CHARACTERISTICS OF OSTEOCYTE CELL LINES FROM BONES FORMED AS A RESULT OF MEMBRANOUS (SKULL BONES) AND CHONDRAL (LONG BONES) OSSIFICATION



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The aim of this work was to analyze the literature data and the results of authors’ own research, to answer the question - if the osteocytes of bone tissues resulting from membranous and chondral ossification, belong to one or to different cell lines. The differences between the cells of osteocyte lines derived from bones resulting from membranous and chondral ossification were established in: 1) the magnitude of the mechanical signal, initiating the development of the process of mechanotransduction; 2) the nature of the relationship between the magnitude of the mechanical signal that initiates the reorganization of the architecture of bone structures and the resource of their strength; in membranous bones significantly lower mechanical signal caused a substantially greater increment of bone strength resource; 3) the biological activity of bone structures, bone fragments formed from membranous tissue were more optimal for transplantation; 4) the characteristics of expression of functional markers of bone cells at different stages of their differentiation; 5) the nature of the reaction of bone cells to mechanical stress; 6) the sensitivity of bone cells to one of the factors controlling the process of mechanotransduction (PGI2); 7) the functioning of osteocytes during lactation. These differences reflect the functional requirements to the bones of the skeleton - the supporting function in the bones of the limbs and the shaping and protection in the bones of the cranial vault. These data suggest that the results of research conducted on the bones of the skull, should not be transferred to the entire skeleton as a whole.

Full Text

Restricted Access

About the authors

A. S. Avrunin

Russian R. R. Vreden Scientific Research Institute of Traumatology and Orthopedics

Email: info@rniito.org

A. A. Doktorov

All-Russian Institute of Medicinal and Aromatic Plants

Email: doctorovaa@mail.ru
Department of Biomedical Technologies

References

  1. Аврунин А. С., Паршин Л. К., Мельников Б. Е. Критический анализ теории механостата. Ч. II. Стабильность механометаболической среды скелета и гомеостатических параметров кальция организма // Травматол. и ортопед. России. 2013. № 1. С. 127-137.
  2. Аврунин А. С., Паршин Л. К., Мельников Б. Е. Критический анализ теории механостата. Клинико-патогенетические аспекты реорганизации архитектуры скелета на разных этапах его развития // Гений ортопедии. 2013. № 4. С. 96-102.
  3. Аврунин А. С., Тихилов Р. М., Шубняков И. И. и др. Критический анализ теории механостата. Ч. I. Механизмы реорганизации архитектуры скелета // Травматол. и ортопед. России. 2012. № 2. С. 105-115.
  4. Хэм А., Кормак Д. Костная ткань // Гистология. Т. 3. М.: Мир, 1983. С. 19-131.
  5. Ajubi N. E., Klein-Nulend J., Nijweide P. J. et al. Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes-A cytoskeleton-dependent process // Biochem. Biophys. Res. Comun. 1996. Vol. 225, № 1. P. 62-68.
  6. Bershadsky A. D., Balaban N. Q., Geiger B. Adhesion-dependent cell mechanosensitivity // Annu. Rev. Cell Dev. Biol. 2003. Vol. 19. P. 677-995.
  7. Bischoff D. S., Sakamoto T., Ishida K. et al. CXC receptor knockout mice: Characterization of skeletal features and membranous bone healing in the adult mouse // Bone. 2011. Vol. 48, № 2. P. 267-274.
  8. Bonewald L. F. Generation and function of osteocyte dendritic processes // J. Musculoskelet. Neuron. Interact. 2005. Vol. 5, № 4. P. 321-324.
  9. Boyde A., Hendel P., Hendel R. et al. Human cranial bone structure and the healing of cranial bone grafts: a study using backscattered electron imaging and confocal microscopy // Anat. Embryol. 1990. Vol. 181, № 3. P. 235-251.
  10. Boyde A., Hobdell M. H. Scanning electron microscopy of lamellar bone // Z. Zellforsch. 1969. Bd. 93, № 2. S. 213-231.
  11. Brighton C. T., Fisher J. R. S., Levine S. E. et al. The biochemical pathway mediating the proliferative response of bone cells to a mechanical stimulus // J. Bone Joint Surg. 1996. Vol. 78-A, № 9. P. 1337-1347.
  12. Buckwalter J. A., Glimcher M. J., Cooper R. R., Recker R. Bone biology. Part II: formation, form, modeling, remodeling, and regulation of cell function // Instr. Course Lect. 1996. Vol. 45. P. 387-399.
  13. Burr D. B., Martin R. B. Errors in bone remodeling: toward a unified theory of metabolic bone disease // Am. J. Anat. 1989. Vol. 186, № 2. P. 186-216.
  14. Cadena E. A., Schweitzer M. H. Variation in osteocytes morphology vs bone type in turtle shell and their exceptional preservation from the Jurassic to the present // Bone. 2012. Vol. 51, № 3. P. 614-620.
  15. Colopy S. A., Benz-Dean J., Barrett J. G. et al. Response of the osteocyte syncytium adjacent to and distant from linear micro-cracks during adaptation to cyclic fatigue loading // Bone. 2004. Vol. 35, № 3. P. 881-891.
  16. Cowin S. C. The significance of bone microstructure in mechanotransduction // J. Biomechanics. 2007. Vol. 40. Suppl. 1. P. S105-S109.
  17. Cowin S. C., Weinbaum S. Strain amplification in the bone mechanosensory system // Am. J. Med. Sci. 1998. Vol. 316, № 3. P. 184-188.
  18. Currey J. Цит. по S. C. F. Rawlinson et al., 1995.
  19. Ding М. Age variations in the properties of human tibial trabecular bone and cartilage // Acta Orthop. Scand. 2000. Vol. 292, Suppl. P. 1-45.
  20. Duren D. L., Blangero J., Sherwood R. J. et al. Cortical bone health shows significant linkage to chromosomes 2p, 3p, and 17q in 10-year-old children // Bone. 2011. Vol. 49, № 6. P. 1213- 1218.
  21. Franz-Odendaal T.A., Hall B. K., Witten P.E. Buried alive: how osteoblasts become osteocytes // Dev. Dyn. 2006. Vol. 235, № 1. P. 176-190.
  22. Frost H. M. Defining osteopenias and osteoporoses: another view (with insights a new paradigm) // Bone. 1997. Vol. 20, № 5. P. 385-391.
  23. Frost H. M. Muscle, bone, and the Utah paradigm: a 1999 overview // Med. Sci. Sports Exerc. 2000. Vol. 32, № 5. P. 911-917.
  24. Frost H. M. New targets for the studies of biomechanical, endocrinologic, genetic and pharmaceutical effects on bones: bone’s «nephron equivalents», muscle, neuromuscular physiology // J. Musculoskelet. Res. 2000. Vol. 4, № 2. P. 67-84.
  25. Frost H. M. Why the ISMNI and the Utah paradigm? Their role in skeletal and extraskeletal disorders // J. Musculoskelet. Neur. Int. 2000. Vol. 1, № 1. P. 5-9.
  26. Frost H. M. Seeking genetic causes of «osteoporosis»: insights of the Utah paradigm of skeletal physiology // Bone. 2001. Vol. 29, № 5. P. 407-412.
  27. Frost H. M. From Wolff’s law to the Utah paradigm: insights about bone physiology and its clinical applications // Anat. Rec. 2001. Vol. 262, № 4. P. 398-419.
  28. Frost H. M. Why should many skeletal scientists and clinicians learn the Utah paradigm of skeletal physiology? //J. Musculoskelet. Neur. Int. 2001. Vol. 2, № 2. P. 121-130.
  29. Fukumoto S., Yamashita T. FGF23 is a hormone-regulating phosphate metabolism - Unique biological characteristics of FGF23 // Bone. 2007. Vol. 40, № 5. P. 1190-1195.
  30. Heancy R. P., Matkovic V. Неадекватное значение пиковой костной массы // Остеопороз. Этиология, диагностика лечение. СПб., 2000. С. 135-152.
  31. Henderson J. H., Carter D. R. Mechanical induction in limb morphogenesis: the role of growth-generated strains and pressures // Bone. 2002. Vol. 31, № 6. P. 645-653.
  32. Hernandez C. J., Majeska R. J., Schaffler M. B. Osteocyte density in woven bone // Bone. 2004. Vol. 35, № 5. P. 1095-1099.
  33. Khosla S., Westendorf J. J., Oursler M. J. Building bone to reverse osteoporosis and repair fractures // J. Clin. Invest. 2008. Vol. 118, № 2. P. 421-428.
  34. Kornak U., Mundlos S. Genetic disorders of the skeleton: a developmental approach // Am. J. Hum. Genet. 2003. Vol. 73, № 3. P. 447-474.
  35. Lovejoy C. O., McCollum M. A., Reno P.L., Rosenman B. A. De ve lopmental biology and human evolution // Annu. Rev. Anthro pol. 2003. Vol. 32. P. 85-109.
  36. Martin R. B. Toward a unifying theory of bone remodeling // Bone. 2000. Vol. 26, № 1. P. 1-6.
  37. Mullender M., EI Haj A. J., Yang Y. et al. Mechanotransduction of bone cells in vitro: mechanobiology of bone tissue // Med. Biol. Eng. Comp. 2004. Vol. 42, № 1. P. 14-21.
  38. Nicolella D. P., Bonewald L. F., Moravits D. E., Lankford J. Measurement of microstructural strain in cortical bone // Eur. J. Morphol. 2005. Vol. 42, № 1-2. P. 23-29.
  39. Nowlan N., Murphy P., Prendergast P. J. Mechanobiology of embryonic limb development // Ann. N. Y. Acad. Sci. 2007. Vol. 1101. P. 389-411.
  40. Nowlan N. C., Prendergast P. J. Evolution of mechanoregulation of bone growth will lead to non-optimal bone phenotypes // J. Theor. Biol. 2005. Vol. 235, № 3. P. 408-418.
  41. Page-McCaw A., Ewald A. J., Werb Z. Matrix metalloproteinases and the regulation of tissue remodeling // Mol. Cell Biol. 2007. Vol. 8, № 3. P. 221-233.
  42. Preuschoft H. Mechanisms for the acquisition of habitual bipedality: are there biomechanical reasons for the acquisition of upright bipedal posture? // J. Anat. 2004. Vol. 204, № 5. P. 363-384.
  43. Rawlinson S. C. F., Mosley J. R., Suswillo R. F. L. et al. Calvarial and limb bone cells in organ and monolayer culture do not show the same early responses to dynamic mechanical strain // J. Bone Miner. Res. 1995. Vol. 10, № 8. P. 1225-1232.
  44. Skerry T. M. The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis // Arch. Biochem. Biophys. 2008. Vol. 473, № 2. P. 117-123.
  45. Skerry T. M., Lanyon L. E. Systemic and contralateral responses to loading of bones // J. Bone Miner. Res. 2009. Vol. 24, № 4. P. 753.
  46. Skerry T. M., Suva L. J. Investigation of the regulation of bone mass by mechanical loading: from quantitative cytochemistry to gene array // Cell Biochem. Funct. 2003. Vol. 21, № 3. P. 223-229.
  47. Smith E. L., Clark W. D. Cellular control of bone response to physical activity // Top. Geriatr. Rehabil. 2005. Vol. 21, № 1. P. 77-87.
  48. Tessier P. Цит. по A. Boyde et al., 1990.
  49. Turner C. H. Homeostatic control of bone structure: an application feedback theory // Bone. 1991. Vol. 12, № 3. P. 203-217.
  50. Turner C. H., Robling A. G. Exercise as an anabolic stimulus for bone // Curr. Pharmaceut. Design. 2004. Vol. 10, № 21. P. 2629-2641.
  51. Wergedal J. E., Sheng M.H-C., Ackert-Bicknell C. L. et al. Mouse genetic model for bone strength and size phenotypes: NZB/B1NJ and RF/J inbred strains // Bone. 2002. Vol. 31, № 6. P. 670-674.
  52. Whitcome K. K., Shapiro L. J., Lieberman D. E. Fetal load and the evolution of lumbar lordosis in bipedal hominids // Nature. 2007. Vol. 450, № 7172. P. 1075-1080.
  53. Wysolmerski J. J. Osteocytes remove and replace perilacunar mineral during reproductive cycles // Bone. 2013. Vol. 54, № 2. P. 230-236.
  54. Yoshikawa T., Peel S. A. F., Gladstone J. R., Davies J. E. Biochemical analysis of the response in rat bone marrow cell cultures to mechanical stimulation // Biomed. Mater. Eng. 1997. Vol. 7, № 6. P. 369-377.
  55. Zins J. E., Whitaker L. A. Цит. по A. Boyde et al., 1990.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies