HISTOPHYSIOLOGY OF THE EPIDERMIS

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This literature review summarizes the data on the general principles of the structure and functions of keratinocytes, melanocytes, dendritic cells (DC) and tactile epithelial cells. Special attention is paid to the process of keratinization , the formation of lipid barrier of the stratum corneum. The problem of the stem and transitional cell surface markers is discussed. Detailed current data are presented on the structure and functions of keratinosomes, their participation in the process of desquamation and the formation of intercellular cement, forming the basis of polar lipids. It is shown that lipid profile of the intercellular space of the stratum corneum is changing in the direction of the surface of the epidermis. Considerable part of the review is devoted to the data demonstrating the functions of keratinocytes: synthesis of mitogens, chemokines that attract DC and T-lymphocytes to the epidermis; production of antimicrobial peptides. In this report, the questions are discussed of the existence of two types of tactile epitheliocytes, of the participation of DC in the process of keratinization, on the transfer of information on an antigen to T-lymphocytes. The data are presented on the participation of melanocytes in the protective function of the epidermis.

References

  1. Алексеев А. Г., Банин В. В. и Ноздрин В. И. Меланоциты кожи. Морфология, 2009, т. 136, вып. 5, с. 81-89.
  2. Белова О. В., Арион В. Я. и Сергиенко В. И. Роль цитокинов в иммунологической функции кожи. Иммунология, аллергология, 2008, № 1, с. 41-53.
  3. Боровик Т. Э., Макарова С. Г., Дарчия С. М. и др. Кожа как иммунный орган. Педиатрия, 2010, № 80, № 2, с. 132-136.
  4. Зимина И. В. и Лопухин Ю. М. Кожа как иммунный орган: клеточные элементы и цитокины. Иммунология, 1994, № 1, с. 8-13.
  5. Караулов А. В., Быков С. А. и Быков А. С. Иммунология, микробиология и иммунопатология кожи. М., Бином, 2011.
  6. Мяделец О. Д. и Адаскевич В. П. Морфофункциональная дерматология. М., Мед. лит-ра, 2006.
  7. Попович А. М. Иммунотерапия при ВИЧ-инфекции рекомбинантными интерлейкинами-2. СПб., Знаменитые универсанты, 2004.
  8. Скрипкин Ю. К. и Лезвинская Е. М. Кожа - орган иммунной системы. Вестн. дерматол., 1989, № 10, с. 14-18.
  9. Соколов В. Е. и Степанова Л. В. Внеклеточный компартмент эпидермиса млекопитающих. Изв. АН СССР, серия биол., 1990, № 4, с. 542-555.
  10. Степанова Л. В. Новое в исследовании кожи млекопитающих (кератин, водный барьер, десквамация). В кн.: Актуальные проблемы морфологии и экологии высших позвоночных. М., изд. Ин-та эволюционной морфологии и экологии животных им. А. Н. Северцева АН СССР, 1988, ч. 1, с. 5-74.
  11. Суханов А. Ф. и Мяделец О. Д. Роль внутриэпидермальных макрофагов (клеток Лангерганса) в структурнофункциональной организации эпидермиса. Арх. анат.,1988, т. 94, вып. 4, с. 81-86.
  12. Цветкова Г. М., Мордовцева В. В., Вавилов А. М. и др. Патоморфология болезней кожи: Руководство для врачей. М., Медицина, 2003.
  13. Эрнандес Е. И., Марголина А. А. и Петрухина А. О. Липидный барьер кожи и косметические средства. Косметика и медицина, 2003.
  14. Ярилин А. А. Изменение иммунной системы при старении. Эстетическая медицина, 2003, № 2(3), с. 202-213.
  15. Akiyama M., Sugiyama-Nakagiri Y., Sakai K. et al. Mutation in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J. Clin. Invest., 2005, v. 115, p. 1777-1784.
  16. Amaga I. M. Desmoglein as a target in autoimmunity and infection. J. Amer. Acad. Dermatol., 2003, v. 48, № 2, p. 244-252.
  17. Aung G., Niyonsaba F., Ushio H. et al. A neuroendocrine antimicrobial peptide, catestatin, stimulates interleukin-8 production from human keratinocytes via activation of mitogenactivated protein kinases. J. Dermatol. Sci., 2011, v. 61, № 2, p. 142-144.
  18. Ballaum C., Weninger W., Uthman A. et al. Human keratinocytes express the three major forms of vascular endothelial growth factor. J. Invest. Dermatol., 1995, № 1, p. 7-10.
  19. Bauer J., Bahmer F. A., Worl J. et al. A strikingly constant ratio exists between Langerhans cells and other epidermal cells in human skin. J. Invest. Dermatol., 2001, v. 116, p. 313-318.
  20. Bhora F. Y., Dudkin, B. J., Batzri S. Aly et al. Effect of growth factors on cell proliferation and epitheliasation in human skin. J. Surg. Res., 1995, v. 59, № 2, p. 236-244.
  21. Bikkle D. D. Vitamin D metabolism and function in the skin. Biol. Chem., 2011, v. 392, № 7, p. 643-651.
  22. Black A. P.B., Ardern-Jones M. R., Kasprowicz V. et al. Human keratinocytes induction of rapid effector function in antigenspecific memory CD4+ T-cells. Eur. J. Immunol. 2008, v. 37, № 6, p. 1485-1493.
  23. Bosset F., Soler P. and Hance A. J. The Langerhans cells in human pathology. Ann. N. Y. Acad. Sci., 1986, v. 465, p. 324-339.
  24. Bowen A. R., Hanks A. N., Allen S. M. et al. Apoptosis regulators and responses in human melanocytic cells. J. Invest Dermatol., 2003, v. 120, № 1, p. 48-55.
  25. Braff M. H., Zaiou M., Fierer J. et al. Keratinocyte production of cathelicidin provides direct activity against bacterial skin pathogens. Infec. Immun., 2005, v. 73, № 10, p. 6771-6781.
  26. Brener M. and Hearing V. J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol., 2008, v. 84, № 3, p. 539-549.
  27. Burge S. Cohesion of the epidermis. Br. J. Dermatol., 1994, v. 131, p. 153-159.
  28. Büchan A. S., Shauber J., Hultsch T. et al. Pimerolimus enhance TLR2/6- induced expression of antimicrobial peptides in keratinocytes. J. Invest. Dermatol., 2008, v. 128, № 11, p. 264-265.
  29. Candy E. The cornified envelope: a model of cell death in the skin. Nat. Rev. Mol. Cell Biol., 2005, v. 6, № 4, p. 328-340.
  30. Chen J. D., Lapiere J. C., Sander D. N. et al. Interleukin-1 alpha stimulates keratinocytes migration through an epidermal growth factor transformations growth factor-alpha-independent pathway. J. Invest. Dermatol., 1995, v. 104, № 5, p. 729-733.
  31. Chen N., Hu Y., Zi W. H. et al. The role of keratinocyte growth factor in melanogenesis: a possible mechanism for the initiation of solar lentigines. Experm. Dermatol., 2010, v. 19, № 10, p. 865-872.
  32. Cianferotti L., Cox M., Skorija K. and Demay M. B. Vitamin D receptors is essential for normal Keratinocytes stem cell function. Proc. Natl. Acad. USA., 2007, v. 104, № 22, p. 9428-9433.
  33. Czernilewski J. M., Masouye J., Pisani A. et al. Effect of chronic sun exposure on human Langerhans cell densities. Photodermatology, 1988, № 5, p. 116-120.
  34. De Witte L., Nabatov A., Poin M. et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat. Med., 2007, v. 13, № 3, p. 367-371.
  35. Dombrovsky J., Peric M., Kolgin S. et al. Control of cutaneous antimicrobial peptides by vitamin D3. Arch. Dermatol. Res., 2010, v. 302, № 6, p. 401-408.
  36. Eckert R. L., Crish J. G. and Robinson N. A. The epidermal keratinocytes as a model for the study of gene regulation and differentiation. Physiol. Rev., 1997, v. 77, p. 3978-4244.
  37. Egelrud T. Desquamation in the stratum corneum. Acta Dermatol. Venereol. Suppl., 2000, v. 208, p. 44-45.
  38. Elias P., K. Feinold, M. Fartash. Epidermal lamellar body us a multifunctional secretory organells. In: Skin Barrier. New York, Taylor and Francis, 2006, p. 261-262.
  39. Elias P., Feinglold K. and Plahz J. The skin as an organ of protection. In: Fitzpatrick's Dermatology in General of Medicine, New York, Mc Graw-Hill, 2003, p. 107-118.
  40. Fartasch M, Bassukas I. D. and Diepgen T. L. Structural relationship between epidermal lipids lamellae, lamellar bodies and desmosomes in human epidermis: an ultrastructure study. Brit. J. Dermatol., 1993, v. 28, p. 1-9.
  41. Feingold K. R. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J. Lipid Res., 2008, № 2, p. 1-39.
  42. Fredberg J. M., Tomic-Canic M., Komine M. et al. Keratin and the keratinocyte activation cycle. J. Invest. Dermatol., 2001, v. 116, p. 633-640.
  43. Goldine M. E. Human fibroblast and keratinocyte syntgesis of eicosanopids in respons to interleikin 1. Evidence for fibroblast heterogeneity. Ann. N. Y. Acad. Sci., 1988, v. 548, p. 108-114.
  44. Hachem J. P. Serine protease signaling of epidermal permeability barrier homeostasis. J. Invest. Dermatol., 2006, v. 126, p. 2074- 2086.
  45. Haftek M. Stratum corneum. Ann. Dermatol. Venerol., 2002, v. 129, p. 117-122.
  46. Halata Z., Grim M. and Bauman K. I. Frederich Sigmund Merkel and his «Merkel cell», morphology, development and physiology: review and new results. Anat. Rec. Part A, 2003, v. 271, p. 225-239.
  47. Hansson S. R. and Hoffman B. J. Transient expression of a functional serotonin transporter in Merkel cells during late gestation and early postnatal rat development. Brain Res., 2000, v. 130, p. 401-409.
  48. Hara M., Yaar M. and Gilchrest B. A. Endothelin-1 of keratinocyte origin is a mediator of melanocyte dendricity. J. Invest. Dermatol., 1995, v. 105, № 6, p. 744-748.
  49. Hartschug W., Weihe E., Yanaihara N. et al. Immunohistochemical localization of vasoactive intestinal polypeptide (VIP) in Merkel cells of various mammals evidence for a neuromodular function of the Merkel cell. J. Invest. Dermatol., 1983, v. 81, p. 361-364.
  50. Hoath S. B. and Leachy D. G. The organization of human epidermis: functional epidermal units and phi proportionality. J. Invest. Dermatol., 2003, v. 121, № 6, p. 1440-1446.
  51. Holleran W. M., Takagi Y. and Uchida Y. Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett., 2006, v. 580, № 23, p. 5456-5466.
  52. Hurtley S. M. Langerhans cells acquire antigens on skin with dendrites. Science, 2010, v. 327, p. 251-256.
  53. Imokawa G., Miyagishi M. and Yada Y. Endothelin-1 as a new melanogen: coordinated expression of gene and the tyrosinase gene in UVB-exposed human epidermis. J. Invest. Dermatol., 1995, v. 105, № 1, p. 32-37.
  54. Imokawa G., Yada Y., Morisaki N. et al. Granulocytemacrophage-colony-stimulatory factor is an intrinsic keratinocytederived growth factor for human melanocyte in UVA- induced melanosis. Biochem. J., 1996, v. 313, p. 625-631, 662.
  55. Irmak M. K. Multifunctional Merkel cells: their roles in electromagnethic reception, finger-print formation, Reiki, epigenetic inheritance and hair form. Med. Hypotheses, 2010, v. 75, № 2, p. 272-273.
  56. Ishide-Yamamoto A., Takahashi H. and Jizuke H. Loricrin and human skin deseases: a molecular basis of loricrin keratodermas. J. Biol. Chem., 1998, v. 273, № 28, p. 17375-17380.
  57. Jones P. L. and Jones F. S. Tenacin-C in development and disease: gene regulation and cell function. Matrix Biol., 2000, v. 19, № 7, p. 581-596.
  58. Jyengar B. The role of melanocytes in the repair of UV related DNA damage in keratinocytes. Pigment Cell Res., 1998, v. 11, № 2, p. 110-113.
  59. Kalinin A., Marekov L. N. and Steinert P. M. Asseambly of the epidermal cornifed cell envelope. J. Cell Sci., 2001, v. 114, p. 3069-3070.
  60. Kim S. K., Park S. and Lee E. S. Toll-like receptors and antimicrobial peptides expressions of psoriasis: correlation with serum vitamin D level. J. Korean Med. Sci., 2010, v. 25, № 10, p. 1506-1512.
  61. Kolde G., Schulze-Osthoff K., Meyer M. et al. Immunohistological and immunoelectron microscopic identification of TNF alpha in normal human and murine epidermis. Arch. Dermatol. Res., 1992, v. 284, p. 154-158.
  62. Kugelman L. C., Coifman L. M., Hough L. M. et al. Human keratinocytes cafabolise thymidine. J. Invest. Dermatol., 1988, v. 137, p. 353-355.
  63. Lucars A. and Brand G. B. Current considerations of about Merkel cell. Europ. J. Cell Biol., 2007, v. 86, p. 243-251.
  64. Malewich Z., Show C. B. and Sontheimer R. D. Endocrinol., Metabolic and immunological functions of keratinocytes. Ann. N. Y. Acad. Sci., 1998, v. 548, p. 66-89.
  65. McGrath J. A., Eady R. A.J. and Pope F. M. Anatomy and organization of human skin. In: Rook's Textbook of Dermatology, London, BlackWell Science, 2004, v. 4 set, 7th ed., p. 45-128.
  66. Michel M. and Ciodfont M.-J. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites. J. Cell. Sci., 1996, v. 109, p. 1017-1028.
  67. Miller L. S. and Modlin R. L. Human keratinocyte Toll-like receptors promote distinct immune responses. J. Invest. Dermatol., 2007, v. 127, p. 262-263.
  68. Miscke D. The complexity of gene families involved in epithelial differentiation complex. Subcell. Biochem., 1998, v. 31, p. 71-104.
  69. Moll J., Kuhn C. and Moll R. Cytokeratin 20 is a general marker of cutaneous Merkel cells while certain neuron proteins are absent. J. Invest. Dermatol., 1995, v. 104, p. 910-915.
  70. Morizane S., Yamasaki K., Kabigting F. G. et al. Kallikrein expression and cathelicidin processing are independently controlled in keratinocytes by calcium, vitamin D3, and retinoic acid. J. Invest. Dermatol., 2010, v. 130, № 5, p. 1297-1306.
  71. Murphy J. E., Robert C. and Kypper T. S. Interleukin 1 and cutaneous inflammation: a crucial link between innate and acquired immunity. J. Invest. Dermatol., 2000, v. 114, p. 602-608.
  72. NIckoloff B. J. and Turka L. A. Keratinocytes - key immunocytes of the integument. Am. J. Pathol., 1993, v 43, p. 325-331.
  73. Ovaere P., Lippens S., Vandenabeele P. et al. The emerging roles of serine protease cascades in the epidermis. Trends Biochem. Sci., 2009, v. 34, p. 453-463.
  74. Parkinson E. K., Graham G. J., Burns J. E. et al. Hemopoietic stem cell inhibitor (SCI/ MIP-1- alpha) also inhibits clonogenic epidermal keratinocyte. J. Invest. Dermatol., 1993, v. 101, № 2, p. 113-117.
  75. Pellegrini G., Dellambra E., Golisano O. et al. p63 identifies keratinocyte stem cells. Proc. Natl Acad. Sci. USA, 2001, v. 98, p. 3156-3161.
  76. Peric M., Koglin S., Kim SM et al. IL-17A enhances vitamin D3-induced expression of cathelicidin antimicrobial peptide in human keratinocytes. J. Immunol., 2008, v. 181, № 12, p. 8504- 8512.
  77. Peric M., Kolgin S., Ruzicka A. et al. Cathenlicidins: multi functional defense molecules of the skin. Dtsch. Med. Wochenschr., 2009, Bd. 134, H. 1-2, S. 35-38.
  78. Pivarcsi A., Bodai L., Letin B. et al. Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. J. Immunol., 2003, v. 15, № 6, p. 721-730.
  79. Pivarcsi A., Kemeny L. and Dobosy A. Innate immune function of the keratinocyte. A review. Acta Microbiol. Immunol. Hung., 2004, v. 51, № 3, p. 303-310.
  80. Pivarcsi A., Nagy I. and Kemen L. Innate immunity in the skin: how keratinocytes fight against pathogens. Curr. Immunol. Rev., 2005, v. 1, p. 29-42.
  81. Rawlings A., Harding C., Watkinson A. et al. The effect of glycerol and humidity on desmosomes degradation in strarum corneum. Arch. Dermatol. Res., 1995, v. 287, p. 457-464.
  82. Sato J., Denda M., Nakanishi J. et al. Cholesterol sulfate inhibits proteases that are involved in desquamation of stratum corneum. J. Invest. Dermatol., 1998, v. 111, № 2, p. 189-193.
  83. Satter K. and High W. A. Langerhans cell histocytosis: a review of the current recomendatoins of the histiocyte society. Pediatr. Dermatol., 2008, v. 25, № 3, p. 291-295.
  84. Shauber J. and Gallo R. L. The vitamin D pathway: a new target for control of the skin's immune response. Expert. Dermatol., 2008, v. 17, № 8, p. 633-639.
  85. Schauber J. and Gallo RL. Antimicrobial peptides and skin immune defence system. J. Allergy Clin. Immunol., 2008, v. 122, № 2, p. 261-266.
  86. Schwarz A., Bhardwaj K., Aragane Y. et al. Ultraviolet-B induced apoptosis of keratinocytes: evidence for partial involvement of necrosis factor-alpha in the formation of sunburn cells. J. Invest. Dermatol., v. 104, № 6, p. 922-927.
  87. Sebastiani S. and Albanesi C. The role of chemokines in allergic contact dermatitis. Arch. Dermatol., 2002, v. 293, p. 552-559.
  88. Sidhu G. S., Chandra P. and Cassia N. D. Merkell cells normal and neoplastic: an update. Ultrastruct. Pathol., 2005, v. 29, p. 287-294.
  89. Song P. I., Parry M., Abraham N. et al. Human keratinocytes express functional CD14 and toll-like receptors 4. J. Invest. Dermatol., 2002, v. 119, № 2, p. 424-432.
  90. Sorensen O. E., Cowland J. B., Theilgaard-Monch K. et al. Wound healing and expression of antimicrobial peptides/ polypeptides in human keratinocytes, a consequence of common growth factor. J. Immunol., 2003, v. 170, p. 5583-5589.
  91. Steinert P. M. and Marekov L. N. The proteins clatin, filaggrin, keratin intermediate filaments, loricrin, and small proline-sich proteins 1 and 2 are isodepeptide cross-linked components of the human epidermal cornified cell envelope. Biol. Chem., 1995, v. 370, № 30, p. 17702-17711.
  92. Streilein J. W. and Bergstresser P. R. Langerhans cells - antigen presenting cells of the epidermis. Immunology, 1984, v. 168, № 3-5, p. 285-300.
  93. Suzuki J., Nomure J., Koyama J. et al. The role of proteases in stratum corneum involvement in stratum corneum desquamation. Arch. Dermatol. Res., 1994, v. 286, p. 249-253.
  94. Tachibana T. The Merkel cell: recent findings and unresolved problems. Arch. Histol. Cytol., 1995, v. 58, № 4, p. 379-396.
  95. Tachibana T. and Nava T. Recent progress in studies on Merkel cell biology. Anat. Sci. Int., 2002, v. 77, № 1, p. 26-33.
  96. Tani H., Morris R. J. and Kaur P. Enrichment for murine keratinocytes cells based on cell surface phenotype. Proc. Natl. Acad. Sci. USA, 2000, v. 97, p.10960-10965.
  97. Terhorst D., Kalali B. N., Ollert M. et al. The role of Toll-like receptors in host defenses and their relevance to dermatologic diseases. Am. J. Clin. Dermatol., 2010, v. 11, № 1, p. 1-10.
  98. Tomic-Canic M., Komine M., Freedberg J. M. et al. Epidermal signal transduction and transcription factor activation in activated keratinocytes. J. Dermatol. Sci., 1998, v. 17, p. 167-181.
  99. Uchida Y., Murata S., Schuth M. et al. Glucosylceramide synthesis and synthase expression protect against ceramideinduced stress. J. Lipid Res., 2002, v. 43, p. 1293-1302.
  100. Ulbrecht M., Rehberger B. and Strobel I. Expression in human keratinocytes in vitro and in human skin in vivo. Eur. J. Immunol., 1994, v. 24, № 1, p. 176-180.
  101. Valladean J., Dezutter K., Dambuyant S. et al. Langerin/CD207 sheds light on formation of Birbek granules and their possible function in Langerhans cells. J. Immunol. Res., 2003, v. 28, № 2, p. 93-107.
  102. Vandekerhof P. C.M. Biological activity of vitamin D analogues in the skin, with special reference to antipsoriatic mechanism. Br. J. Dermatol., 1995, v. 132, № 5, p. 675-682
  103. Van Keymeulen A. New stady resolves the mysterious origin of Merkel cells. J. Cell Biol., 2009, № 10, p. 1083-1087.
  104. Watkinson A., Harding C. and Moore A. Water modulation of stratum corneum chymotryptic enzymes activity and desquamation. Arch. Dermatol. Res., 2001, v. 293, p. 470-476.
  105. Watkinson A., Smith C., Coan P. et al. The role of pro-SCCE in desquamation. In: Cosmetic Science for the New Century. Proc. of the 21 st IFSCC Congress, Berlin, 2000, p. 16-25.
  106. Zeder V., Grim M., Hatala Z. et al. Neural crest origin of mammalian Merkel cells. Dev. Boil., 2003, 253, 258-263.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies