EFFECT OF HENE LASER ON SKELETAL MUSCLE STRUCTURE AND FUNCTION AFTER NERVE INJURY OF VARIOUS DEGREES OF SEVERITY



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective - to investigate the effect of low-intensity laser radiation on the mass, structure and function of gastrocnemius muscles in rats after varying degrees of destruction of the tibial nerve. Materials and methods. The work was carried out on laboratory outbred adult male rats (n=20). The tibial nerve was damaged at a distance ≈1 cm from the site of its the entry of into the gastrocnemius muscle by cutting or fragment removal. Laser irradiation of the area of nerve injury and the whole gastrocnemius muscle was performed for a month (10 sessions) with a HeNe laser (at a wavelength of 632.8 nm). On the 30th day after the operation, the mass and contractile function of the muscles were determined. Histological analysis of the regenerates was perormed in 32 sections at deifferent levels of the gastrocnemius muscles. Results. After nerve cutting, the mass of regenerates and the structure were preserved to a significant extent. All the regenerates preserved their contractile function during nerve stimulation. After the loss of a nerve fragment, a degeneration of muscle tissue and proliferation of connective tissue were markedly increased, and regenerates responded by contraction only to direct stimulation. Laser therapy contributed to a greater preservation of the mass and structure of gastrocnemius muscles, and after both types of nerve injury to approximately the same extent. Contraction of regenerates during stimulation of the nerve was noted not only after its cutting, but also after the loss of the fragment. Conclusions. In both types of trauma of the tibial nerve, laser therapy of denervated gastrocnemius muscles had a positive effect on their mass, structure and function. Moreover, restoration of the nerve function after the loss of its fragment was observed without the implantation of the biological scaffold in the area of injury.

Full Text

Restricted Access

About the authors

N. V. Bulyakova

RAS A. N. Severtsov Institute of Ecology and Evolution

Email: bulyakova38@mail.ru
Laboratory of Morphological Adaptations of Vertebrates 33 Leninskiy Prospekt, Moscow 119071

V. S. Azarova

RAS A. N. Severtsov Institute of Ecology and Evolution

Email: vazarova@mail.ru
Laboratory of Morphological Adaptations of Vertebrates 33 Leninskiy Prospekt, Moscow 119071

References

  1. Женевская Р. П. Нервно-трофическая регуляция пластической активности мышечной ткани. М.: Наука, 1974.
  2. Живолупов С. А., Гневышев Е. Н., Рашидов Н. А., Самарцев И. Н. Нейропластические закономерности восстановления функций при травматических невропатиях и плексопатиях // Вестник Российской военно-медицинской академии. 2015. Т. 1, № 49. С. 81-90.
  3. Мак-Комас А. Дж. Скелетные мышцы. Киев: Олимпийская литература, 2001. 406 с.
  4. Масгутов Р. Ф., Ризванов А. А., Богов А. А. (мл), Галлямов А. Р., Киясов А. П., Богов А. А. Современные тенденции лечения повреждений периферических нервов // Практическая медицина. 2013. Т. 2, № 1-2 (69). С. 99-103.
  5. Павлов С. Е., Разумов А. Н., Павлов А. С. Лазерная стимуляция в медико-биологическом обеспечении подготовки квалифицированных спортсменов. М.: Спорт, 2017. 216 с.
  6. Сайткулов К. И., Челышев Ю. А. Реакции нервной ткани на действие низкоинтенсивного лазерного излучения // Казанский мед. журн. 1998. № 3. C. 203-209.
  7. Улащик В. С., Морозова И. Л., Нежута А. Ю. Изменения афферентной импульсации периферического нерва под влиянием поляризованного света различной длины волны // Вопросы курортологии, физиотерапии и лечебной физической культуры. 2007. № 6. C. 3-6.
  8. Chen Y.-Sh., Hsu Sh.-F., Chiu C.-W., Lin J. G., Chen C. T., Yao C. H. Effect of low-power pulsed laser on peripheral nerve regeneration in rats // Microsurgery. 2005. Vol. 25. P. 83-89. doi: 10.1002/micr.20079.
  9. Luo L., Sun Z., Zhang L., Li X., Dong Y., Liu T. C. Effects of low-level laser therapy on ROS homeostasis and expression of IGF-1 and TGF-β1 in skeletal muscle during the repair process // Lasers Med. Sci. 2013. Vol. 28, № 3. P. 725-734. doi: 10.1007/s10103-012-1133-0.
  10. Mandelbaum-Livnat M. M., Almog M., Nissan M., Loeb E., Shapira Y., Rochkind Sh. Photobiomodulation triple treatment in peripheral nerve injury: Nerve and muscle response // Photomed Laser Surgery. 2016. Vol. 34, № 12. P. 638-645. doi: 10.1089/pho.2016.4095.
  11. Nakano J., Kataoka H., Sakamoto J., Origuchi T., Okita M., Yoshimura T. Low-level laser irradiation promotes the recovery of atrophied gastrocnemius skeletal muscle in rats // Exp. Physiol. 2009. Vol. 94, № 9. P. 1005-1015. Doi: 10.1113/ expphysiol.2009.047738.
  12. Ribeiro B. G., Alves A. N., Santos L. D., Fernandes K. P., Cantero T. M., Gomes M. T., França C. M., Silva D. F., Bussadori S. K., Mesquita-Ferrari R. A. The effect of low-level laser therapy (LLLT) applied prior to muscle injury// Lasers Surg. Med. 2015. Vol. 47. P. 571-578. doi: 10.1002/lsm.22381.
  13. Rochkind S., Shainberg A. Protective effect of laser phototherapy on acetylcholine receptors and creatine kinase activity in denervated muscle // Photomed Laser Surg. 2013. Vol. 31, № 10. P. 499-504.
  14. Shen C. C., Yang Y. C., Liu B. S. Large-area irradiated low-level laser effect in a biodegradable nerve guide conduit on neural regeneration of peripheral nerve injury in rats // Injury. 2011. Vol. 42, № 8. P. 803-813.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies