An Investigation into the Effects of Chemical, Pharmaceutical, and Herbal Compounds on Neuroglobin: A Literature Review
- Authors: Hamedani S.1, Pourmasoumi M.2, Askari G.3, Bagherniya M.4, Sathyapalan T.5, Sahebkar A.6
-
Affiliations:
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Science
- Gastrointestinal & Liver Diseases Research Center, Guilan University of Medical Sciences
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences
- Nutrition and Food Security Research Center and Department of Community Nutrition, Isfahan University of Medical Sciences
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences
- Issue: Vol 31, No 20 (2024)
- Pages: 2944-2954
- Section: Anti-Infectives and Infectious Diseases
- URL: https://j-morphology.com/0929-8673/article/view/645212
- DOI: https://doi.org/10.2174/0929867330666230413093409
- ID: 645212
Cite item
Full Text
Abstract
Neuroglobin (Ngb) is an oxygen-binding globin protein that is mainly expressed in the neurons of the central and peripheral nervous system. However, moderate levels of Ngb have also been detected in non-neural tissues. Ngb and Ngb modulating factors have been increasingly studied over the last decade due to their neuroprotective role in neurological disorders and hypoxia. Studies have shown that a number of chemicals, pharmaceuticals, and herbal compounds can modulate the expression of Ngb at different dose levels, indicating a protective role against neurodegenerative diseases. Iron chelators, hormones, antidiabetic drugs, anticoagulants, antidepressants, plant derivatives and short-chain fatty acids are among these compounds. Therefore, this study aimed to review the literature focused on the possible effects and mechanisms of chemical, pharmaceutical, and herbal compounds on Ngbs.
About the authors
Sahar Hamedani
Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Science
Email: info@benthamscience.net
Makan Pourmasoumi
Gastrointestinal & Liver Diseases Research Center, Guilan University of Medical Sciences
Email: info@benthamscience.net
Gholamreza Askari
Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Mohammad Bagherniya
Nutrition and Food Security Research Center and Department of Community Nutrition, Isfahan University of Medical Sciences
Email: info@benthamscience.net
Thozhukat Sathyapalan
Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull
Email: info@benthamscience.net
Amirhossein Sahebkar
Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Rassaf, T.; Totzeck, M.; Hendgen-Cotta, U.B.; Shiva, S.; Heusch, G.; Kelm, M. Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ. Res., 2014, 114(10), 1601-1610. doi: 10.1161/CIRCRESAHA.114.303822 PMID: 24643960
- Burmester, T.; Weich, B.; Reinhardt, S.; Hankeln, T. A vertebrate globin expressed in the brain. Nature, 2000, 407(6803), 520-523. doi: 10.1038/35035093 PMID: 11029004
- Burmester, T.; Hankeln, T. Function and evolution of vertebrate globins. Acta Physiol., 2014, 211(3), 501-514. doi: 10.1111/apha.12312 PMID: 24811692
- Ascenzi, P.; di Masi, A.; Leboffe, L.; Fiocchetti, M.; Nuzzo, M.T.; Brunori, M.; Marino, M. Neuroglobin: From structure to function in health and disease. Mol. Aspects Med., 2016, 52, 1-48. doi: 10.1016/j.mam.2016.10.004 PMID: 27825818
- Gorabi, A.M.; Aslani, S.; Barreto, G.E.; Báez-Jurado, E.; Kiaie, N.; Jamialahmadi, T.; Sahebkar, A. The potential of mitochondrial modulation by neuroglobin in treatment of neurological disorders. Free Radic. Biol. Med., 2021, 162, 471-477. doi: 10.1016/j.freeradbiomed.2020.11.002 PMID: 33166649
- Jin, K.; Mao, Y.; Mao, X.; Xie, L.; Greenberg, D.A. Neuroglobin expression in ischemic stroke. Stroke, 2010, 41(3), 557-559. doi: 10.1161/STROKEAHA.109.567149 PMID: 20075359
- Luyckx, E.; Van Acker, Z.P.; Ponsaerts, P.; Dewilde, S. Neuroglobin expression models as a tool to study its function. Oxid. Med. Cell. Long., 2019, 2019 doi: 10.1155/2019/5728129
- Khan, A.A.; Mao, X.O.; Banwait, S.; Jin, K.; Greenberg, D.A. Neuroglobin attenuates β-amyloid neurotoxicity in vitro and transgenic Alzheimer phenotype in vivo. Proc. Natl. Acad. Sci. USA, 2007, 104(48), 19114-19119. doi: 10.1073/pnas.0706167104 PMID: 18025470
- Li, R.C.; Pouranfar, F.; Lee, S.K.; Morris, M.W.; Wang, Y.; Gozal, D. Neuroglobin protects PC12 cells against β-amyloid-induced cell injury. Neurobiol. Aging, 2008, 29(12), 1815-1822. doi: 10.1016/j.neurobiolaging.2007.05.001 PMID: 17560688
- Guidolin, D.; Tortorella, C.; Marcoli, M.; Maura, G.; Agnati, L. Neuroglobin, a factor playing for nerve cell survival. Int. J. Mol. Sci., 2016, 17(11), 1817. doi: 10.3390/ijms17111817 PMID: 27809238
- Jin, K.; Mao, X.O.; Xie, L.; Khan, A.A.; Greenberg, D.A. Neuroglobin protects against nitric oxide toxicity. Neurosci. Lett., 2008, 430(2), 135-137. doi: 10.1016/j.neulet.2007.10.031 PMID: 18035490
- Orlandini, E.; Ciccone, L.; Nencetti, S.; Socci, S. Neuroglobin and neuroprotection: The role of natural and synthetic compounds in neuroglobin pharmacological induction. Neural Regen. Res., 2021, 16(12), 2353-2358. doi: 10.4103/1673-5374.300981 PMID: 33907006
- Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795. doi: 10.1038/nature05292 PMID: 17051205
- Yu, Z; Poppe, JL; Wang, X Mitochondrial mechanisms of neuroglobins neuroprotection. Oxid. Med. Cell. Long., 2013, 1-11. doi: 10.1155/2013/756989
- Sun, Y.; Jin, K.; Mao, X.O.; Zhu, Y.; Greenberg, D.A. Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc. Natl. Acad. Sci. USA, 2001, 98(26), 15306-15311. doi: 10.1073/pnas.251466698 PMID: 11742077
- Ye, S.; Zhou, X.; Lai, X.; Zheng, L.; Chen, X. Silencing neuroglobin enhances neuronal vulnerability to oxidative injury by down-regulating 14-3-3γ. Acta Pharmacol. Sin., 2009, 30(7), 913-918. doi: 10.1038/aps.2009.70 PMID: 19574997
- Greenberg, D.; Jin, K.; Khan, A. Neuroglobin: An endogenous neuroprotectant. Curr. Opin. Pharmacol., 2008, 8(1), 20-24. doi: 10.1016/j.coph.2007.09.003 PMID: 17942367
- Watanabe, S.; Wakasugi, K. Zebrafish neuroglobin is a cell-membrane-penetrating globin. Biochemistry, 2008, 47(19), 5266-5270. doi: 10.1021/bi800286m PMID: 18416560
- Yu, Z.; Liu, N.; Liu, J.; Yang, K.; Wang, X. Neuroglobin, a novel target for endogenous neuroprotection against stroke and neurodegenerative disorders. Int. J. Mol. Sci., 2012, 13(6), 6995-7014. doi: 10.3390/ijms13066995 PMID: 22837676
- Thomas, I.; Gregg, B. Metformin; a review of its history and future: From lilac to longevity. Pediatr. Diabetes, 2017, 18(1), 10-16. doi: 10.1111/pedi.12473 PMID: 28052534
- Rotermund, C.; Machetanz, G.; Fitzgerald, J.C. The therapeutic potential of metformin in neurodegenerative diseases. Front. Endocrinol., 2018, 9, 400. doi: 10.3389/fendo.2018.00400 PMID: 30072954
- Sanati, M.; Aminyavari, S.; Afshari, A.R.; Sahebkar, A. Mechanistic insight into the role of metformin in Alzheimers disease. Life Sci., 2022, 291, 120299. doi: 10.1016/j.lfs.2021.120299 PMID: 34999113
- Bonea, M.; Filip, G.A.; Toma, V.A.; Baldea, I.; Berghian, A.S.; Decea, N.; Olteanu, D.; Moldovan, R.; Crivii, C.; Vinași, R.C.; Micluția, I.V. The modulatory effect of metformin on ethanol-induced anxiety, redox imbalance, and extracellular matrix levels in the brains of Wistar rats. J. Mol. Neurosci., 2020, 70(12), 1943-1961. doi: 10.1007/s12031-020-01593-w PMID: 32621100
- Brittain, T.; Skommer, J.; Raychaudhuri, S.; Birch, N. An antiapoptotic neuroprotective role for neuroglobin. Int. J. Mol. Sci., 2010, 11(6), 2306-2321. doi: 10.3390/ijms11062306 PMID: 20640154
- Zara, S.; De Colli, M.; Rapino, M.; Pacella, S.; Nasuti, C.; Sozio, P.; Di Stefano, A.; Cataldi, A. Ibuprofen and lipoic acid conjugate neuroprotective activity is mediated by Ngb/Akt intracellular signaling pathway in Alzheimers disease rat model. Gerontology, 2013, 59(3), 250-260. doi: 10.1159/000346445 PMID: 23428737
- Weggen, S.; Eriksen, J.L.; Das, P.; Sagi, S.A.; Wang, R.; Pietrzik, C.U.; Findlay, K.A.; Smith, T.E.; Murphy, M.P.; Bulter, T.; Kang, D.E.; Marquez-Sterling, N.; Golde, T.E.; Koo, E.H. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature, 2001, 414(6860), 212-216. doi: 10.1038/35102591 PMID: 11700559
- Olivieri, N.F.; Brittenham, G.M. Iron-chelating therapy and the treatment of thalassemia. Blood, 1997, 89(3), 739-761. doi: 10.1182/blood.V89.3.739 PMID: 9028304
- Jin, K.; Mao, X.; Xie, L.; Greenberg, D.A. Interactions between vascular endothelial growth factor and neuroglobin. Neurosci. Lett., 2012, 519(1), 47-50. doi: 10.1016/j.neulet.2012.05.018 PMID: 22583764
- Vasudevan, N.; Pfaff, D.W. Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Front. Neuroendocrinol., 2008, 29(2), 238-257. doi: 10.1016/j.yfrne.2007.08.003 PMID: 18083219
- Uddin, M.S.; Rahman, M.M.; Jakaria, M.; Rahman, M.S.; Hossain, M.S.; Islam, A.; Ahmed, M.; Mathew, B.; Omar, U.M.; Barreto, G.E.; Ashraf, G.M. Estrogen signaling in Alzheimers disease: Molecular insights and therapeutic targets for Alzheimers dementia. Mol. Neurobiol., 2020, 57(6), 2654-2670. doi: 10.1007/s12035-020-01911-8 PMID: 32297302
- De Marinis, E.; Ascenzi, P.; Pellegrini, M.; Galluzzo, P.; Bulzomi, P.; Arevalo, M.A.; Garcia-Segura, L.M.; Marino, M. 17β-estradiol-a new modulator of neuroglobin levels in neurons: Role in neuroprotection against H2O2-induced toxicity. Neurosignals, 2010, 18(4), 223-235. doi: 10.1159/000323906 PMID: 21335947
- De Marinis, E.; Acaz-Fonseca, E.; Arevalo, M.A.; Ascenzi, P.; Fiocchetti, M.; Marino, M.; Garcia-Segura, L.M. 17β-Oestradiol anti-inflammatory effects in primary astrocytes require oestrogen receptor β-mediated neuroglobin up-regulation. J. Neuroendocrinol., 2013, 25(3), 260-270. doi: 10.1111/jne.12007 PMID: 23190172
- Fiocchetti, M.; Nuzzo, M.; Totta, P.; Acconcia, F.; Ascenzi, P.; Marino, M. Neuroglobin, a pro-survival player in estrogen receptor α-positive cancer cells. Cell Death & Disease, 2014, 5(10), e1449-e1449. doi: 10.1038/cddis.2014.418
- Toro-Urrego, N.; Garcia-Segura, L.M.; Echeverria, V.; Barreto, G.E. Testosterone protects mitochondrial function and regulates neuroglobin expression in astrocytic cells exposed to glucose deprivation. Front. Aging Neurosci., 2016, 8, 152. doi: 10.3389/fnagi.2016.00152 PMID: 27445795
- Oliveira, K.C.; da Conceição, R.R.; Piedade, G.C.; de Souza, J.S.; Sato, M.A.; de Barros Maciel, R.M.; Giannocco, G. Thyroid hormone modulates neuroglobin and cytoglobin in rat brain. Metab. Brain Dis., 2015, 30(6), 1401-1408. doi: 10.1007/s11011-015-9718-5 PMID: 26334191
- Milano, M.; Collomp, R. Erythropoietin and neuroprotection: A therapeutic perspective. J. Oncol. Pharm. Pract., 2005, 11(4), 145-149. doi: 10.1191/1078155205jp162oa PMID: 16595066
- Li, Y.; Tang, Y. The effect of erythropoietin on the expression of neuroglobin after cerebral ischemia-reperfusion injury in rats. China Trop. Med., 2010, 10(1), 75-76.
- Lee, S. Dexmedetomidine: Present and future directions. Korean J. Anesthesiol., 2019, 72(4), 323-330. doi: 10.4097/kja.19259 PMID: 31220910
- Liaquat, Z.; Xu, X.; Zilundu, P.L.M.; Fu, R.; Zhou, L. The current role of dexmedetomidine as neuroprotective agent: An updated review. Brain Sci., 2021, 11(7), 846. doi: 10.3390/brainsci11070846 PMID: 34202110
- Gao, Y.; Zhang, Y.; Dong, Y.; Wu, X.; Liu, H. Dexmedetomidine mediates neuroglobin up-regulation and alleviates the hypoxia/reoxygenation injury by inhibiting neuronal apoptosis in developing rats. Front. Pharmacol., 2020, 11, 555532. doi: 10.3389/fphar.2020.555532 PMID: 33117159
- Luthra, R.; Roy, A. Role of medicinal plants against neurodegenerative diseases. Curr. Pharm. Biotechnol., 2022, 23(1), 123-139. doi: 10.2174/1389201022666210211123539 PMID: 33573549
- Iranshahy, M.; Javadi, B.; Sahebkar, A. Protective effects of functional foods against Parkinsons disease: A narrative review on pharmacology, phytochemistry, and molecular mechanisms. Phytother. Res., 2022, 36(5), 1952-1989. doi: 10.1002/ptr.7425 PMID: 35244296
- Keshavarzi, Z.; Shakeri, F.; Barreto, G.E.; Bibak, B.; Sathyapalan, T.; Sahebkar, A. Medicinal plants in traumatic brain injury: Neuroprotective mechanisms revisited. Biofactors, 2019, 45(4), 517-535. doi: 10.1002/biof.1516 PMID: 31206893
- Sahebkar, A.; Khalifeh, M.; Barreto, G.E. Therapeutic potential of trehalose in neurodegenerative diseases: The knowns and unknowns. Neural Regen. Res., 2021, 16(10), 2026-2027. doi: 10.4103/1673-5374.308085 PMID: 33642389
- Nourbakhsh, F.; Read, M.I.; Barreto, G.E.; Sahebkar, A. Boosting the autophagy-lysosomal pathway by phytochemicals: A potential therapeutic strategy against Alzheimers disease. IUBMB Life, 2020, 72(11), 2360-2281. doi: 10.1002/iub.2369 PMID: 32894821
- Sabouni, N.; Marzouni, H.Z.; Palizban, S.; Meidaninikjeh, S.; Kesharwani, P.; Jamialahmadi, T. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. J. Drug Target., 2022. PMID: 36305097
- Sahebkar, A.; Zahedipour, F.; Hosseini, S.A.; Henney, N.C.; Barreto, G.E. Phytochemicals as inhibitors of tumor necrosis factor alpha and neuroinflammatory responses in neurodegenerative diseases. Neural Regen. Res., 2022, 17(8), 1675-1684. doi: 10.4103/1673-5374.332128 PMID: 35017414
- Zirak, N.; Shafiee, M.; Soltani, G.; Mirzaei, M.; Sahebkar, A. Hypericum perforatum in the treatment of psychiatric and neurodegenerative disorders: Current evidence and potential mechanisms of action. J. Cell. Physiol., 2019, 234(6), 8496-8508. doi: 10.1002/jcp.27781 PMID: 30461013
- Bavarsad, K.; Barreto, G.E.; Hadjzadeh, M.A.R.; Sahebkar, A. Protective effects of curcumin against ischemia-reperfusion injury in the nervous system. Mol. Neurobiol., 2019, 56(2), 1391-1404. doi: 10.1007/s12035-018-1169-7 PMID: 29948942
- Renaud, J.; Martinoli, M.G. Considerations for the use of polyphenols as therapies in neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(8), 1883. doi: 10.3390/ijms20081883 PMID: 30995776
- Di Meo, F.; Valentino, A.; Petillo, O.; Peluso, G.; Filosa, S.; Crispi, S. Bioactive polyphenols and neuromodulation: Molecular mechanisms in neurodegeneration. Int. J. Mol. Sci., 2020, 21(7), 2564. doi: 10.3390/ijms21072564 PMID: 32272735
- Chen, C.; Wei, Y.Z.; He, X.M.; Li, D.D.; Wang, G.Q.; Li, J.J.; Zhang, F. Naringenin produces neuroprotection against LPS-induced dopamine neurotoxicity via the inhibition of microglial NLRP3 inflammasome activation. Front. Immunol., 2019, 10, 936. doi: 10.3389/fimmu.2019.00936 PMID: 31118933
- Ciccone, L.; Tonali, N.; Nencetti, S.; Orlandini, E. Natural compounds as inhibitors of transthyretin amyloidosis and neuroprotective agents: Analysis of structural data for future drug design. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 1145-1162. doi: 10.1080/14756366.2020.1760262 PMID: 32419519
- Cipolletti, M.; Montalesi, E.; Nuzzo, M.T.; Fiocchetti, M.; Ascenzi, P.; Marino, M. Potentiation of paclitaxel effect by resveratrol in human breast cancer cells by counteracting the 17β-estradiol/estrogen receptor α/neuroglobin pathway. J. Cell. Physiol., 2019, 234(4), 3147-3157. doi: 10.1002/jcp.27309 PMID: 30421506
- Abdul, Q.A.; Choi, R.J.; Jung, H.A.; Choi, J.S. Health benefit of fucosterol from marine algae: A review. J. Sci. Food Agric., 2016, 96(6), 1856-1866. doi: 10.1002/jsfa.7489 PMID: 26455344
- Gan, S.Y.; Wong, L.Z.; Wong, J.W.; Tan, E.L. Fucosterol exerts protection against amyloid β-induced neurotoxicity, reduces intracellular levels of amyloid β and enhances the mRNA expression of neuroglobin in amyloid β-induced SH-SY5Y cells. Int. J. Biol. Macromol., 2019, 121, 207-213. doi: 10.1016/j.ijbiomac.2018.10.021 PMID: 30300695
- Liu, N.; Yu, Z.; Gao, X. Establishment of cell-based neuroglobin promoter reporter assay for neuroprotective compounds screening. CNS & Neurological Disorders-Drug Targets, 2016, 15(5), 629-639.
- Jangwan, J.; Kumar, N. Isolation and characterization of new flavonoid glycoside from the seeds of Prunus cerasoides. J. Med. Plants Stud., 2015, 3, 20-22.
- Poonam, V.; Raunak; Kumar, G.; Reddy L, C.S.; Jain, R.; Sharma, S.K.; Prasad, A.K.; Parmar, V.S. Chemical constituents of the genus Prunus and their medicinal properties. Curr. Med. Chem., 2011, 18(25), 3758-3824. doi: 10.2174/092986711803414386 PMID: 21831039
- Arora, D.S.; Mahajan, H. Major phytoconstituents of Prunus cerasoides responsible for antimicrobial and antibiofilm potential against some reference strains of pathogenic bacteria and clinical isolates of MRSA. Appl. Biochem. Biotechnol., 2019, 188(4), 1185-1204. doi: 10.1007/s12010-019-02985-4 PMID: 30854606
- Sachdeva, C.; Kumar, S.; Kaushik, N.K. Exploration of anti-plasmodial activity of Prunus cerasoides Buch.-Ham. ex D. Don (family: Rosaceae) and its wood chromatographic fractions. Acta Parasitol., 2021, 66(1), 205-212. doi: 10.1007/s11686-020-00272-5 PMID: 32940831
- Kim, S.D.; Kim, M.; Wu, H.H.; Jin, B.K.; Jeon, M.S.; Song, Y.S. Prunus cerasoides extract and its component compounds upregulate neuronal neuroglobin levels, mediate antioxidant effects, and ameliorate functional losses in the mouse model of cerebral ischemia. Antioxidants, 2021, 11(1), 99. doi: 10.3390/antiox11010099 PMID: 35052603
- Su, C.; Zhang, D.; Truong, J.; Jiang, C.; Lee, S.; Jarouche, M.; Hennell, J.R.; Rathbone, M.P.; Sucher, N.J.; Jiang, S. Effects of a novel herbal formulation JSK on acute spinal cord injury in rats. Restor. Neurol. Neurosci., 2013, 31(5), 597-617. doi: 10.3233/RNN-120303 PMID: 23760224
- Li, G.; Zhu, H.; Luo, L.; Hu, S.; Dong, K.; Zhang, T. Treating Alzheimer′s disease with Yizhijiannao granules by regulating expression of multiple proteins in temporal lobe. Neural Regen. Res., 2014, 9(13), 1283-1287. doi: 10.4103/1673-5374.137575 PMID: 25221580
- Pace, B.S.; White, G.L.; Dover, G.J.; Boosalis, M.S.; Faller, D.V.; Perrine, S.P. Short-chain fatty acid derivatives induce fetal globin expression and erythropoiesis in vivo. Blood, 2002, 100(13), 4640-4648. doi: 10.1182/blood-2002-02-0353 PMID: 12393583
- Jin, K.; Mao, X.O.; Xie, L.; John, V.; Greenberg, D.A. Pharmacological induction of neuroglobin expression. Pharmacology, 2011, 87(1-2), 81-84. doi: 10.1159/000322998 PMID: 21228614
- Escudero-Lourdes, C. Toxicity mechanisms of arsenic that are shared with neurodegenerative diseases and cognitive impairment: Role of oxidative stress and inflammatory responses. Neurotoxicology, 2016, 53, 223-235. doi: 10.1016/j.neuro.2016.02.002 PMID: 26868456
- Liu, X.; Gao, Y.; Yao, H.; Zhou, L.; Sun, D.; Wang, J. Neuroglobin involvement in the course of arsenic toxicity in rat cerebellar granule neurons. Biol. Trace Elem. Res., 2013, 155(3), 439-446. doi: 10.1007/s12011-013-9810-9 PMID: 24057451
- Liu, X.; Gao, Y.; Liu, Y.; Zhang, W.; Yang, Y.; Fu, X.; Sun, D.; Wang, J. Neuroglobin alleviates arsenic-induced neuronal damage. Environ. Toxicol. Pharmacol., 2021, 84, 103604. doi: 10.1016/j.etap.2021.103604 PMID: 33545379
- Nawfal, A.J.; Al-Okaily, B.N. Effect of the sublethal dose of lead acetate on malondialdehyde, dopamine, and neuroglobin concentrations in rats. WORLD, 2022, 12(3), 311-315.
- De Marinis, E; Fiocchetti, M; Acconcia, F; Ascenzi, P; Marino, M Neuroglobin upregulation induced by 17β-estradiol sequesters cytocrome c in the mitochondria preventing H2O2-induced apoptosis of neuroblastoma cells. Cell Death & Disease, 2013, 4(2), e508.
- Montalesi, E.; Cipolletti, M.; Cracco, P.; Fiocchetti, M.; Marino, M. Divergent effects of daidzein and its metabolites on estrogen-induced survival of breast cancer cells. Cancers, 2020, 12(1), 167. doi: 10.3390/cancers12010167 PMID: 31936631
Supplementary files
