ISOMETRIC RETRACTION AND THE INVISIBLE PROCESSES OF NERVE CELLS



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Recently, a large number of physiological studies on stress and hibernation had described an unusual morphological phenomenon of the rapid disappearance and reapperance of apical dendrites of pyramidal neurons of the hippocampus, prefrontal cortex and other parts of the brain. In this article an attempt is maid to explain this phenomenon on the basis of morphological analysis of natural elastic properties of neuroplasm and structural kinetics of partially preserved processes of the living isolated neurons. The neuroplasm displacement with its bidirectional flow was identified in the processes. A new physiological phenomenon is described - the isometric retraction of nerve cell processes, during which the neuroplasm fluxes were directed to the opposite sides, leading to abrupt thinning of middle parts of the processes and to a thickening of both ends. It is suggested that the extremely attenuated processes can reach the submicroscopic sizes, becoming invisible in the light microscope. The repeated reversible «disappearance» and «appearance» of the processes was demonstrated supravitally in the culture of neurons and of C-1300 neuroblastoma cells. Reduction of the diameter of the processes to a limit of their visibility was demonstrated by the example of their natural stretching. The same effect was observed in the areas between the reversible varicosities of the processes. These areas became extremely thin, and then invisible. Becoming thinner, the processes were capable of sharp extension. A review of the available literature and our own data allow to conclude that the phenomenon of the disappearance of the apical dendrites was due to their isometric retraction, which lead to the emergence of «invisible processes»

Full Text

Restricted Access

About the authors

O. S. Sotnikov

I. P.Pavlov Institute of Physiology

Email: ossotnikov@mail.ru
Laboratory of Neuron Functional Morphology and Physiology

N. Yu. Vasyagina

I. P.Pavlov Institute of Physiology

Email: vasy-nadezhda@yandex.ru
Laboratory of Neuron Functional Morphology and Physiology

T. V. Krasnova

I. P.Pavlov Institute of Physiology

Email: kratka27@yandex.ru
Laboratory of Neuron Functional Morphology and Physiology

References

  1. Гуляева Н. В. Влияние стрессорных факторов на функционирование гиппокампа взрослого организма: молекулярноклеточные механизмы и дорсовентральный градиент // Росс. физиол. журн. 2013. Т. 99, № 1. С. 3-16.
  2. Лесгафт П. Ф. Основы теоретической анатомии. СПб.: Т-во Художественной печати, 1905.
  3. Сотников О. С. Функциональная морфология живого мякотного нервного волокна. Л.: Наука, 1976.
  4. Al-Jahdari W. S., Saito S., Nakano T. et al. Propofol induces growth cone collapse and neurite retractions in chick explant culture // Canad. J. Anaesthesia. 2006. Vol. 53, № 11. P. 1078- 1085.
  5. Arendt T., Stieler J., Strykstra A. M. et al. Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals // J. Neurosci. 2003. Vol. 23, № 18. P. 6972-6881.
  6. Baas P. W., Ahmad F. J. Force generation by cytoskeletal motor proteins as a regulator of axonal elongation and retraction // Trends Cell Biol. 2001. Vol. 11, № 6. P. 244-249.
  7. Billuart P., Winter C. G., Maresh A. et al. Regulating axon branch stability: the role of p190 RhoGAP in repressing a retraction signaling pathway // Cell. 2001. Vol. 107, № 2. P. 195-207.
  8. Bloss E. B., Puri R., Yuk F. et al. Morphological and molecular changes in aging rat prelimbic prefrontal cortical synapses // Neurobiol. Aging. 2013. Vol. 34, № 1. P. 200-210.
  9. Bray D. Mechanical tension produced by nerve cells in tissue culture // J. Cell Sci. 1979. Vol. 37. P. 391-410.
  10. Bray D. Axonal growth in response to experimentally applied mechanical tension // Dev. Biol. 1984. Vol. 102, № 2. P. 379-389.
  11. Brown S. M., Henning S., Wellman C. L. Mild, short-term stress alters dendritic morphology in rat medial prefrontal cortex // Cereb. Cortex. 2005. Vol. 15, № 11. P. 1714-1722.
  12. Cook C. S., Wellman C. L. Chronic stress alters dendritic morphology in rat medial prefrontal cortex // J. Neurobiol. 2004. Vol. 60, № 2. P. 236-248.
  13. Eiland L., Ramroop J., Hill M. N. et al. Chronic juvenile stress produces corticolimbic dendritic architectural remodeling and modulates emotional behavior in male and female rats // Psychoneuroendocrinology. 2012, Vol. 37, № 1. P. 39-47.
  14. Fenoglio K. A., Brunson K. L., Baram T.Z. Hippocampal neuroplasticity induced by early-life stress: functional and molecular aspects // Front. Neuroendocrinol. 2006. Vol. 27, № 2. P. 180-192.
  15. Fernandez-Moran H. The submicroscopic organization of vertebrate nerve fibers: an electron microscopic study of myelinated and unmyelinated nerve fibers // Exp. Cell Res. 1952. Vol. 3, № 2. P. 282-359.
  16. Grutzendler J., Kasthuri N., Gan W. B. Long-term dendritic spine stability in the adult cortex // Nature. 2002. Vol. 420, № 6917. P. 812-816.
  17. Hill M. H., Hillard C. J., McEwen B. S. Alterations in corticolimbic dendritic morphology and emotional behavior in cannabinoid CB1 receptor-deficient mice parallel the affects of chronic stress // Cereb. Cortex. 2011. Vol. 21, № 9. P. 2056-2064.
  18. Kilinc D., Gallo G., Barbee K. A. Mechanical membrane injury induces axonal beading through localized activation of calpain // Exp. Neurol. 2009. Vol. 219, № 2. P. 553-561.
  19. Magarinos A. M., Li C. J., Gal Toth J. et al. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons // Hippocampus. 2011. Vol. 21, № 3. P. 253-264.
  20. Malkinson G., Spira M. E. Clustering of excess growth resources within leading growth cones underlies the recurrent «deposition» of varicosities along developing neurites // Exp. Neurol. 2010. Vol. 225, № 1. P. 140-153.
  21. Martínez-Tellez R., Gómez-Villalobos M. J., Flores G. Alteration in dendritic morphology of cortical neurons in rats with diabetes mellitus induced by streptozotocin // Brain Res. 2005. Vol. 1048, № 1-2. P. 108-115.
  22. McCall T., Weil Z. M., Nacher J. et al. Depletion of polysialic acid from neural cell adhesion molecule (PSA-NCAM) increases CA3 dendritic arborization and increases vulnerability to excitotoxicity // Exp. Neurol. 2013. Vol. 241. P. 5-12.
  23. Miller M. M., Morrison J. H., McEwen B. S. Basal anxiety-like behavior predicts differences in dendritic morphology in the medial prefrontal cortex in two strains of rats // Behav. Brain Res. 2012. Vol. 229, № 1. P. 280-288.
  24. Mudrakola H. V., Zhang K. Optically resolving individual microtubules in live axons // Structure. 2009. Vol. 17, № 11. P. 1433- 1441.
  25. Myers K. A., Tint I., Nadar C. V. et al. Antagonistic forces generated by cytoplasmic dynein and myosin-II during growth cone turning and axonal retraction // Traffic. 2006. Vol. 7, № 10. P. 1333-1351.
  26. Nimchinsky E. A., Sabatini B. L., Svoboda K. Structure and func tion of dendritic spines // Annu. Rev. Physiol. 2002. Vol. 64. P. 313-353.
  27. Popov V. I., Bocharova L. S. Hibernation-induced structural changes in synaptic contacts between mossy fibres and hippocampal pyramidal neurons // Neuroscience. 1992. Vol. 48, № 1. P. 53-62.
  28. Radley J. J., Rocher A. B., Miller M. et al. Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex // Cereb. Cortex. 2006. Vol. 16, № 3. P. 313-320.
  29. Ramon y Cajal S. Degeneration, Regeneration of the Nervous System. N. Y.: Haften Publishing Co. 1959.
  30. Shansky R. M., Hamo C., Hof P. R. et al. Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific // Cereb. Cortex. 2009. Vol. 19, № 10. P. 2479-2484.
  31. Sotnikov O. S. Use of cell culture to prove syncytial connection and fusion of neurons / Biomedical Tissue Culture. Chapter 6. Rijeka. INTECH. 2012. P. 83-114.
  32. Sotnikov O. S., Vasyagina N. Yu., Sergeeva S. S. Traumatic retraction of living neural processes and its inhibition / Axons: Cell Biology, Molecular Dynamics and Roles in Neural Repair and Rehabilitation. New York: Nova Biomedical. 2013. P. 1-94.
  33. Sotnikov O. S., Vasyagina N. Yu., Sergeeva S. S. et al. Simultaneous axonal flows of opposite direction in neurites / Bio logical Motility. New facts and hypotheses. Pushchino. Russian Academy of Sciences, 2014. P. 289-292.
  34. Suter D. N., Miller K. E. The emerging role of forces in axonal elongation // Prog. Neurobiol. 2011. Vol. 94, № 2. P. 91-101.
  35. Swetman C. A., Leverrier Y., Garg R. et al. Extension, retraction and contraction in the formation of a dendritic cell dendrite: distinct roles for Rho GTPases // Eur. J. Immunol. 2002, Vol. 32, № 7. P. 2074-2083.
  36. Turina D., Loitto V. M., Björnström K. et al. Propofol causes neurite retraction in neurons // Br. J. Anaesth. 2008. Vol. 101, № 3. P. 374-379.
  37. Von der Ohe C. G., Smith C. D., Garner C. C. et al. Ubiquitous and temperature-dependent neural plasticity in hibernators // J. Neurosci. 2006. Vol. 26, № 41. P. 10590-10598.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies