Pyrrolo[2,3-D]Pyrimidines as EGFR and VEGFR Kinase Inhibitors: A Comprehensive SAR Review


Cite item

Full Text

Abstract

:Tyrosine kinases are implicated in a wide array of cellular physiological processes, including cell signaling. The discovery of the BCR-ABL tyrosine kinase inhibitor imatinib and its FDA approval in 2001 paved the way for the development of small molecule chemical entities of diverse structural backgrounds as tyrosine kinase inhibitors for the treatment of various ailments. Two of the most prominent tyrosine kinases as drug targets are the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR), as evidenced by the clinical success of their many inhibitors in the drug market. Among several other physiological roles, EGFR regulates epithelial tissue development and homeostasis, while VEGFR regulates tumor-induced angiogenesis. The pyrrolo[2,3-d]pyrimidine nucleus represents a deaza-isostere of adenine, the nitrogenous base of ATP. The recent introduction of many pyrrolo[2,3-d]pyrimidines to the drug market as tyrosine kinase inhibitors makes them a hot topic in the medicinal chemistry research area at the present time. This review article comprehensively sheds light on the structure-activity relationship (SAR) of pyrrolo[2,3-d]pyrimidines as EGFR and VEGFR tyrosine kinase inhibitors, aiming to provide help medicinal chemists in the design of future pyrrolopyrimidine kinase inhibitors.

About the authors

Kamel Metwally

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk

Author for correspondence.
Email: info@benthamscience.net

Nader Abo-Dya

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk

Email: info@benthamscience.net

References

  1. Cohen, P.; Cross, D.; Jänne, P.A. Kinase drug discovery 20 years after imatinib: Progress and future directions. Nat. Rev. Drug Discov., 2021, 20(7), 551-569. doi: 10.1038/s41573-021-00195-4 PMID: 34002056
  2. Ye, H.; Wang, L.; Ma, L.; Ionov, M.; Qiao, G.; Huang, J.; Cheng, L.; Zhang, Y.; Yang, X.; Cao, S.; Lin, X. Protein kinases as therapeutic targets to develop anticancer drugs with natural alkaloids. Frontiers in Bioscience-Landmark, 2021, 26(11), 1349-1361. doi: 10.52586/5028 PMID: 34856772
  3. Zarrin, A.A.; Bao, K.; Lupardus, P.; Vucic, D. Kinase inhibition in autoimmunity and inflammation. Nat. Rev. Drug Discov., 2021, 20(1), 39-63. doi: 10.1038/s41573-020-0082-8 PMID: 33077936
  4. Amin, F.; Ahmed, A.; Feroz, A.; Khaki, P.S.S.; Khan, M.S.; Tabrez, S.; Zaidi, S.K.; Abdulaal, W.H.; Shamsi, A.; Khan, W.; Bano, B. An update on the association of protein kinases with cardiovascular diseases. Curr. Pharm. Des., 2019, 25(2), 174-183. doi: 10.2174/1381612825666190312115140 PMID: 30864507
  5. Roy, S.M.; Grum-Tokars, V.L.; Schavocky, J.P.; Saeed, F.; Staniszewski, A.; Teich, A.F.; Arancio, O.; Bachstetter, A.D.; Webster, S.J.; Van Eldik, L.J.; Minasov, G.; Anderson, W.F.; Pelletier, J.C.; Watterson, D.M. Targeting human central nervous system protein kinases: An isoform selective p38αMAPK inhibitor that attenuates disease progression in Alzheimer’s disease mouse models. ACS Chem. Neurosci., 2015, 6(4), 666-680. doi: 10.1021/acschemneuro.5b00002 PMID: 25676389
  6. King, G.L.; Das-Evcimen, N. Role of protein kinase C in diabetic complications. Expert Rev. Endocrinol. Metab., 2010, 5(1), 77-88. doi: 10.1586/eem.09.74 PMID: 30934385
  7. Attwood, M.M.; Fabbro, D.; Sokolov, A.V.; Knapp, S.; Schiöth, H.B. Trends in kinase drug discovery: Targets, indications and inhibitor design. Nat. Rev. Drug Discov., 2021, 20(11), 839-861. doi: 10.1038/s41573-021-00252-y PMID: 34354255
  8. Cicenas, J.; Zalyte, E.; Bairoch, A.; Gaudet, P. Kinases and cancer. Cancers (Basel), 2018, 10(3), 63. doi: 10.3390/cancers10030063 PMID: 29494549
  9. Lahiry, P.; Torkamani, A.; Schork, N.J.; Hegele, R.A. Kinase mutations in human disease: Interpreting genotypephenotype relationships. Nat. Rev. Genet., 2010, 11(1), 60-74. doi: 10.1038/nrg2707 PMID: 20019687
  10. Seok, S.H. Structural insights into protein regulation by phosphorylation and substrate recognition of protein kinases/phosphatases. Life (Basel), 2021, 11(9), 957. doi: 10.3390/life11090957 PMID: 34575106
  11. Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase - Role and significance in Cancer. Int. J. Med. Sci., 2004, 1(2), 101-115. doi: 10.7150/ijms.1.101 PMID: 15912202
  12. Choura, M.; Rebaï, A. Receptor tyrosine kinases: From biology to pathology. J. Recept. Signal Transduct. Res., 2011, 31(6), 387-394. doi: 10.3109/10799893.2011.625425 PMID: 22040163
  13. Saraon, P.; Pathmanathan, S.; Snider, J.; Lyakisheva, A.; Wong, V.; Stagljar, I. Receptor tyrosine kinases and cancer: Oncogenic mechanisms and therapeutic approaches. Oncogene, 2021, 40(24), 4079-4093. doi: 10.1038/s41388-021-01841-2 PMID: 34079087
  14. Lee, N.Y.; Hazlett, T.L.; Koland, J.G. Structure and dynamics of the epidermal growth factor receptor C-terminal phosphorylation domain. Protein Sci., 2006, 15(5), 1142-1152. doi: 10.1110/ps.052045306 PMID: 16597832
  15. Zhou, Q.; Wu, L.; Hu, P.; An, T.; Zhou, J.; Zhang, L.; Liu, X.Q.; Luo, F.; Zheng, X.; Cheng, Y.; Yang, N.; Li, J.; Feng, J.; Han, B.; Song, Y.; Wang, K.; Zhang, L.; Fang, J.; Zhao, H.; Shu, Y.; Lin, X.Y.; Chen, Z.; Gan, B.; Xu, W.H.; Tang, W.; Zhang, X.; Yang, J.J.; Xu, X.; Wu, Y.L. A novel third-generation EGFR tyrosine kinase inhibitor abivertinib for EGFR T790M-mutant non-small cell lung cancer: A multicenter phase I/II study. Clin. Cancer Res., 2022, 28(6), 1127-1135. doi: 10.1158/1078-0432.CCR-21-2595 PMID: 34740925
  16. Kiselyov, A.; Balakin, K.V.; Tkachenko, S.E. VEGF/VEGFR signalling as a target for inhibiting angiogenesis. Expert Opin. Investig. Drugs, 2007, 16(1), 83-107. doi: 10.1517/13543784.16.1.83 PMID: 17155856
  17. Kerbel, R.S. Tumor angiogenesis. N. Engl. J. Med., 2008, 358(19), 2039-2049. doi: 10.1056/NEJMra0706596 PMID: 18463380
  18. Shahi, P.K.; Pineda, I.F. Tumoral angiogenesis: Review of the literature. Cancer Invest., 2008, 26(1), 104-108. doi: 10.1080/07357900701662509 PMID: 18181052
  19. Otrock, Z.; Mahfouz, R.; Makarem, J.; Shamseddine, A. Understanding the biology of angiogenesis: Review of the most important molecular mechanisms. Blood Cells Mol. Dis., 2007, 39(2), 212-220. doi: 10.1016/j.bcmd.2007.04.001 PMID: 17553709
  20. Carmeliet, P.; Collen, D. Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Ann. N. Y. Acad. Sci., 2000, 902(1), 249-264. doi: 10.1111/j.1749-6632.2000.tb06320.x PMID: 10865845
  21. Cébe-Suarez, S.; Zehnder-Fjällman, A.; Ballmer-Hofer, K. The role of VEGF receptors in angiogenesis; complex partnerships. Cell. Mol. Life Sci., 2006, 63(5), 601-615. doi: 10.1007/s00018-005-5426-3 PMID: 16465447
  22. Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005, 69(Suppl. 3), 4-10. doi: 10.1159/000088478 PMID: 16301830
  23. Ferrara, N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int., 1999, 56(3), 794-814. doi: 10.1046/j.1523-1755.1999.00610.x PMID: 10469350
  24. Hicklin, D.J.; Ellis, L.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol., 2005, 23(5), 1011-1027. doi: 10.1200/JCO.2005.06.081 PMID: 15585754
  25. Ferrara, N. The Role of VEGF in the Regulation of Physiological and Pathological Angiogenesis. Mechanisms of Angiogenesis; Clauss, M.; Breier, G., Eds.; Birkhäuser Basel: Basel, 2005, pp. 209-231. doi: 10.1007/3-7643-7311-3_15
  26. Liu, Y.; Li, Y.; Wang, Y.; Lin, C.; Zhang, D.; Chen, J.; Ouyang, L.; Wu, F.; Zhang, J.; Chen, L. Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy. J. Hematol. Oncol., 2022, 15(1), 89. doi: 10.1186/s13045-022-01310-7 PMID: 35799213
  27. Deininger, M.; Buchdunger, E.; Druker, B.J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood, 2005, 105(7), 2640-2653. doi: 10.1182/blood-2004-08-3097 PMID: 15618470
  28. Lydon, N.B.; Druker, B.J. Lessons learned from the development of imatinib. Leuk. Res., 2004, 28(Suppl. 1), 29-38. doi: 10.1016/j.leukres.2003.10.002 PMID: 15036939
  29. Araki, T.; Yashima, H.; Shimizu, K.; Aomori, T.; Hashita, T.; Kaira, K.; Nakamura, T.; Yamamoto, K. Review of the treatment of non-small cell lung cancer with gefitinib. Clin. Med. Insights Oncol., 2012, 6, 407-421. doi: 10.4137/CMO.S7340
  30. Murphy, M.; Stordal, B. Erlotinib or gefitinib for the treatment of relapsed platinum pretreated non-small cell lung cancer and ovarian cancer: A systematic review. Drug Resist. Updat., 2011, 14(3), 177-190. doi: 10.1016/j.drup.2011.02.004 PMID: 21435938
  31. Barlési, F.; Tchouhadjian, C.; Doddoli, C.; Villani, P.; Greillier, L.; Kleisbauer, J.P.; Thomas, P.; Astoul, P. Gefitinib (ZD1839, IressaR) in non-small-cell lung cancer: A review of clinical trials from a daily practice perspective. Fundam. Clin. Pharmacol., 2005, 19(3), 385-393. doi: 10.1111/j.1472-8206.2005.00323.x PMID: 15910663
  32. Yang, Z.; Hackshaw, A.; Feng, Q.; Fu, X.; Zhang, Y.; Mao, C.; Tang, J. Comparison of gefitinib, erlotinib and afatinib in non‐small cell lung cancer: A meta‐analysis. Int. J. Cancer, 2017, 140(12), 2805-2819. doi: 10.1002/ijc.30691 PMID: 28295308
  33. Wang, Y.; Schmid-Bindert, G.; Zhou, C. Erlotinib in the treatment of advanced non-small cell lung cancer: An update for clinicians. Ther. Adv. Med. Oncol., 2012, 4(1), 19-29. doi: 10.1177/1758834011427927 PMID: 22229045
  34. Yang, J.C.H. Afatinib for the treatment of non-small-cell lung cancer with unusual EGFR mutations: A plain language summary. Future Oncol., 2023, 19(4), 291-297. doi: 10.2217/fon-2022-0842 PMID: 36794564
  35. Tu, H.Y.; Wu, Y.L. Afatinib for the first-line treatment of EGFR mutation-positive NSCLC in China: A review of clinical data. Future Oncol., 2020, 16(31), 2569-2586. doi: 10.2217/fon-2020-0320 PMID: 32927981
  36. Roskoski, R., Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update. Pharmacol. Res., 2023, 187, 106552. doi: 10.1016/j.phrs.2022.106552 PMID: 36403719
  37. Jiang, W.; Cai, G.; Hu, P.C.; Wang, Y. Personalized medicine in non-small cell lung cancer: A review from a pharmacogenomics perspective. Acta Pharm. Sin. B, 2018, 8(4), 530-538. doi: 10.1016/j.apsb.2018.04.005 PMID: 30109178
  38. Altunel, E.; Roghani, R.S.; Chen, K.Y.; Kim, S.Y.; McCall, S.; Ware, K.E.; Shen, X.; Somarelli, J.A.; Hsu, D.S. Development of a precision medicine pipeline to identify personalized treatments for colorectal cancer. BMC Cancer, 2020, 20(1), 592. doi: 10.1186/s12885-020-07090-y PMID: 32580713
  39. Solassol, I.; Pinguet, F.; Quantin, X. FDA- and EMA-approved tyrosine kinase inhibitors in advanced EGFR-mutated non-small cell lung cancer: Safety, tolerability, plasma concentration monitoring, and management. Biomolecules, 2019, 9(11), 668. doi: 10.3390/biom9110668 PMID: 31671561
  40. Westover, D.; Zugazagoitia, J.; Cho, B.C.; Lovly, C.M.; Paz-Ares, L. Mechanisms of acquired resistance to firstand second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol., 2018, 29(Suppl. 1), i10-i19. doi: 10.1093/annonc/mdx703 PMID: 29462254
  41. Kim, Y.; Ko, J.; Cui, Z.; Abolhoda, A.; Ahn, J.S.; Ou, S.H.; Ahn, M.J.; Park, K. The EGFR T790M mutation in acquired resistance to an irreversible second-generation EGFR inhibitor. Mol. Cancer Ther., 2012, 11(3), 784-791. doi: 10.1158/1535-7163.MCT-11-0750 PMID: 22228822
  42. Takeda, M.; Nakagawa, K. First- and second-generation EGFR-TKIs are all replaced to osimertinib in chemo-naive EGFR mutation-positive non-small cell lung cancer? Int. J. Mol. Sci., 2019, 20(1), 146. doi: 10.3390/ijms20010146 PMID: 30609789
  43. Sun, D.; Zhu, Y.; Zhu, J.; Tao, J.; Wei, X.; Wo, Y.; Hou, H. Primary resistance to first-generation EGFR-TKIs induced by MDM2 amplification in NSCLC. Mol. Med., 2020, 26(1), 66. doi: 10.1186/s10020-020-00193-z PMID: 32611363
  44. Karachaliou, N.; Fernandez-Bruno, M.; Paulina Bracht, J.; Rosell, R. EGFR first- and second-generation TKIs—there is still place for them in EGFR-mutant NSCLC patients. Transl. Cancer Res., 2019, 8(Suppl. 1), S23-s47.
  45. Colinet, B.; Van Meerbeeck, J.P.; Cuppens, T.; Vansteenkiste, J.F. Osimertinib in patients with advanced/metastatic epidermal growth factor receptor T790M mutation-positive non-small cell lung cancer - the Belgian ASTRIS data. Acta Clin. Belg., 2021, 76(3), 224-231. doi: 10.1080/17843286.2019.1708125 PMID: 31935159
  46. Schmid, S.; Li, J.J.N.; Leighl, N.B. Mechanisms of osimertinib resistance and emerging treatment options. Lung Cancer, 2020, 147, 123-129. doi: 10.1016/j.lungcan.2020.07.014 PMID: 32693293
  47. Zalaquett, Z.; Catherine Rita Hachem, M.; Kassis, Y.; Hachem, S.; Eid, R.; Raphael Kourie, H.; Planchard, D. Acquired resistance mechanisms to osimertinib: The constant battle. Cancer Treat. Rev., 2023, 116, 102557. doi: 10.1016/j.ctrv.2023.102557 PMID: 37060646
  48. Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer, 2019, 121(9), 725-737. doi: 10.1038/s41416-019-0573-8 PMID: 31564718
  49. Roper, N.; Brown, A.L.; Wei, J.S.; Pack, S.; Trindade, C.; Kim, C.; Restifo, O.; Gao, S.; Sindiri, S.; Mehrabadi, F.; El Meskini, R.; Ohler, Z.W.; Maity, T.K.; Venugopalan, A.; Cultraro, C.M.; Akoth, E.; Padiernos, E.; Chen, H.; Kesarwala, A.; Smart, D.K.; Nilubol, N.; Rajan, A.; Piotrowska, Z.; Xi, L.; Raffeld, M.; Panchenko, A.R.; Sahinalp, C.; Hewitt, S.; Hoang, C.D.; Khan, J.; Guha, U. Clonal evolution and heterogeneity of osimertinib acquired resistance mechanisms in EGFR mutant lung cancer. Cell Rep. Med., 2020, 1(1), 100007. doi: 10.1016/j.xcrm.2020.100007 PMID: 32483558
  50. Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res., 2021, 165, 105463. doi: 10.1016/j.phrs.2021.105463 PMID: 33513356
  51. Yousefian, M.; Ghodsi, R. Structure-activity relationship studies of indolin‐2‐one derivatives as vascular endothelial growth factor receptor inhibitors and anticancer agents. Arch. Pharm. (Weinheim), 2020, 353(12), 2000022. doi: 10.1002/ardp.202000022 PMID: 32885522
  52. Keating, G.M. Sorafenib: A review in hepatocellular carcinoma. Target. Oncol., 2017, 12(2), 243-253. doi: 10.1007/s11523-017-0484-7 PMID: 28299600
  53. Dhillon, S. Regorafenib: A review in metastatic colorectal cancer. Drugs, 2018, 78(11), 1133-1144. doi: 10.1007/s40265-018-0938-y PMID: 29943375
  54. Heo, Y.A.; Syed, Y.Y. Regorafenib: A review in hepatocellular carcinoma. Drugs, 2018, 78(9), 951-958. doi: 10.1007/s40265-018-0932-4 PMID: 29915898
  55. Al-Salama, Z.T.; Syed, Y.Y.; Scott, L.J. Lenvatinib: A review in hepatocellular carcinoma. Drugs, 2019, 79(6), 665-674. doi: 10.1007/s40265-019-01116-x PMID: 30993651
  56. Frampton, J.E. Lenvatinib: A review in refractory thyroid cancer. Target. Oncol., 2016, 11(1), 115-122. doi: 10.1007/s11523-015-0416-3 PMID: 26867945
  57. Hatanaka, T.; Naganuma, A.; Kakizaki, S. Lenvatinib for hepatocellular carcinoma: A literature review. Pharmaceuticals (Basel), 2021, 14(1), 36. doi: 10.3390/ph14010036 PMID: 33418941
  58. Scott, E.N.; Meinhardt, G.; Jacques, C.; Laurent, D.; Thomas, A.L. Vatalanib: The clinical development of a tyrosine kinase inhibitor of angiogenesis in solid tumours. Expert Opin. Investig. Drugs, 2007, 16(3), 367-379. doi: 10.1517/13543784.16.3.367 PMID: 17302531
  59. Musumeci, F.; Sanna, M.; Grossi, G.; Brullo, C.; Fallacara, A.L.; Schenone, S. Pyrrolo2,3-dpyrimidines as kinase inhibitors. Curr. Med. Chem., 2017, 24(19), 2059-2085. PMID: 28266267
  60. Adel, M.; Abouzid, K.A.M. New fluorinated diarylureas linked to pyrrolo2,3-dpyrimidine scaffold as VEGFR-2 inhibitors: Molecular docking and biological evaluation. Bioorg. Chem., 2022, 127, 106006. doi: 10.1016/j.bioorg.2022.106006 PMID: 35820328
  61. Adel, M.; Serya, R.A.T.; Lasheen, D.S.; Abouzid, K.A.M. Identification of new pyrrolo2,3-dpyrimidines as potent VEGFR-2 tyrosine kinase inhibitors: Design, synthesis, biological evaluation and molecular modeling. Bioorg. Chem., 2018, 81, 612-629. doi: 10.1016/j.bioorg.2018.09.001 PMID: 30248512
  62. Sivaiah, G.; Raveesha, R.; Benaka Prasad, S.B.; Yogesh Kumar, K.; Raghu, M.S.; Alharti, F.A.; Prashanth, M.K.; Jeon, B.H. Synthesis, biological evaluation and molecular docking studies of novel pyrrolo2,3-dpyrimidin-2-amine derivatives as EGFR inhibitors. J. Mol. Struct., 2023, 1275, 134728. doi: 10.1016/j.molstruc.2022.134728
  63. Liang, X.; Tang, S.; Liu, X.; Liu, Y.; Xu, Q.; Wang, X.; Saidahmatov, A.; Li, C.; Wang, J.; Zhou, Y.; Zhang, Y.; Geng, M.; Huang, M.; Liu, H. Discovery of novel pyrrolo2,3-dpyrimidine-based derivatives as potent JAK/HDAC dual inhibitors for the treatment of refractory solid tumors. J. Med. Chem., 2022, 65(2), 1243-1264. doi: 10.1021/acs.jmedchem.0c02111 PMID: 33586434
  64. Xie, W.; Yang, S.; Liang, L.; Wang, M.; Zuo, W.; Lei, Y.; Zhang, Y.; Tang, W.; Lu, T.; Chen, Y.; Jiang, Y. Discovery of 2-amino-7-sulfonyl-7 H-pyrrolo2,3-dpyrimidine derivatives as potent reversible FGFR inhibitors with gatekeeper mutation tolerance: design, synthesis, and biological evaluation. J. Med. Chem., 2022, 65(24), 16570-16588. doi: 10.1021/acs.jmedchem.2c01420 PMID: 36480917
  65. Yuan, X.; Chen, Y.; Zhang, W.; He, J.; Lei, L.; Tang, M.; Liu, J.; Li, M.; Dou, C.; Yang, T.; Yang, L.; Yang, S.; Wei, Y.; Peng, A.; Niu, T.; Xiang, M.; Ye, H.; Chen, L. Identification of pyrrolo2,3-dpyrimidine-based derivatives as potent and orally effective fms-like tyrosine receptor kinase 3 (FLT3) inhibitors for treating acute myelogenous leukemia. J. Med. Chem., 2019, 62(8), 4158-4173. doi: 10.1021/acs.jmedchem.9b00223 PMID: 30939008
  66. Traxler, P.M.; Furet, P.; Mett, H.; Buchdunger, E.; Meyer, T.; Lydon, N. 4-(Phenylamino)pyrrolopyrimidines: Potent and selective, ATP site directed inhibitors of the EGF-receptor protein tyrosine kinase. J. Med. Chem., 1996, 39(12), 2285-2292. doi: 10.1021/jm960118j PMID: 8691423
  67. Thorarensen, A.; Dowty, M.E.; Banker, M.E.; Juba, B.; Jussif, J.; Lin, T.; Vincent, F.; Czerwinski, R.M.; Casimiro-Garcia, A.; Unwalla, R.; Trujillo, J.I.; Liang, S.; Balbo, P.; Che, Y.; Gilbert, A.M.; Brown, M.F.; Hayward, M.; Montgomery, J.; Leung, L.; Yang, X.; Soucy, S.; Hegen, M.; Coe, J.; Langille, J.; Vajdos, F.; Chrencik, J.; Telliez, J.B. Design of a janus kinase 3 (JAK3) specific inhibitor 1-((2 S, 5 R)-5-((7H-Pyrrolo2,3-dpyrimidin-4-yl)amino)-2-methylpiperidin-1-yl)prop-2-en-1-one (PF-06651600) Allowing for the interrogation of JAK3 signaling in humans. J. Med. Chem., 2017, 60(5), 1971-1993. doi: 10.1021/acs.jmedchem.6b01694 PMID: 28139931
  68. Noji, S.; Hara, Y.; Miura, T.; Yamanaka, H.; Maeda, K.; Hori, A.; Yamamoto, H.; Obika, S.; Inoue, M.; Hase, Y.; Orita, T.; Doi, S.; Adachi, T.; Tanimoto, A.; Oki, C.; Kimoto, Y.; Ogawa, Y.; Negoro, T.; Hashimoto, H.; Shiozaki, M. Discovery of a janus kinase inhibitor bearing a highly three-dimensional spiro scaffold: JTE-052 (delgocitinib) as a new dermatological agent to treat inflammatory skin disorders. J. Med. Chem., 2020, 63(13), 7163-7185. doi: 10.1021/acs.jmedchem.0c00450 PMID: 32511913
  69. Vazquez, M.L.; Kaila, N.; Strohbach, J.W.; Trzupek, J.D.; Brown, M.F.; Flanagan, M.E.; Mitton-Fry, M.J.; Johnson, T.A.; TenBrink, R.E.; Arnold, E.P.; Basak, A.; Heasley, S.E.; Kwon, S.; Langille, J.; Parikh, M.D.; Griffin, S.H.; Casavant, J.M.; Duclos, B.A.; Fenwick, A.E.; Harris, T.M.; Han, S.; Caspers, N.; Dowty, M.E.; Yang, X.; Banker, M.E.; Hegen, M.; Symanowicz, P.T.; Li, L.; Wang, L.; Lin, T.H.; Jussif, J.; Clark, J.D.; Telliez, J.B.; Robinson, R.P.; Unwalla, R. Identification of N-cis -3-Methyl(7 H-pyrrolo2,3- dpyrimidin-4-yl)aminocyclobutylpropane-1-sulfonamide (PF-04965842): A selective JAK1 clinical candidate for the treatment of autoimmune diseases. J. Med. Chem., 2018, 61(3), 1130-1152. doi: 10.1021/acs.jmedchem.7b01598 PMID: 29298069
  70. Liang, X.; Wang, C.; Wang, B.; Liu, J.; Qi, S.; Wang, A.; Liu, Q.; Deng, M.; Wang, L.; Liu, J.; Liu, Q. Discovery of Pyrrolo2,3-dpyrimidine derivatives as potent and selective colony stimulating factor 1 receptor kinase inhibitors. Eur. J. Med. Chem., 2022, 243, 114782. doi: 10.1016/j.ejmech.2022.114782 PMID: 36179404
  71. Mao, W.; Wu, H.; Guo, Q.; Zheng, X.; Wei, C.; Liao, Y.; Shen, L.; Mi, J.; Li, J.; Chen, S.; Qian, W. Synthesis and evaluation of hydrazinyl-containing pyrrolo2,3-dpyrimidine series as potent, selective and oral JAK1 inhibitors for the treatment of rheumatoid arthritis. Bioorg. Med. Chem. Lett., 2022, 74, 128905. doi: 10.1016/j.bmcl.2022.128905 PMID: 35870730
  72. Tan, H.; Liu, Y.; Gong, C.; Zhang, J.; Huang, J.; Zhang, Q. Synthesis and evaluation of FAK inhibitors with a 5-fluoro-7H-pyrrolo2,3-dpyrimidine scaffold as anti-hepatocellular carcinoma agents. Eur. J. Med. Chem., 2021, 223, 113670. doi: 10.1016/j.ejmech.2021.113670 PMID: 34214842
  73. Perrone, M.; Giuliani, F.; Sanna, V.; Bruno, S.; Melaccio, A.; Santoro, A.N.; Laface, C.; Maselli, F.M.; Iaia, M.L.; Guarini, C.; Fancellu, A.; Fedele, P. Advances in pharmacotherapies that target the cell cycle for treatment of breast cancer: Where are we at today? Expert Opin. Pharmacother., 2023, 24(8), 887-900. doi: 10.1080/14656566.2023.2201373 PMID: 37038927
  74. Tefferi, A. Primary myelofibrosis: 2023 update on diagnosis, risk‐stratification, and management. Am. J. Hematol., 2023, 98(5), 801-821. doi: 10.1002/ajh.26857 PMID: 36680511
  75. Langbour, C.; Rene, J.; Goupille, P.; Alegria, C.G. Efficacy of Janus kinase inhibitors in rheumatoid arthritis. Inflamm. Res., 2023, 72(5), 1121-1132. doi: 10.1007/s00011-023-01717-z PMID: 37087519
  76. Muddebihal, A.; Khurana, A.; Sardana, K. JAK inhibitors in dermatology: The road travelled and path ahead, a narrative review. Expert Rev. Clin. Pharmacol., 2023, 16(4), 279-295. doi: 10.1080/17512433.2023.2193682 PMID: 36946306
  77. Moussa, A.; Eisman, S.; Kazmi, A.; Poa, J.; Chitreddy, V.; Rathnayake, D.; Joseph, S.; Sinclair, R.D.; Bhoyrul, B. Treatment of moderate-to-severe alopecia areata in adolescents with baricitinib: A retrospective review of 29 patients. J. Am. Acad. Dermatol., 2023, 88(5), 1194-1196. doi: 10.1016/j.jaad.2022.12.033 PMID: 36623557
  78. Lamb, Y.N. Osimertinib: A review in previously untreated, EGFR mutation-positive, advanced NSCLC. Target. Oncol., 2021, 16(5), 687-695. doi: 10.1007/s11523-021-00839-w PMID: 34564820
  79. Thomas, R.; Weihua, Z. Rethink of EGFR in cancer with its kinase independent function on board. Front. Oncol., 2019, 9, 800. doi: 10.3389/fonc.2019.00800 PMID: 31508364
  80. Dong, R.F.; Zhu, M.L.; Liu, M.M.; Xu, Y.T.; Yuan, L.L.; Bian, J.; Xia, Y.Z.; Kong, L.Y. EGFR mutation mediates resistance to EGFR tyrosine kinase inhibitors in NSCLC: From molecular mechanisms to clinical research. Pharmacol. Res., 2021, 167, 105583. doi: 10.1016/j.phrs.2021.105583 PMID: 33775864
  81. Kujtan, L.; Subramanian, J. Epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of non-small cell lung cancer. Expert Rev. Anticancer Ther., 2019, 19(7), 547-559. doi: 10.1080/14737140.2019.1596030 PMID: 30913927
  82. Yang, Z.; Yang, H.; Ai, Y.; Zhang, L.; Li, Z.; Wan, S.; Xu, X.; Zhang, H.; Wu, S.; Zhang, J.; Zhang, T. Computational studies of potent covalent inhibitors on wild type or T790M/L858R mutant epidermal growth factor receptor. Eur. J. Pharm. Sci., 2020, 152, 105463. doi: 10.1016/j.ejps.2020.105463 PMID: 32668314
  83. Shao, J.; Liu, S.; Liu, X.; Pan, Y.; Chen, W. Design, synthesis and SAR study of 2-aminopyrimidines with diverse Michael addition acceptors for chemically tuning the potency against EGFRL858R/T790M. Bioorg. Med. Chem., 2020, 28(19), 115680. doi: 10.1016/j.bmc.2020.115680 PMID: 32912431
  84. Song, Z.; Ge, Y.; Wang, C.; Huang, S.; Shu, X.; Liu, K.; Zhou, Y.; Ma, X. Challenges and perspectives on the development of small-molecule EGFR inhibitors against T790M-mediated resistance in non-small-cell lung cancer. J. Med. Chem., 2016, 59(14), 6580-6594. doi: 10.1021/acs.jmedchem.5b00840 PMID: 26882288
  85. Wu, S.G.; Shih, J.Y. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol. Cancer, 2018, 17(1), 38. doi: 10.1186/s12943-018-0777-1 PMID: 29455650
  86. Suda, K.; Rivard, C.J.; Mitsudomi, T.; Hirsch, F.R. Overcoming resistance to EGFR tyrosine kinase inhibitors in lung cancer, focusing on non-T790M mechanisms. Expert Rev. Anticancer Ther., 2017, 17(9), 779-786. doi: 10.1080/14737140.2017.1355243 PMID: 28701107
  87. Noda, S.; Kanda, S. Addressing epidermal growth factor receptor tyrosine kinase inhibitor resistance in non-small cell lung cancer. Expert Rev. Respir. Med., 2016, 10(5), 547-556. doi: 10.1586/17476348.2016.1164603 PMID: 26959310
  88. Nelson, V.; Ziehr, J.; Agulnik, M.; Johnson, M. Afatinib: Emerging next-generation tyrosine kinase inhibitor for NSCLC. OncoTargets Ther., 2013, 6, 135-143. PMID: 23493883
  89. Galvani, E.; Alfieri, R.; Giovannetti, E.; Cavazzoni, A.; La Monica, S.; Galetti, M.; Fumarola, C.; Bonelli, M.; Mor, M.; Tiseo, M.; Peters, G.J.; Petronini, P.G.; Ardizzoni, A. Epidermal growth factor receptor tyrosine kinase inhibitors: Current status and future perspectives in the development of novel irreversible inhibitors for the treatment of mutant non-small cell lung cancer. Curr. Pharm. Des., 2013, 19(5), 818-832. doi: 10.2174/138161213804547222 PMID: 22973953
  90. Li, Y.; Mao, T.; Wang, J.; Zheng, H.; Hu, Z.; Cao, P.; Yang, S.; Zhu, L.; Guo, S.; Zhao, X.; Tian, Y.; Shen, H.; Lin, F. Toward the next generation EGFR inhibitors: An overview of osimertinib resistance mediated by EGFR mutations in non-small cell lung cancer. Cell Commun. Signal., 2023, 21(1), 71. doi: 10.1186/s12964-023-01082-8 PMID: 37041601
  91. Li, M.C.; Coumar, M.S.; Lin, S.Y.; Lin, Y.S.; Huang, G.L.; Chen, C.H.; Lien, T.W.; Wu, Y.W.; Chen, Y.T.; Chen, C.P.; Huang, Y.C.; Yeh, K.C.; Yang, C.M.; Kalita, B.; Pan, S.L.; Hsu, T.A.; Yeh, T.K.; Chen, C.T.; Hsieh, H.P. Development of furanopyrimidine-based orally active third-generation EGFR inhibitors for the treatment of non-small cell lung cancer. J. Med. Chem., 2023, 66(4), 2566-2588. doi: 10.1021/acs.jmedchem.2c01434 PMID: 36749735
  92. Chen, L.; Fu, W.; Zheng, L.; Liu, Z.; Liang, G. Recent progress of small-molecule epidermal growth factor receptor (EGFR) inhibitors against C797S resistance in non-small-cell lung cancer. J. Med. Chem., 2018, 61(10), 4290-4300. doi: 10.1021/acs.jmedchem.7b01310 PMID: 29136465
  93. Heppner, D.E.; Wittlinger, F.; Beyett, T.S.; Shaurova, T.; Urul, D.A.; Buckley, B.; Pham, C.D.; Schaeffner, I.K.; Yang, B.; Ogboo, B.C.; May, E.W.; Schaefer, E.M.; Eck, M.J.; Laufer, S.A.; Hershberger, P.A. Structural basis for inhibition of mutant EGFR with Lazertinib (YH25448). ACS Med. Chem. Lett., 2022, 13(12), 1856-1863. doi: 10.1021/acsmedchemlett.2c00213 PMID: 36518696
  94. Shaikh, M.; Shinde, Y.; Pawara, R.; Noolvi, M.; Surana, S.; Ahmad, I.; Patel, H. Emerging approaches to overcome acquired drug resistance obstacles to osimertinib in non-small-cell lung cancer. J. Med. Chem., 2022, 65(2), 1008-1046. doi: 10.1021/acs.jmedchem.1c00876 PMID: 34323489
  95. An, B.; Liu, J.; Fan, Y.; Nie, W.; Yang, C.; Yao, H.; Li, W.; Zhang, Y.; Li, X.; Tian, G. Novel third-generation pyrimidines-based EGFR tyrosine kinase inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer. Bioorg. Chem., 2022, 122, 105743. doi: 10.1016/j.bioorg.2022.105743 PMID: 35313239
  96. Shi, C.; Zhang, C.; Fu, Z.; Liu, J.; Zhou, Y.; Cheng, B.; Wang, C.; Li, S.; Zhang, Y. Antitumor activity of aumolertinib, a third-generation EGFR tyrosine kinase inhibitor, in non-small-cell lung cancer harboring uncommon EGFR mutations. Acta Pharm. Sin. B, 2023, 13(6), 2613-2627. doi: 10.1016/j.apsb.2023.03.007 PMID: 37425047
  97. Nagasaka, M.; Zhu, V.W.; Lim, S.M.; Greco, M.; Wu, F.; Ou, S.H.I. Beyond osimertinib: The development of third-generation EGFR tyrosine kinase inhibitors for advanced EGFR+ NSCLC. J. Thorac. Oncol., 2021, 16(5), 740-763. doi: 10.1016/j.jtho.2020.11.028 PMID: 33338652
  98. Cheng, H.; Nair, S.K.; Murray, B.W. Recent progress on third generation covalent EGFR inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(8), 1861-1868. doi: 10.1016/j.bmcl.2016.02.067 PMID: 26968253
  99. Yun, C.H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.K.; Meyerson, M.; Eck, M.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 2070-2075. doi: 10.1073/pnas.0709662105 PMID: 18227510
  100. Suda, K.; Onozato, R.; Yatabe, Y.; Mitsudomi, T. EGFR T790M mutation: A double role in lung cancer cell survival? J. Thorac. Oncol., 2009, 4(1), 1-4. doi: 10.1097/JTO.0b013e3181913c9f PMID: 19096299
  101. Cheng, H.; Nair, S.K.; Murray, B.W.; Almaden, C.; Bailey, S.; Baxi, S.; Behenna, D.; Cho-Schultz, S.; Dalvie, D.; Dinh, D.M.; Edwards, M.P.; Feng, J.L.; Ferre, R.A.; Gajiwala, K.S.; Hemkens, M.D.; Jackson-Fisher, A.; Jalaie, M.; Johnson, T.O.; Kania, R.S.; Kephart, S.; Lafontaine, J.; Lunney, B.; Liu, K.K.C.; Liu, Z.; Matthews, J.; Nagata, A.; Niessen, S.; Ornelas, M.A.; Orr, S.T.M.; Pairish, M.; Planken, S.; Ren, S.; Richter, D.; Ryan, K.; Sach, N.; Shen, H.; Smeal, T.; Solowiej, J.; Sutton, S.; Tran, K.; Tseng, E.; Vernier, W.; Walls, M.; Wang, S.; Weinrich, S.L.; Xin, S.; Xu, H.; Yin, M.J.; Zientek, M.; Zhou, R.; Kath, J.C. Discovery of 1-(3 R, 4 R)-3-(5-Chloro-2-(1-methyl-1 H -pyrazol-4-yl)amino-7 H -pyrrolo2,3- dpyrimidin-4-yloxy)methyl-4-methoxypyrrolidin-1-ylprop-2-en-1-one (PF-06459988), a potent, WT sparing, irreversible inhibitor of T790M-containing EGFR mutants. J. Med. Chem., 2016, 59(5), 2005-2024. doi: 10.1021/acs.jmedchem.5b01633 PMID: 26756222
  102. Planken, S.; Behenna, D.C.; Nair, S.K.; Johnson, T.O.; Nagata, A.; Almaden, C.; Bailey, S.; Ballard, T.E.; Bernier, L.; Cheng, H.; Cho-Schultz, S.; Dalvie, D.; Deal, J.G.; Dinh, D.M.; Edwards, M.P.; Ferre, R.A.; Gajiwala, K.S.; Hemkens, M.; Kania, R.S.; Kath, J.C.; Matthews, J.; Murray, B.W.; Niessen, S.; Orr, S.T.M.; Pairish, M.; Sach, N.W.; Shen, H.; Shi, M.; Solowiej, J.; Tran, K.; Tseng, E.; Vicini, P.; Wang, Y.; Weinrich, S.L.; Zhou, R.; Zientek, M.; Liu, L.; Luo, Y.; Xin, S.; Zhang, C.; Lafontaine, J. Discovery of N -((3 R, 4 R)-4-Fluoro-1-(6-((3-methoxy-1-methyl-1 H -pyrazol-4-yl)amino)-9-methyl-9 H -purin-2-yl)pyrrolidine-3-yl)acrylamide (PF-06747775) through structure-based drug design: A high affinity irreversible inhibitor targeting oncogenic EGFR mutants with selectivity over wild-type EGFR. J. Med. Chem., 2017, 60(7), 3002-3019. doi: 10.1021/acs.jmedchem.6b01894 PMID: 28287730
  103. Lategahn, J.; Keul, M.; Klövekorn, P.; Tumbrink, H.L.; Niggenaber, J.; Müller, M.P.; Hodson, L.; Flaßhoff, M.; Hardick, J.; Grabe, T.; Engel, J.; Schultz-Fademrecht, C.; Baumann, M.; Ketzer, J.; Mühlenberg, T.; Hiller, W.; Günther, G.; Unger, A.; Müller, H.; Heimsoeth, A.; Golz, C.; Blank-Landeshammer, B.; Kollipara, L.; Zahedi, R.P.; Strohmann, C.; Hengstler, J.G.; van Otterlo, W.A.L.; Bauer, S.; Rauh, D. Inhibition of osimertinib-resistant epidermal growth factor receptor EGFR-T790M/C797S. Chem. Sci. (Camb.), 2019, 10(46), 10789-10801. doi: 10.1039/C9SC03445E PMID: 31857889
  104. Xia, Z.; Huang, R.; Zhou, X.; Chai, Y.; Chen, H.; Ma, L.; Yu, Q.; Li, Y.; Li, W.; He, Y. The synthesis and bioactivity of pyrrolo2,3-dpyrimidine derivatives as tyrosine kinase inhibitors for NSCLC cells with EGFR mutations. Eur. J. Med. Chem., 2021, 224, 113711. doi: 10.1016/j.ejmech.2021.113711 PMID: 34315040
  105. Kurup, S.; McAllister, B.; Liskova, P.; Mistry, T.; Fanizza, A.; Stanford, D.; Slawska, J.; Keller, U.; Hoellein, A. Design, synthesis and biological activity of N4 -phenylsubstituted-7 H -pyrrolo2,3- dpyrimidin-4-amines as dual inhibitors of aurora kinase A and epidermal growth factor receptor kinase. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 74-84. doi: 10.1080/14756366.2017.1376666 PMID: 29115879
  106. Gangjee, A.; Yang, J.; Ihnat, M.A.; Kamat, S. Antiangiogenic and antitumor agents. Bioorg. Med. Chem., 2003, 11(23), 5155-5170. doi: 10.1016/j.bmc.2003.08.034 PMID: 14604679
  107. Gangjee, A.; Zhao, Y.; Raghavan, S.; Ihnat, M.A.; Disch, B.C. Design, synthesis and evaluation of 2-amino-4-m-bromoanilino-6-arylmethyl-7H-pyrrolo2,3-dpyrimidines as tyrosine kinase inhibitors and antiangiogenic agents1. Bioorg. Med. Chem., 2010, 18(14), 5261-5273. doi: 10.1016/j.bmc.2010.05.049 PMID: 20558072
  108. Gangjee, A.; Namjoshi, O.A.; Ihnat, M.A.; Buchanan, A. The contribution of a 2-amino group on receptor tyrosine kinase inhibition and antiangiogenic activity in 4-anilinosubstituted pyrrolo2,3-dpyrimidines. Bioorg. Med. Chem. Lett., 2010, 20(10), 3177-3181. doi: 10.1016/j.bmcl.2010.03.064 PMID: 20403693
  109. Gangjee, A.; Namjoshi, O.A.; Yu, J.; Ihnat, M.A.; Thorpe, J.E.; Warnke, L.A. Design, synthesis and biological evaluation of substituted pyrrolo2,3-dpyrimidines as multiple receptor tyrosine kinase inhibitors and antiangiogenic agents. Bioorg. Med. Chem., 2008, 16(10), 5514-5528. doi: 10.1016/j.bmc.2008.04.019 PMID: 18467105
  110. Gangjee, A.; Namjoshi, O.A.; Yu, J.; Ihnat, M.A.; Thorpe, J.E.; Bailey-Downs, L.C. N2-Trimethylacetyl substituted and unsubstituted-N4-phenylsubstituted-6-(2-pyridin-2-ylethyl)-7H-pyrrolo2,3-dpyrimidine-2,4-diamines: Design, cellular receptor tyrosine kinase inhibitory activities and in vivo evaluation as antiangiogenic, antimetastatic and antitumor agents. Bioorg. Med. Chem., 2013, 21(5), 1312-1323. doi: 10.1016/j.bmc.2012.12.045 PMID: 23375090
  111. Beckers, T.; Sellmer, A.; Eichhorn, E.; Pongratz, H.; Schächtele, C.; Totzke, F.; Kelter, G.; Krumbach, R.; Fiebig, H.H.; Böhmer, F.D.; Mahboobi, S. Novel inhibitors of epidermal growth factor receptor: (4-(Arylamino)-7H-pyrrolo2,3-dpyrimidin-6-yl)(1H-indol-2-yl)methanones and (1H-indol-2-yl)(4-(phenylamino)thieno2,3-dpyrimidin-6-yl)methanones. Bioorg. Med. Chem., 2012, 20(1), 125-136. doi: 10.1016/j.bmc.2011.11.023 PMID: 22169601
  112. Reiersølmoen, A.C.; Aarhus, T.I.; Eckelt, S.; Nørsett, K.G.; Sundby, E.; Hoff, B.H. Potent and selective EGFR inhibitors based on 5-aryl-7H-pyrrolopyrimidin-4-amines. Bioorg. Chem., 2019, 88, 102918. doi: 10.1016/j.bioorg.2019.102918 PMID: 30999245
  113. Kaspersen, S.J.; Han, J.; Nørsett, K.G.; Rydså, L.; Kjøbli, E.; Bugge, S.; Bjørkøy, G.; Sundby, E.; Hoff, B.H. Identification of new 4-N-substituted 6-aryl-7H-pyrrolo2,3-dpyrimidine-4-amines as highly potent EGFR-TK inhibitors with Src-family activity. Eur. J. Pharm. Sci., 2014, 59, 69-82. doi: 10.1016/j.ejps.2014.04.011 PMID: 24769040
  114. Fischer, T.; Krüger, T.; Najjar, A.; Totzke, F.; Schächtele, C.; Sippl, W.; Ritter, C.; Hilgeroth, A. Discovery of novel substituted benzo-anellated 4-benzylamino pyrrolopyrimidines as dual EGFR and VEGFR2 inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(12), 2708-2712. doi: 10.1016/j.bmcl.2017.04.053 PMID: 28478927

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers