SOME REACTIONS OF THE REGIONAL LYMPH NODES OF RATS AFTER IMPLANTATION OF MULTIPOTENT STROMAL CELLS ADSORBED ON POLYHYDROXYALKANOATE INTO A BONE TISSUE DEFECT



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The reactions of the regional lymph nodes, caused by implantation of the autologous multipotent stromal cells of bone marrow origin (AMSCBMO) to accelerate the healing of mandibular bone defect were studied by fluorescent microscopy in inbred male Wag rats aged 6 months (n=62). After the introduction of polyhydroxyalkanoate transplant containing adsorbed AMSCBMO with a transfected Green Fluorescent Protein (GFP) gene into a damaged bone area, the lymphoid nodules in submandibular lymph nodes demonstrated the appearance of numerous large macrophages containing multiple oval fluorescent inclusions in the cytoplasm. The number of these macrophages increased within 2 weeks after surgery and then began to decline. Apparently, AMSCBMO introduced in this way, were partially absorbed by macrophages. After destruction of the structures formed from AMSCBMO, the debris was also phagocytized by macrophages. In either case, these macrophages appeared in the germinal centers of lymphoid nodules in lymph nodes, where the induction of immune responses against DNA and GFP protein was probable.

Full Text

Restricted Access

About the authors

I. V. Maiborodin

Institute of Chemical Biology and Fundamental Medicine

Email: imai@mail.ru
The Center of New Medical Technologies

V. A Matveyeva

Institute of Chemical Biology and Fundamental Medicine

The Center of New Medical Technologies

R. V. Maslov

A. I. Yevdokimov Moscow State Medico-Stomatologic University

Department of Periodontology, Stomatologic Faculty

N. V. Onopriyenko

Novosibirsk State Medical University

Department of Obstetrics and Gynecology

I. V. Kuznetsova

Institute of Chemical Biology and Fundamental Medicine

The Center of New Medical Technologies

G. A. Chastikin

Institute of Chemical Biology and Fundamental Medicine

The Center of New Medical Technologies

A. A Anikeyev

Institute of Chemical Biology and Fundamental Medicine

The Center of New Medical Technologies

References

  1. Воложин А. И., Васильев А. Ю., Мальгинов Н. Н. и др. Использование мезенхимальных стволовых клеток для активизации репаративных процессов костной ткани челюсти в эксперименте // Стоматология. 2010. Т. 89, № 1. С. 10-14.
  2. Майбородин И. В., Матвеева В. А., Колесников И. С. и др. Регенерация поврежденной кости нижней челюсти крыс после использования аутологичных стромальных стволовых клеток костномозгового происхождения, адсорбированных на фибриновом сгустке // Морфология. 2011. Т. 140, вып. 6. С. 79-85.
  3. Майбородин И. В., Шевела А. И., Шеплев Б. В. и др. Применение биодеградируемых полигидроксиалканоатов после повреждения кости нижней челюсти в эксперименте // Клин. стоматол. 2010. № 4. С. 54-57.
  4. Campo J. J., Aponte J. J., Nhabomba A. J. et al. Feasibility of flow cytometry for measurements of Plasmodium falciparum parasite burden in studies in areas of malaria endemicity by use of bidimensional assessment of YOYO-1 and autofluorescence // J. Clin. Microbiol. 2011. Vol. 49, № 3. P. 968-974.
  5. Chanda D., Kumar S., Ponnazhagan S. Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in diseases of the skeleton // J. Cell Biochem. 2010. Vol. 111, № 2. P. 249-257.
  6. Clines G. A. Prospects for osteoprogenitor stem cells in fracture repair and osteoporosis // Curr. Opin. Organ. Transplant. 2010. Vol. 15, № 1. P. 73-78.
  7. Duan M., Li W. C., Vlahos R. et al. Distinct macrophage subpopulations characterize acute infection and chronic inflammatory lung disease // J. Immunol. 2012. Vol. 189, № 2. P. 946-955.
  8. Galle J., Bader A., Hepp P. et al. Mesenchymal stem cells in cartilage repair: state of the art and methods to monitor cell growth, differentiation and cartilage regeneration // Curr. Med. Chem. 2010. Vol. 17, № 21. P. 2274-2291.
  9. Iida T. Pathophysiology of macular diseases - morphology and function // Nihon Ganka Gakkai Zasshi. 2011. Vol. 115, № 3. P. 238-275.
  10. Kallai I., Lenthe van G. H., Ruffoni D. et al. Quantitative, structural, and image-based mechanical analysis of nonunion fracture repaired by genetically engineered mesenchymal stem cells // J. Biomech. 2010. Vol. 43, № 12. P. 2315-2320.
  11. Lei L., Tzekov R., Tang S., Kaushal S. Accumulation and autofluorescence of phagocytized rod outer segment material in macrophages and microglial cells // Mol. Vis. 2012. Vol. 18. P. 103-113.
  12. Luhmann U. F., Robbie S., Munro P. M. et al. The drusenlike phe no type in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages // Invest. Ophthalmol. Vis. Sci. 2009. Vol. 50, № 12. P. 5934-5943.
  13. Mitchell A. J., Pradel L. C., Chasson L. et al. Technical advance: autofluorescence as a tool for myeloid cell analysis // J. Leukoc. Biol. 2010. Vol. 88, № 3. P. 597-603.
  14. Potter K. A., Simon J. S., Velagapudi B., Capadona J. R. Reduction of autofluorescence at the microelectrode-cortical tissue interface improves antibody detection // J. Neurosci. Methods. 2012. Vol. 203, № 1. P. 96-105.
  15. Watson J. Suppressing autofluorescence of erythrocytes // Biotech. Histochem. 2011. Vol. 86, № 3. P. 207.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies