 PMID: 35663119
  117. Eissa, I.H.; Dahab, M.A.; Ibrahim, M.K.; Alsaif, N.A.; Alanazi, A.Z.; Eissa, S.I.; Mehany, A.B.M.; Beauchemin, A.M. Design and discovery of new antiproliferative 1,2,4-triazin-3(2H)-ones as tubulin polymerization inhibitors targeting colchicine binding site. Bioorg. Chem., 2021, 112, 104965. doi: 10.1016/j.bioorg.2021.104965 PMID: 34020238
  118. Elimam, D.M.; Elgazar, A.A.; Bonardi, A.; Abdelfadil, M.; Nocentini, A.; El-Domany, R.A.; Abdel-Aziz, H.A.; Badria, F.A.; Supuran, C.T.; Eldehna, W.M. Natural inspired piperine-based sulfonamides and carboxylic acids as carbonic anhydrase inhibitors: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2021, 225, 113800. doi: 10.1016/j.ejmech.2021.113800 PMID: 34482273
  119. Chen, Y.Y.; Bai, Y.P.; Li, B.; Zhao, X.B.; Yang, C.J.; Liu, Y.Q.; Gao, J.M.; Guo, J.; Li, C.; Peng, J.W.; Zhao, Z.M.; Zhang, Z.J.; Xu, C.R. Design and synthesis of novel 20(S)-α-aminophosphonate derivatives of camptothecin as potent antitumor agents. Bioorg. Chem., 2021, 114, 105065. doi: 10.1016/j.bioorg.2021.105065 PMID: 34174631
  120. Hassan, S.M.; Morsy, J.M.; Hassanin, H.M.; Othman, E.S. Synthesis and cytotoxic evaluation of novel brominated N-alkyl pyrano3,2-cquinolinones. J. Heterocycl. Chem., 2021, 58(1), 305-314. doi: 10.1002/jhet.4169
  121. Kulkarni, M.R.; Lad, N.P.; Khedkar, V.M.; Gaikwad, N.D. Synthesis, in vitro cytotoxicity, and molecular docking study of novel 3, 4-dihydroisoquinolin-1(2H)-one based piperlongumine analogues. J. Heterocycl. Chem., 2021, 58(6), 1359-1370. doi: 10.1002/jhet.4264
  122. Luan, S.; Gao, Y.; Liang, X.; Zhang, L.; Yin, L.; He, C.; Liu, S.; Yin, Z.; Yue, G.; Zou, Y.; Li, L.; Song, X.; Lv, C.; Zhang, W.; Jing, B. Synthesis and structure-activity relationship of lipo-diterpenoid alkaloids with potential target of topoisomerase IIα for breast cancer treatment. Bioorg. Chem., 2021, 109, 104699. doi: 10.1016/j.bioorg.2021.104699 PMID: 33611138
  123. Sun, J.; Wang, J.; Wang, X.; Hu, X.; Cao, H.; Bai, J.; Li, D.; Hua, H. Design and synthesis of β-carboline derivatives with nitrogen mustard moieties against breast cancer. Bioorg. Med. Chem., 2021, 45, 116341. doi: 10.1016/j.bmc.2021.116341 PMID: 34365102
  124. Al-Nemari, R.; Bacha, A.B.; Al-Senaidy, A.; Almutairi, M.H.; Arafah, M.; Al-Saran, H.; Abutaha, N.; Semlali, A. Cytotoxic effects of Annona squamosa leaves against breast cancer cells via apoptotic signaling proteins. J. King Saud Univ. Sci., 2022, 34(4), 102013. doi: 10.1016/j.jksus.2022.102013
  125. Yang, P.; Cheng, Y.; Huang, X.; Huang, B.; Yi, L.; He, H.; Xie, Y. Identification of a new benzophenanthridine alkaloid from Eomecon chionantha induced necroptosis in breast cancer cells. Nat. Prod. Res., 2023, 37(6), 912-918. doi: 10.1080/14786419.2022.2096606 PMID: 35801972

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers