ROLE OF NITRIC OXIDE IN APOPTOSIS OF RETINAL NEURONS IN HUMAN FETUSES



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The localization ofNADPH-diaphorase (NADPH-d), inducible NO-synthase (iNOS) and TUNEL-immunoreactive neurons was studied in the retina of human fetuses in the I-III trimesters of pregnancy. High NADPH-d activity was found in internal segments of photosensory cells, amacrine and ganglion cells. The population of NADPH-d-positive amacrine cells included three types of neurons. Neurons of the 1st type had large size and scarce dendritic field, occupying the inner nuclear and outer plexiform layers. Small neurons of the 2nd type were located in the inner plexiform layer. Ectopic amacrine cells of 3rd type could be found in the outer part of the ganglion cell layer. High density of the NADPH-d-positive neurons was detected in the central portion of retina surrounding fovea centralis and the optic disk area. The activity of NADPH-d was found to grow progressively in ontogenesis and to correlate with the appearance of immunoreactive iNOS in neurons. Immunoreactive iNOS marked a subpopulation of amacrine and ganglion cells which appeared in weeks 20-21 of gestation and attained maximal immunoreactivity by the end of the III trimester. TUNEL-immunoreactive nuclei of the neurons with the signs of the apoptotic destruction were found in weeks 30-31 of gestation. The highest apoptotic index was found in the population of ganglion cells. The data obtained strongly suggest that NO is a factor, mediating the neuronal apoptosis during the critical period of a differentiation of interneuronal connections in the human retina.

About the authors

N Yu Matveeva

S G Kalinichenko

I I Pushchin

P A Motavkin

N Yu Matveyeva

Vladivostok State Medical University, RAS Far-Eastern Branch Institute of Marine Biology

; Vladivostok State Medical University, RAS Far-Eastern Branch Institute of Marine Biology

S G Kalinichenko

Vladivostok State Medical University, RAS Far-Eastern Branch Institute of Marine Biology

; Vladivostok State Medical University, RAS Far-Eastern Branch Institute of Marine Biology

I I Pushchin

Vladivostok State Medical University, RAS Far-Eastern Branch Institute of Marine Biology

; Vladivostok State Medical University, RAS Far-Eastern Branch Institute of Marine Biology

P A Motavkin

Vladivostok State Medical University, RAS Far-Eastern Branch Institute of Marine Biology

; Vladivostok State Medical University, RAS Far-Eastern Branch Institute of Marine Biology

References

  1. Брюне Б., Сандау К. и фон Кнетен А. Апоптотическая гибель клеток и оксид азота: механизмы активации и антагонистические сигнальные пути (обзор). Биохимия, 1998, т. 63, вып. 7, с. 966-975.
  2. Лушников Е.Ф. и Абросимов А.Ю. Гибель клетки (апоптоз). М., Медицина, 2001.
  3. Матвеева Н.Ю. Апоптоз: морфологические особенности и молекулярные механизмы. Тихоокеанский мед. журн., 2003, № 4, с. 12-16.
  4. Матвеева Н.Ю. Ультраструктурная характеристика апоптоза ганглиозных клеток сетчатки плодов человека. Тихоокеанский мед. журн., 2004, № 3, с. 21-23.
  5. Матвеева Н.Ю. и Романова Н.Е. Онтогенетические различия ганглиозного слоя сетчатки глаза плодов человека. Тихоокеанский мед. журн., 2004, № 2, с. 26-28.
  6. Челышев Ю.А., Черепнев Г.В. и Сайткулов К.И. Апоптоз в нервной системе. Онтогенез, 2001, т. 32, № 2, с. 118-129.
  7. Школьник-Яррос Е.Г. и Калинина А.В. Нейроны сетчатки. М., Наука, 1986.
  8. Ahmad I., Leinders-Zufall Т., Kocsis J.D. et al. Retinal ganglion cells express a cGMP-gated cation conductance activatable by nitric oxide donors. Neuron, 1994, v. 12, p. 155-165.
  9. Bahr M. Live or let die - retinal ganglion cell death and survival during development and in the lesioned adult CNS. Trends. Neurosci., 2000, v. 23, p. 483-490.
  10. Barrett G.L. The p75 neurotrophin receptor and neuronal apoptosis. Prog. Neurobiol., 2000, v. 61, p. 205-229.
  11. Chen H. and Weber A.J. BDNF enhances retinal ganglion cell survival in cats with optic nerve damage. Invest. Ophthalmol. Vis. Sci., 2001, v. 42, p. 966-974.
  12. Contestabile A. Roles of NMDA receptor activity and nitric oxide production in brain development. Brain Res. Rev., 2000, v. 32, p. 476-509.
  13. Frade J.M. and Barde Y.A. Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord. Development, 1999, v. 126, p. 683-690.
  14. Frade J.M., Bovolenta P., Martinez-Morales J.R. et al. Control of early cell death by BDNF in the chick retina. Development, 1997, v. 124, p. 3313-3320.
  15. Frade J.M., Bovolenta P. and Rodriguez-Tebar A. Neurotrophins and other growth factors in the generation of retinal neurons. Microsc. Res. Tech., 1999, v. 45, p. 243-251.
  16. Gally J.A., Montague P.R., Reeke G.N., Jr. and Edelman G.M. The NO hypothesis: Possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc. Natl. Acad. Sci. USA, 1990, v. 87, p. 3547-3551.
  17. Goldstein I.M., Ostwald P. and Roth S. Nitric oxide: a review of its role in retinal function and disease. Vision Res., 1996, v. 36, p. 2979-2994.
  18. Hope B.T. and Vincent S.R. Histochemical characterization of neuronal NADPH-diaphorase. J. Histochem. Cytochem., 1989, v. 37, № 5, p. 653-661.
  19. Kim I.-B., Oh S.-J. and Chun M.-H. Neuronal nitric oxide synthase immunoreactive neurons in the mammalian retina. Microsc. Res. Tech., 2000, v. 50, p. 112-123.
  20. Klocker N., Cellerino A. and Bahr M. Free radical scavenging and inhibition of nitric oxide synthase potentiates the neurotrophic effects of brain-derived neurotrophic factor on axotomized retinal ganglion cells in vivo J. Neurosci., 1998, v. 18, p. 1038-1046.
  21. Klocker N., Kermer P., Gleichmann M. et al. Both the neuronal and inducible isoforms contribute to upregulation of retinal nitric oxide synthase activity by brain-derived neurotrophic factor. J. Neurosci., 1999, v. 19, p. 8517-8527.
  22. Klocker N., Kermer P. Weishaupt J.H. et al. Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3'-kinase/protein kinase B signaling. J. Neurosci., 2000, v. 20, p. 6962-6967.
  23. Kuan C.-Y., Roth K.A., Flavell R.A. and Rakic P. Mechanisms of programmed cell death in the developing brain. Trends Neurosci., 2000, v. 23, p. 291-297.
  24. Liepe B.A., Stone C., Koistinaho J. and Copenhagen D.R. Nitric oxide synthase in Muller cells and neurons of salamander and fish retina. J. Neurosci., 1994, v. 14, p. 7641-7654.
  25. Lipton S.A. Neuronal protection and destruction by NO. Cell Death Differ., 1999, v. 6, p. 943-951.
  26. Lossi L., and Merighi A. In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS. Prog. Neurobiol., 2003, v. 69, p. 287-312.
  27. LoTurco J.J., Owens D.F., Heath M.J.S. et al. GABA and glutamate depolarize cortical progenitors cells and inhibit DNA synthesis. Neuron, 1995, v. 15, p. 1287-1298.
  28. Mey J. and Thanos S. Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res., 1993, v. 602, p. 304-317.
  29. Miller F.D. and Kaplan D.R. Neurotrophin signalling pathways regulating neuronal apoptosis. Cell Mol. Life Sci., 2001, v. 58, p. 1045-1053.
  30. Monti B., Zanghellini P. and Contestabile A. Characterization of ceramide-induced apoptotic death in cerebellar granule cells in culture. Neurochem. Int., 2001, v. 39, p. 11-18.
  31. Nakazawa T., Tamai M. and Mori N. Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways. Invest. Ophthalmol. Vis. Sci., 2002, v. 43, p. 3319-3326.
  32. Oppenheim R.W. Programmed cell death. In: Fundamental Neuroscience. San Diego, Academic, 1999, p. 581-609.
  33. Oppenheim R.W., Flavell R.A., Vinsant S. et al. Programmed cell death of developing mammalian neurons after genetic deletion of caspases. J. Neurosci., 2001, v. 21, p. 4752-4760.
  34. Papermaster D.S. Apoptosis of the mammalian retina and lens. Cell Death Differ., 1997, v. 4, p. 21-28.
  35. Perry V.H., Henderson Z. and Linden R. Postnatal changes in retinal ganglion cell and optic axon populations in the pigmented rat. J. Comp. Neurol., 1983, v. 219, p. 356-368.
  36. Pieper A.A., Verma A., Zhang J. and Snyder S.H. Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol. Sci., 1999, v. 20, p. 171-181.
  37. Rakic S. and Zecevic N. Programmed cell death in the developing human telencephalon. Eur. J. Neurosci., 2000, v. 12, p. 2721-2734.
  38. Takahata K., Katsuki H., Kume T. et al. Retinal neuronal death induced by intraocular administration of a nitric oxide donor and its rescue by neurotrophic factors in rats. Invest. Ophthalmol. Vis. Sci., 2003, v. 44, p. 1760-1766.
  39. Yamamoto R., Bredt D.S., Snyder S.H. and Stone R.A. The local- ization of nitric oxide synthase in the rat eye and related cranial ganglia. Neuroscience, 1993, v. 54, p. 189-200.
  40. Zhang C.-W., Lu Q., You S.-W. et al. CNTF and BDNF have similar effects on retinal ganglion cell survival but differential effects on nitric oxide synthase expression soon after optic nerve injury. Invest. Ophthalmol. Vis. Sci., 2005, v. 46, p. 1497-1503.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2006 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies