EVOLUTIONARY APPROACH TO THE UNDERSTANDING OF STRUCTURAL AND FUNCTIONALORGANIZATION OF COMPLEX



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This article analyzes the literature data related to the discussion of the main models of intracellular protein transport, including vesicular and cistern maturation-progression models. The existence of an important Golgi complex (GC) component - continuous tubular structures - is emphasized and their possible participation in the intracellular transport is discussed. A brief review is presented, describing the peculiarities of intracellular traffic in eukaryotic species belonging to different stages along the evolutionary process. The evidence suggests that in higher eukaryotes, the dynamic membranous GC system was formed on the basis of tubular networks that performs protein sorting and selective protein transport.

About the authors

G V Beznusenko

V V Banin

V V Dolgikh

I S Sesorova

State University of Shuya

; State University of Shuya

G V Beznusenko

Russian State Medical University

; Russian State Medical University

V V Banin

Russian State Medical University

; Russian State Medical University

V V Dolgikh

Russian Institute for Plant Protection

; Russian Institute for Plant Protection

I S Sesorova

Email: E-mail-irina-s3@yandex.ru

References

  1. Банин В.В. Куда ведет «путь Гольджи»? (к 100-летию открытия комплекса Гольджи). Морфология, 1999, т. 115, вып. 3, с. 90-97.
  2. Clermont Y., Rambourg A. and Hermo L. Connections between the various elements of the cis- and mid-compartments of the Golgi apparatus of early rat spermatids. Anat. Rec., 1994, v. 240, p. 469-480.
  3. Cluett E.B., Kuismanen E. and Machamer C.E. Heterogeneous distribution of the unusual phospholipids semilysobisphosphatidic acid through the Golgi complex. Mol. Biol. Cell, 1997, v. 8, p. 2233-2240.
  4. Cole N.B., Smith C.L., Sciaky N. et al. Diffusional mobility of Golgi proteins in membranes of living cell. Science, 1996, v. 273, p. 797-801.
  5. Dacks J.B. and Doolittle W.F. Novel syntaxin gene sequences from Giardia Trypanosoma and algae: implications for the ancient evolution of the eukaryotic endomembrane system. J. Cell Sci., 2002, v. 115, p. 1635-1642.
  6. Dahan S., Ahluwalia J.P., Wong L. et al. Concentration of intracellular hepatic apolipo-protein E in Golgi apparatus saccular distentions and endosomes. Cell Biol., 1994, v. 127, p. 1859-1869.
  7. Farquhar M.G. and Palade G.E. The Golgi apparatus (complex) - (1954-1981) - from artifact to center stage. J. Cell Biol., 1981, v. 91, p. 77-103.
  8. Francis A. and Barr. B. The Golgi apparatus going round in circles. Cell Biol., 2002, v. 12, № 3, p. 101-104.
  9. Franke W.W., Morre D.J., Deumling B. et al. Synthesis and turnover of membrane protein in rat liver: an examination of the membrane flow hypothesis. Z. Naturforsch. [B], 1971, v. 25, p. 1031-1039.
  10. Glick B.S. and Malhotra V. The curious status of the Golgi apparatus. Cell, 1988, v. 95, p. 883-889.
  11. Guo Q., Vasile E. and Kliger M. Disruptions in Golgi structure and membrane traffic in a conditional lethal mammalian cell mutant are corrected by epsilon-COPI. J. Cell Biol., 1994, v. 125, p. 1213-1224.
  12. Hasegawa M. and Hashimoto T. Phylogenetic position of amitochondriate protists in the evolution of eukaryotes. Biol. Bull., 1999, v. 196, p. 389-391.
  13. Jamieson J.D. and Palade G.E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. Transport to condensing vacuoles and zymogen granules. J. Cell Biol., 1967, v. 34, p. 597-615.
  14. Jurgens G. Membrane trafficking in plants. Annu. Rev. Cell Dev. Biol., 2004, v. 20, p. 481-504.
  15. Katinka M.D. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature, 2001, v. 414, p. 450-453.
  16. Keith A., Joiner I. and David S. Secretory traffic in the eukaryotic parasite Toxoplasma gondii: less is more. Cell Biol., 2002, v. 157, № 4, p. 557-563.
  17. Kweon H.S., Beznoussenko G.V., Micaroni M. et al. Golgi enzymes are enriched in perforated zones of Golgi cisternae but are depleted in COPI vesicles. Mol. Biol. Cell, 2004, v. 15, p. 4710-4724.
  18. Leblond C.P. Synthesis and secretion of collagen by cells of connective tissue, bone and dentin. Anat. Rec., 1989, v. 224, p. 123-138.
  19. Lederkremer G.Z., Cheng Y., Petre B.M. et al. Structure of the Sec 2324p and Sec 13p31p complexes of COPII. Proc. Natl. Acad. Sci. USA, 2001, v. 98, p. 10704-10709.
  20. Lippincott-Schwartz J. and Patterson G.H. Development and use of fluorescent protein markers in living cells. Science, 2003, v. 300, p. 87-91.
  21. Mallard F.D., Tenza C., Antony J. et al. Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of Shiga toxin B-fragment transport. J. Cell Biol., 1998, v. 143, p. 973-990.
  22. Martinez-Menarguez J.A., Prekeris R., Oorschot V.M. et al. Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport. J. Cell Biol., 2001, v. 155, p. 1213-1224.
  23. Mironov A.A., Beznoussenko G.V., Nicoziani P. et al. Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J. Cell Biol., 2001, v. 155, p. 1225-1238.
  24. Nebenfuhr A. and Staehelin L.A. Mobile factories: Golgi dynamics in plant cells. Trends Plant Sci., 2001, v. 6, p. 160-167.
  25. Palade G. Intracellular aspects of the process of protein synthesis. Science, 1975, v. 189, p. 347-358.
  26. Polishchuk R., Fusella A., Luini A. and Mironov A. Tubular connections between heterologous cisternae of the Golgi stacks. Mol. Biol. Cell, 1996, v. 7, p. 598.
  27. Rambourg A. and Clermont Y. Three-dimensional electron microscopy: structure of the Golgi apparatus. J. Cell Biol., 1990, v. 51, p. 189-200.
  28. Rambourg A., Clermont Y. and Marraund A. Three-dimensional structure of the osmium-impregnated Golgi-apparatus as seen in the high voltage electron microscope. Am. J. Anat., 1974, v. 140, p. 27.
  29. Rambourg A., Clermont Y., Ovtracht L. and Kepes F. Three-dimensional structure of tubular networks, presumably Golgi in nature, in various yeast strains: a comparative study. Anat. Rec., 1995, v. 243, p. 283-293.
  30. Rothman J.E. Mechanisms of intracellular protein transport. Nature, 1994, v. 372, p. 55-63.
  31. Rothman J.E. and Wieland F.T. Protein sorting by transport vesicles. Science, 1996, v. 272, p. 227-234.
  32. Salama N.R. and Schekman R.W. The role of coat proteins in the biosynthesis of secretory proteins. Curt. Opin. Cell Biol., 1995, v. 7, p. 536-543.
  33. Sogin M.L., Gunderson J.H., Elwood H.J. et al. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science, 1989, v. 75, p. 243.
  34. Soren M., Gomez-Ospina N., Soderholm J. et al. Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris. Mol. Biol. Cell, 2003, v. 14, p. 2277-2291.
  35. Trucco A., Polishchuk R.S., Martella O.D. et al. Secretory traffic triggers the formation of tubular continuities across Golgi subcompartments. Nat. Cell. Biol., 2004, v. 6, p. 1071-1081.
  36. Varva J. and Larsson J.I.R. Structure of the microsporidia. In: Microsporidia and microsporidiosis. Washington, DC: American Society for Microbiology, 1999, p. 7-75.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2006 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies