THE BASOLATERAL NUCLEUS IN THE SYSTEM OF REPRODUCTIVE CENTERS OF THE AMYGDALA



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In this review contains the systematized data available in modern literature, which characterize the basolateral nucleus of the amygdala as one of the sexual dimorphism zones (SDZ) and its relationship with other reproductive centers of the amygdala. The basolateral nucleus, as the structure of the phylogenetically new part of the amygdala - receives the major amount of the pheromone and olfactory information through phylogenetically old - corticomedial division of the amygdala. Integrating it with the sensory signals of different modality, coming from the thalamus and cortical formations, the basolateral nucleus, together with the SDZ of corticomedial division, participates in the organization of sexual behavior and regulation of gonadotropin secretion. Sexual dimorphism of the basolateral nucleus, which is involved in the functional system of emotion formation and memory mechanisms, determines sex-dependent features of their behavioral manifestations, especially in stress reactions.

Full Text

Restricted Access

About the authors

A. V. Akhmadeyev

Bashkir State University

Email: mpha@ufanet.ru
Department of Human Physiology and Zoology

L. F. Galiyeva

Bashkir State University

Email: galieva-liliya@yandex.ru
Department of Human Physiology and Zoology

L. B. Kalimullina

Bashkir State University

Department of Human Physiology and Zoology

References

  1. Акмаев И. Г., Калимуллина Л. Б. Миндалевидный комплекс гонадэктомированных крыс, реакция нейронов кортикомедиального отдела // Арх. анат. 1982. Т. 83, вып. 12. С. 48-59.
  2. Акмаев И. Г., Калимуллина Л. Б. Миндалевидный комплекс мозга: функциональная морфология и нейроэндокринология. М.: Наука, 1993.
  3. Ахмадеев А. В. Влияние фактора пола и неонатальной андрогенизации на дендроархитектонику нейронов дорсомедиального ядра миндалевидного тела мозга // Морфология. 2006. Т. 129, вып. 3. С. 30-33.
  4. Ахмадеев А. В., Калимуллина Л. Б. Древняя амигдала: цитоархитектоника, нейронная организация и цитологические характеристики нейронов // Морфология. 2004. Т. 126, вып. 5. С. 15-19.
  5. Ахмадеев А. В. Калимуллина Л. Б. Основные положения новой концепции о субстрате палеоамигдалы // Журн. эволюц. биохим. 2014. Т. 50, № 3. С. 233-240.
  6. Калимуллина Л. Б., Ахмадеев А. В., Минибаева З. Р., Муталова Л. Р. Структурная организация миндалевидного комплекса мозга крысы // Росс. физиол. журн. им. И. М. Сеченова. 2003. Т. 89, № 1. С. 8-14.
  7. Резников А. Г. Половые гормоны и дифференциация мозга. Киев: Наук. думка, 1982.
  8. Резников А. Г., Акмаев И. Г., Фиделина О. В. и др. Метаболизм тестостерона в дискретных областях мозга плодов крыс // Пробл. эндокринол. 1990. Т. 36, № 3. С. 57-61.
  9. Резников А. Г., Пишак В. П., Носенко Н. Д. и др. Пренатальный стресс и нейроэндокринная патология. Черновцы: Медакадемия, 2004.
  10. Симонов, П. В. Мотивированный мозг. М.: Наука, 1987.
  11. Хисматуллина З. Р. Роль зон полового диморфизма миндалевидного комплекса мозга в регуляции репродуктивных процессов организма // Учен. записки СПбГМУ им. акад. И. П. Павлова. 2011. Т. 18, № 2. С. 156-158.
  12. Хисматуллина З. Р., Бикбаев А. Ф., Калимуллина Л. Б. и др. Роль переднего кортикального ядра миндалевидного комплекса мозга в регуляции репродуктивных функций организма // Морфол. ведомости. 2006. Т. 1, № 6. С. 56-57.
  13. Чепурнов С. А., Чепурнова Н. Е. Миндалевидный комплекс мозга. М.: Изд-во МГУ, 1981.
  14. Ackerl K., Atzmueller M., Grammer K. The scent of fear // Neuroendocrinol. Lett. 2002. Vol. 23, № 1. P. 79-84.
  15. Arai Y. Sexual differentiation and development of the hypothalamus and steroid-induced sterility // Neuroendocrine control. 1973. Vol. 67, № 5. P. 25-55.
  16. Arpini M., Menezes I. C., Dall’Oglio A., Rasia-Filho A. A. The density of Golgi-impregnated dendritic spines from adult rat posterodorsal medial amygdala neurons displays no evidence of hemispheric or dorsal/ventral differences // Neurosci. Lett. 2010. Vol. 469, № 2. P. 209-213.
  17. Beltramino C., Talesnik S. Release of LH in the female rat by olfactory stimuli. Effect of the removal of the vomeronasal organs or lesioning of the accessory olfactory bulbs // Neuroendocrinology. 1983. Vol. 36, № 1. P. 53-58.
  18. Bennett A. L., Greco B., Blasberg M. E., Blaustein J. D. Response to male odours in progestin receptor and oestrogen receptor containing cells in female rat brain // J. Neuroendocrinol. 2002. Vol. 14, № 6. P. 442-449.
  19. Bialy M., Nikolaev-Diak A., Kalata U., Nikolaev E. Blockade of androgen receptor in the medial amygdala inhibits noncontact erections in male rats // Physiol. Behav. 2011. Vol. 103, № 3-4. P. 295-301.
  20. Bienvenu T. C., Busti D., Magill P. J. et al. Cell-type-specific recruitment of amygdala interneurons to hippocampal theta rhythm and noxious stimuli in vivo // Neuron. 2012. Vol. 74, № 20. P. 1059-1074.
  21. Blurton-Jones M., Tuszynski M. H. Estrogen receptor-beta colocalizes extensively with parvalbumin-labeled inhibitory neurons in the cortex, amygdala, basal forebrain, and hippocampal formation of intact and ovariectomized adult rats // J. Comp. Neurol. 2002. Vol. 452, № 3. P. 276-287.
  22. Brailoiu E., Dun S. L., Brailoiu G. C. et al. Distribution and characterization of estrogen receptor GPR30 in the rat central nervous system // J. Endocrinol. 2007. Vol. 193. P. 311-321.
  23. Brunton P.J., Donadio M. V., Russell J. A. Sex differences in prenatally programmed anxiety behaviour in rats: differential corticotropin-releasing hormone receptor mRNA expression in the amygdaloid complex // Stress. 2011. Vol. 14, № 6. P. 634-643.
  24. Brusco J., Merlo S., Ikeda É. T. et al. Inhibitory and multisynaptic spines, and hemispherical synaptic specialization in the posterodorsal medial amygdale of male and female rats // J. Comp. Neurol. 2014. Vol. 522, № 9. P. 2075-2088.
  25. Canonaco M., Tavolaro R., Facciolo R. M. Dimorphic distribution of the two main GABA(A) binding sites in cortical and limbic areas of a rodent living in natural environmental conditions // J. Comp. Neurol. 1997. Vol. 380, № 4. P. 423-434.
  26. Cao J., Patisaul H. B. Sex-specific expression of estrogen receptors б and в and Kiss1 in the postnatal rat amygdale // J. Comp. Neurol. 2013. Vol. 521, № 2. P. 465-478.
  27. Carvalho-Netto E. F., Myers B., Jones K. et al. Sex differences in synaptic plasticity in stress-responsive brain regions following chronic variable stress // Physiol. Behav. 2011. Vol. 104, № 2. P. 242-247.
  28. Chachua T., Goletiani C., Maglakelidze G. et al. Sex-specific behavioral traits in the Brd2 mouse model of juvenile myoclonic epilepsy // Genes Brain Behav. 2014. Vol. 13, № 7. P. 702-712.
  29. Chamero P., Marton T. F., Logan D. W. et al. Identification of protein pheromones that promote aggressive behavior // Nature. 2007. Vol. 450. P. 899-902.
  30. Cooke B. M. Steroid-dependent plasticity in the medial amygdala // Neuroscience. 2006. Vol. 138, № 3. P. 997-1005.
  31. delBarco-Trillo J., Gulewicz K., Johnston R. E. Medial amygdala involvement in discrimination of same-species and closely-related-species male stimuli in estrous female Mesocricetus hamsters // Behav. Neurosci. 2009. Vol. 123, № 4. P. 758-763.
  32. Dhungel S., Masaoka M., Rai D. et al. Both olfactory epithelial and vomeronasal inputs are essential for activation of the medial amygdale and preoptic neurons of male rats // Neuroscience. 2011. Vol. 199. P. 225-234.
  33. Dickie E. W., Armony J. L. Amygdala responses to unattended fearful faces: Interaction between sex and trait anxiety // Psychiatry Res. 2008. Vol. 162, № 1. P. 51-58.
  34. Dziewiatkowski J., Berdel B., Kowianski P. et al. The amygdaloid body of the rabbit - a morphometric study using image analyser // Folia Morphol. (Warsz). 1998. Vol. 57, № 2. P. 93-103.
  35. Eleftheriou B. E., Zolovic A. J. Effect of amygdaloid lesions on hypothalamic follicle-stimulating hormone-releasing factor in the female deermouse II // J. Endocrinol. 1967. Vol. 39, № 5. P. 613-614.
  36. Eleftheriou B. E., Zolovick A. J., Norman R. L. Effects of amygdaloid lesions on plasma and pituitary levels of luteinizing hormone in the male deermouse // J. Endocrinol. 1967. Vol. 38, № 4. P. 469-474.
  37. Esber G. R., Holland P. C. The basolateral amygdale is necessary for negative prediction errors to enhance cue salience, but not to produce conditioned inhibition // Eur. J. Neurosci. 2014. Vol. 40, № 9. P. 3328-3337.
  38. Farrell M. R., Sengelaub D. R., Wellman C. L. Sex differences and chronic stress effects on the neural circuitry underlying fear conditioning and extinction // Physiol. Behav. 2013. Vol. 122. P. 208-215.
  39. Ferrero D. M., Moeller L. M., Osakada T. et al. A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system // Nature. 2013. Vol. 502, № 7471. P. 368-371.
  40. Gréco B., Allegretto E. A., Tetel M. J., Blaustein J. D. Coexpression of ER beta with ER alpha and progestin receptor proteins in the female rat forebrain: effects of estradiol treatment // Endocrinology. 2001. Vol. 142, № 12. P. 5172-5181.
  41. Hari Dass S. A., Vyas A. Copulation or sensory cues from the female augment Fos expression in arginine vasopressin neurons of the posterodorsal medial amygdale of male rats // Front Zool. 2014. Vol. 11. P. 42.
  42. Hazell G. G., Yao S. T., Roper J. A. Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues // J. Endocrinol. 2009. Vol. 202. P. 223-236.
  43. Hines M., Allen L. S., Gorski R. A. Sex differences in subregions of the medial nucleus of the amygdala and the bed nucleus of the stria terminalis of the rat // Brain Res. 1992. Vol. 579, № 2. P. 321-326.
  44. Holder M. K., Veichweg S. S., Mong J. A. Methamphetamine-enhanced female sexual motivation is dependent on dopamine and progesterone signaling in the medial amygdala // Horm. Behav. 2015. Vol. 67. P. 1-11.
  45. Hosokawa N., Chiba A. Effects of sexual experience on conspecific odor preference and estrous odor-induced activation of the vomeronasal projection pathway and the nucleus accumbens in male rats // Brain Res. 2005. Vol. 1066, № 1-2. P. 101-108.
  46. Hosokawa N., Chiba A. Effects of sexual experience on conspecific odor preference and male odor-induced activation of the vomeronasal projection pathway and the nucleus accumbens in female rats // Brain Res. 2007. Vol. 1175. P. 66-75.
  47. Hosokawa N., Chiba A. Androgen receptor blockade in the posterodorsal medial amygdala impairs sexual odor preference in male rats // Horm. Behav. 2010. Vol. 58, № 3. P. 493-500.
  48. Intlekofer K. A., Petersen S. L. Distribution of mRNAs encoding classical progestin receptor, progesterone membrane components 1 and 2, serpine mRNA binding protein 1, and progestin and ADIPOQ receptor family members 7 and 8 in rat forebrain // Neuroscience. 2010. Vol. 172. P. 55-65.
  49. Jacobs C., Van Den Broeck W., Simoens P. Increased number of neurons expressing androgen receptor in the basolateral amygdale of pathologically aggressive dogs // J. Vet. Med. A Physiol. Pathol. Clin. Med. 2006. Vol. 7. P. 334-339.
  50. Jagalska-Majewska H., Dziewiatkowski J., Wojcik S. et al. The amygdaloid complex of the rabbit - morphological and histochemical study // Folia Morphol. (Warsz). 2001. Vol. 60, № 4. P. 259-280.
  51. Johnson R. T., Schneider A., DonCarlos L. L. et al. Astrocytes in the rat medial amygdale are responsive to adult androgens // J. Comp. Neurol. 2012. Vol. 520, № 11. P. 2531-2544.
  52. Jouhanneau M., Szymanski L. A., Keller M. Female puberty acceleration by male odour in mice: neural pathway and behavioural consequences // Biochem. Soc. Trans. 2014. Vol. 42, № 4. P. 878-881.
  53. Kang N., Baum M. J., Cherry J. A. A direct main olfactory bulb projection to the ‘vomeronasal’ amygdala in female mice selectively responds to volatile pheromones from males // Eur. J. Neurosci. 2009. Vol. 29, № 3. P. 624-634.
  54. Kastenberger I., Lutsch C., Schwarzer C. Activation of the G-protein-coupled receptor GPR30 induces anxiogenic effects in mice, similar to oestradiol // Psychopharmacology (Berl). 2012. Vol. 221, № 3. P. 527-535.
  55. Kawakami M., Kimura F. Inhibition of ovulation on the rat by electrical stimulation of the lateral amygdale // Endocrinol. Jap. 1975. Vol. 22, № 1. P. 61-65.
  56. Kippin T. E., Cain S. W., Pfaus J. G. Estrous odors and sexually conditioned neutral odors activate separate neural pathways in the male rat // Neuroscience. 2003. Vol. 117, № 4. P. 971-979.
  57. Kobayashi T., Kiyokawa Y., Arata S. et al. c-Fos expression during the modulation of sexual behavior by an alarm pheromone // Behav. Brain Res. 2013. Vol. 237. P. 230-237.
  58. Koppensteiner P., Aizawa S., Yamada D. et al. Age-dependent sensitivity to glucocorticoids in the developing mouse basolateral nucleus of the amygdala // Psychoneuroendocrinology. 2014. Vol. 46. P. 64-77.
  59. Kosmal A., Nitecka L. Cytoarchitecture and acetylcholinesterase activity of the amygdaloid nuclei in the dog // Acta Neurobiol. Exp. (Wars). 1977. Vol. 37, № 6. P. 363-374.
  60. Krezel W., Dupont S., Krust A. et al. Increased anxiety and synaptic plasticity in estrogen receptor beta-deficient mice // Proc. Natl. Acad. Sci. USA. 2001. Vol. 98, № 21. P. 12278-12282.
  61. Kudwa A. E., Harada N., Honda S. I., Rissman E. F. Regulation of progestin receptors in medial amygdala: estradiol, phytoestrogens and sex // Physiol. Behav. 2009. Vol. 97, № 2. P. 146-q50.
  62. Larsen C. M., Grattan D. R. Chapter five: Exposure to female pheromones during pregnancy causes postpartum anxiety in mice // Vitam. Horm. 2010. Vol. 83. P. 137-149.
  63. Lee S., Kim S.-J., Kwon O.-B. et al. Inhibitory networks of the amygdala for emotional memory // Front. in neural circuits. 2013. Vol. 7. P. 129-132.
  64. Likhtik E., Pelletier J. G., Paz R., Paré D. J. Prefrontal control of the amygdala // Neuroscience. 2005. Vol. 25, № 32. P. 7429- 7437.
  65. Lin Y., Li X., Lupi M. et al. The role of the medial and central amygdala in stress-induced suppression of pulsatile LH secretion in female rats // Endocrinology. 2011. Vol. 152, № 2. P. 545-555.
  66. Maras P. M., Petrulis A. Lesions that functionally disconnect the anterior and posterodorsal sub-regions of the medial amygdala eliminate opposite-sex odor preference in male Syrian hamsters (Mesocricetus auratus) // Neuroscience. 2010. Vol. 165, № 4. P. 1052-1062.
  67. Martinez-Marcos A., Halpern M. Efferent connections of the main olfactory bulb in the opossum (Monodelphis domestica): a characterization of the olfactory entorhinal cortex in a marsupial // Neurosci. Lett. 2006. Vol. 395, № 1. P. 51-56.
  68. McDonald A. J., Mascagni F. Projections of the lateral entorhinal cortex to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat // Neuroscience. 1997. Vol. 77, № 2. P. 445-459.
  69. Meurisse M., Chaillou E., Lévy F. Afferent and efferent connections of the cortical and medial nuclei of the amygdala in sheep // J. Chem. Neuroanat. 2009. Vol. 37, № 2. P. 87-97.
  70. Mitsushima D., Yamada K., Takase K. et al. Sex differences in the basolateral amygdala: the extracellular levels of serotonin and dopamine, and their responses to restraint stress in rats // Eur. J. Neurosci. 2006. Vol. 24, № 11. P. 3245-3254.
  71. Mohedano-Moriano A., Pro-Sistiaga P., Ubeda-Bañón I. et al. Segregated pathways to the vomeronasal amygdala: differential projections from the anterior and posterior divisions of the accessory olfactory bulb // Eur. J. Neurosci. 2007. Vol. 25, № 7. P. 2065-2080.
  72. Morris J. A., Jordan C. L., Breedlove S. M. Sexual dimorphism in neuronal number of the posterodorsal medial amygdala is independent of circulating androgens and regional volume in adult rats // J. Comp. Neurol. 2008. Vol. 506, № 5. P. 851-859.
  73. Mouly A. M., Scala G. Di. Entorhinal cortex stimulation modulates amygdala and piriform cortex responses to olfactory bulb inputs in the rat // Neuroscience. 2006. Vol. 137, № 4. P. 1131-1141.
  74. Novaes L. S., Shammah-Lagnado S. J. Projections from the anteroventral part of the medial amygdaloid nucleus in the rat // Brain Res. 2011. Vol. 1421. P. 30-43.
  75. Pereno G. L., Balaszczuk V., Beltramino C. A. Detection of conspecific pheromones elicits fos expression in GABA and calcium-binding cells of the rat vomeronasal system-medial extended amygdala // J. Physiol. Biochem. 2011. Vol. 67, № 1. P. 71-85.
  76. Pérez S. E., Chen E. Y., Mufson E. J. Distribution of estrogen receptor alpha and beta immunoreactive profiles in the postnatal rat brain // Brain Res. Dev. Brain. Res. 2003. Vol. 145, № 1. P. 117-139.
  77. Pérez-Acevedo N. L., Lathroum L., Jorge J. C. The neurosteroid 3alphaDIOL modulates place preference when infused in the basolateral amygdala according to sex // Behav. Neurosci. 2006. Vol. 120, № 3. P. 632-840.
  78. Petersen S. L., Intlekofer K. A., Moura-Conlon P. J. et al. Novel progesterone receptors: neural localization and possible functions // Front. Neurosci. 2013. Vol. 7. P. 164-169.
  79. Petrulis A. Chemosignals and hormones in the neural control of mammalian sexual behavior // Front. Neuroendocrinol. 2013. Vol. 34, № 4. P. 255-267.
  80. Phillips A. G., Ahn S., Howland J. G. Amygdalar control of the mesocorticolimbic dopamine system: parallel pathways to motivated behavior // Neurosci. Biobehav. Rev. 2003. Vol. 27, № 6. P. 543-554.
  81. Popescu A. T., Paré D. Synaptic interactions underlying synchronized inhibition in the basal amygdala: evidence for existence of two types of projection cells // J. Neurophysiol. 2011. Vol. 105, № 2. P. 687-696.
  82. Portillo W., Dнaz N. F., Cabrera E. A. et al. Comparative analysis of immunoreactive cells for androgen receptors and oestrogen receptor alpha in copulating and non-copulating male rats // J. Neuroendocrinol. 2006. Vol. 18, № 3. P. 168-176.
  83. Pro-Sistiaga P., Mohedano-Moriano A., Ubeda-Bañon I. et al. Convergence of olfactory and vomeronasal projections in the rat basal telencephalon // J. Comp. Neurol. 2007. Vol. 504, № 4. P. 346-362.
  84. Rao B. N., Pal G. K., Pravati P. Effect of subcutaneous injection of estradiol on feeding and drinking behaviors and body weight in basolateral amygdaloid lesioned rats // Ann. Neurosci. 2013. Vol. 20, № 4. P. 139-144.
  85. Rasakham K., McGillivray K. L., Liu-Chen L. Y. Sex differences in U50, 488H-induced phosphorylation of p44/42 mitogen-activated protein kinase in the guinea pig brain // Neuroscience. 2012. Vol. 223. P. 447-456.
  86. Rasia Filho A. A., dos Santos P., Gehlen G. et al. Glial fibrillary acidic protein immunodetection and immunoreactivity in the anterior and posterior medial amygdala of male and female rats // Brain Res. Bull. 2002. Vol. 58, № 1. P. 67-75.
  87. Relkin R. Relative efficiecy of pinealectomy, hypothalamic and amygdaloid lesions in advancing puberty // Endocrinology. 1971. Vol. 88, № 2. P. 415-418.
  88. Rocha M. I., Mestriner R. G., Hermel E. E. et al. Neuronal somatic volume of posteroventral medial amygdala cells from males and across the estrous cycle of female rats // Neurosci. Lett. 2007. Vol. 420, № 2. P. 110-115.
  89. Rуwniak M. The amygdale in the guinea pig is sexually dimorphic--a morphometric study // Brain Res. 2013. Vol. 1524. P. 44-53.
  90. Rubinow M. J., Drogos L. L., Juraska J. M. Age-related dendritic hypertrophy and sexual dimorphism in rat basolateral amygdale // Neurobiol. Aging. 2009. Vol. 30, № 1. P. 137-146.
  91. Santiago A. C., Shammah-Lagnado S. J. Efferent connections of the nucleus of the lateral olfactory tract in the rat // J. Comp. Neurol. 2004. Vol. 471, № 3. P. 314-332.
  92. Santiago A. C., Shammah-Lagnado S. J. Afferent connections of the amygdalopiriform transition area in the rat // J. Comp. Neurol. 2005. Vol. 489, № 3. P. 349-371.
  93. Segovia S., Garcia-Falgueras A., Carrillo B. et al. Sexual dimorphism in the vomeronasal system of the rabbit // Brain Res. 2006. Vol. 1102, № 1. P. 52-62.
  94. Sevelinges Y., Gervais R., Messaoudi B. et al. Olfactory fear conditioning induces field potential potentiation in rat olfactory cortex and amygdala // Learn. Mem. 2004. Vol. 11, № 6. P. 761-769.
  95. Shima N., Yamaguchi Y., Yuri K. Distribution of estrogen receptor beta mRNA-containing cells in ovariectomized and estrogen-treated female rat brain // Anat. Sci. Int. 2003. Vol. 78, № 2. P. 85-97.
  96. Stefanova N. Gamma-aminobutyric acid-immunoreactive neurons in the amygdale of the rat - sex differences and effect of early postnatal castration // Neurosci. Lett. 1998. Vol. 255, № 3. P. 175-177.
  97. Takahashi L. K. Olfactory systems and neural circuits that modulate predator odor fear // Front. Behav. Neurosci. 2014. Vol. 8. P. 72-76.
  98. Tian Z., Wang Y., Zhang N. et al. Estrogen receptor GPR30 exerts anxiolytic effects by maintaining the balance between GABAergic and glutamatergic transmission in the basolateral amygdale of ovariectomized mice after stress // Psychoneuroendocrinology. 2013. Vol. 38, № 10. P. 2218-2233.
  99. Tindal J. S., Knaggs G. S., Turvey A. The forebrain of the goat in stereotaxic coordinates // J. Anat. 1968. Vol. 103, № 3. P. 457-469.
  100. Turner B. H., Herkenham M. Thalamoamygdaloid projections in the rat: a test of the amygdala’s role in sensory processing // J. Comp. Neurol. 1991. Vol. 313, № 2. P. 295-325.
  101. Vinader-Caerols C., Collado P., Segovia S., Guillamуn A. Estradiol masculinizes the posteromedial cortical nucleus of the amygdala in the rat // Brain Res. Bull. 2000. Vol. 5, № 3. P. 269-273.
  102. Weathington J. M., Puhy C., Hamki A. et al. Sexually dimorphic patterns of neural activity in response to juvenile social subjugation // Behav. Brain Res. 2013. Vol. 256. P. 464-471.
  103. Westberry J., Meredith M. The influence of chemosensory input and gonadotropin releasing hormone on mating behavior circuits in male hamsters // Brain Res. 2003. Vol. 974, № 1-2. P. 1-16.
  104. Yamada Т., Green M. The effect of basolateral ablation of the amygdala on endocrine function in the rat // Endocrinology. 1960. Vol. 66, № 4. P. 565-574.
  105. Yamaguchi N., Yuri K. Changes in oestrogen receptor-в mRNA expression in male rat brain with age // J. Neuroendocrinol. 2012. Vol. 24, № 2. P. 310-318.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies