MORPHOLOGICAL AND BIOCHEMICAL ASPECTS OF SKELETAL MUSCLE INJURY AND REGENERATION IN EXERCISE AND HYPODY-NAMIA



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This paper reviews the literature data on morphological and biochemical aspects of skeletal muscle injury by exercises, hypodynamia and microgravity. Muscle injury depends on the duration and intensity of action. In spite of differences of muscle injury mechanisms by exercises and hypodynamia, this injury restricts muscle function and capacity to continue muscle work. Possible approaches to minimization of the muscular tissue injury and accelerating its regeneration are discussed.

About the authors

V I MOROZOV

Research Institute of Physical Culture, RAS Institute of Cytology, St. Petersburg, Russia

Research Institute of Physical Culture, RAS Institute of Cytology, St. Petersburg, Russia

G A SAKUTA

RAS Institute of Cytology, St. Petersburg, Russia

RAS Institute of Cytology, St. Petersburg, Russia

M I KALINSKI

Kent State University, Kent, Ohio, USA

Kent State University, Kent, Ohio, USA

References

  1. Астратенкова И.В. и Чайковский В.С. Метаболизм аспартат-аминотрансферазы при физических нагрузках. Укр. биохим. журн., 1990, т. 62, № 3, с. 98-101.
  2. Владимиров Ю.А. и Арчаков А.И. Перекисное окисление липидов в биологических мембранах. М., Наука, 1972.
  3. Зезеров А.Е., Ивонова С.М. и Ушаков Л.С. Перекисное окисление липидов в тканях крыс при антиортостатической гипокинезии, действии физической нагрузки и иммобилизационного стресса. Косм. биол., 1987, т. 21, с. 39-43.
  4. Ильина-Какуева Е.И., Бабакова Л.Л., Деморжи М.С. и Поздняков О.М. Морфологическое исследование скелетных мышц крыс, летавших на борту космической лаборатории SLS-2. Авиакосм. эколог. мед., 1995, т. 29, с. 12-18.
  5. Логоша С.А., Морозов В.И. и Рогозкин В.А. Действие углеводного рациона и физической нагрузки на активность супероксиддисмутазы и концентрацию диеновых конъюгатов в крови и цитозоле скелетных мышц крыс. Физиол. журн. им. И.М. Сеченова, 1996, т. 82, № 2, с. 55-60.
  6. Меерсон Ф.З. и Пшенникова М.Г. Адаптация к стрессовым ситуациям и физическим нагрузкам. М., Медицина,1988.
  7. Морозов В.И. и Петрова Т.Н. Выявление протеиназ нейтрофилов в скелетных мышцах крыс после мышечной деятельности. Укр. биохим. журн., 1993, т. 65, № 4, с. 40-44.
  8. Пшендин А.И. Рациональное питание спортсменов. Для любителей и профессионалов. СПб., Олимп, 2003.
  9. Цыпленков П.В. Влияние мышечной деятельности на содержание миелопероксидазы в крови и скелетных мышцах крыс: Автореф. дис. ... канд. биол. наук. Л., 1988.
  10. Чаговец Н.Р. Биохимический анализ компенсаторных процессов в скелетных мышцах после функциональной деятельности: Автореф. дис. ... д-ра биол. наук. Л., 1974.
  11. Чайковский В.С., Башарина О.Б., Шаляпина И.В. и Рогозкин В.А. Физические нагрузки и содержание миоглобина и тропомиозина в мышцах и миоглобина в крови крыс. Вопр. мед. химии, 1987, т. 33, № 4, с.79-83.
  12. Шаляпина И.В., Чайковский В.С. и Рогозкин В.А. Метаболизм тропомиозина в мышцах и его содержание в крови при физических нагрузках. Укр. биохим. журн., 1987, т. 59, № 4, с. 14-18.
  13. Шенкман Б.С., Подлубная З.А., Вихлянцев И.М. и др. Сократительные характеристики и белки саркомерного цитоскелета волокон m. soleus человека в условиях гравитационной разгрузки. Биофизика, 2004, т. 49, с. 881-890.
  14. Яковлев Н.Н. Биохимия спорта. М., ФиС, 1974.
  15. Аlessio H.M. and Goldfarb A.H. Lipid peroxidation and scavenger enzymes during exercise: adoptive response to training. J. Appl. Physiol., 1988, v. 64, p. 1333-1336.
  16. Allen D.L., Linderman J.K., Roy R.R. et al. Apoptosis: a mechanism contributing to remodelling of skeletal muscle in response to hindlimb unweighting. Am. J. Physiol. Cell. Physiol.,1997, v. 273, p. C579-C587.
  17. Ashmaig M.E., Starkey B.J., Ziada A.M. et al. Changes in serum concentrations of markers of myocardial injury following treadmill exercise testing in patients with suspected ischaemic heart disease. Med. Sci. Monit., 2001, v. 7, p. 54-57.
  18. Bar-Shai M., Carmeli E., Coleman R. et al. The effect of hindlimb immobilization on acid phosphatase, metalloproteinases and nuclear factor-kappaB in muscles of young and old rats. Mech. Ageing Dev., 2005, v. 126, p. 289-297.
  19. Berg A. and Haralambie G. Changes in serum creatine kinase and hexose phosphate isomerase activity with exercise duration. Eur. J. Appl. Physiol., 1978, v. 39, p. 191-201.
  20. Bemben M.G. and Lemont H.S. Creatine supplementation and exercise performance: recent findings. Sports Med., 2005, v. 35, p. 107-125.
  21. Beuerle J.R., Azzazy H.M., Styba G. et al. Characteristics of myoglobin, carbonic anhydrase III and the myoglobin/carbonic anhydrase ratio in trauma, exercise, and myocardial infarction patients. Clin. Chim. Acta., 2000, v. 294, p. 115-128.
  22. Bloomer R.J., Goldfarb A.H., Wideman L. et al. Effects of acute aerobic and anaerobic exercise on blood markers of oxidative stress. J. Strenth Cond. Res., 2005, v. 19, p. 276-285.
  23. Bolli R., Shinmura K., Tang X.L. et al. Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. Cardiovasc. Res., 2002, v. 55, p. 506-519.
  24. Brown M., Jeal S., Bryant J. and Gamble J. Modifications of microvascular filtration capacity in human limbs by training and electrical stimulation. Acta Physiol. Scand., 2001, v. 173, p. 359-368.
  25. Burton N.M., Vierck J.L., Krabbenhoft L. et al. Methods for animal satellite cell culture under a variety of conditions. Methods Cell Sci., 2000, v. 22, p. 51-61.
  26. Byrne C., Twist C. and Eston R. Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications. Sports Med., 2004, v. 34, p. 49-69.
  27. Campion D.R. The muscle satellite cell: a review. Int. Rev. Cyt. 1984, v. 87, p. 225-251.
  28. Carmeli E., Moas M., Lennon S. and Powers S.K. High intensity exercise increases expression of matrix metalloproteinase in fast skeletal muscle fibres. Exp. Physiol., 2005, v. 90, p. 613-619.
  29. Chen J.C. and Goldhammer D.J. Skeletal muscle stem cells. Reprod. Biol. Endocrinol., 2003, v. 1, p. 101.
  30. Cheng H., Cao Y. and Olson L. Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science, 1996, v. 273, p. 510-513.
  31. Colvin G.A., Lambert J.F., Carlson J.E. et al. Rhythmicity of engraftment and altered cell cycle kinetics of cytokine-cultured murine marrow in simulated microgravity compared with static cultures. In Vitro Cell Dev. Biol. Anim., 2002, v. 38, p. 343-351.
  32. Constable S.N., Favier R.J., McLane J.A. et al. Energy metabolism in contracting rat skeletal muscle: adaptation to exercise training. Am. J. Physiol., 1987, v. 253, p. C316-C322.
  33. Cooper R.N., Tajbakhsh S., Mouly V. et al. In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J. Cell Sci., 1999, v. 112, p. 2895-2901.
  34. Cordova A., Martin J.F., Reyes E. and Alvarez-Mon M. Protection against muscle damage in competitive sports players: the effect of the immunomodulator AM3. J Sports Sci., 2004, v. 22, p. 827-833.
  35. Cossu G., Cisinelli P., Fieri C. et al. Emergence of TPA-resistant satellite cells during histogenesis of the human limb. Exp. Cell Res., 1985, v. 160, p. 403-411.
  36. Coudreuse J.M., Dupont P. and Nicol C. Delayed post effort muscle soreness. Ann. Readapt. Med. Phys., 2004, v. 47, p. 290-298.
  37. Dahlack L.O. and Rais O. Morphological changes in striated muscle following ischemia: immediate postischemic phase. Acta Chir. Scand., 1966, v. 131, p. 430-440.
  38. Davies M.J. Direct detection of radical production in the ischemic and reperfused myocardium: Current status. Free Rad. Res. Commun., 1989, v. 7, p. 275-284.
  39. Di Prampero P.E. and Narici M.V. Muscles in microgravity: from fibers to human еmotion. J. Biomech., 2003, v. 36, p. 403-412.
  40. Domaratskaya E.I., Michurina T.V., Bueverova E.I. et al. Studies on clonogenic hemopoietic cells of vertebrate in space: problems and perspectives. Adv. Space Res., 2002, v. 30, p. 771-776.
  41. Dudley G.A., Hather B.M. and Buchanan P. Skeletal muscle responses to unloading with special reference to man. J. Fla. Med. Assoc., 1992, v. 79, p. 525-529.
  42. Dupont-Versteegden E.E., Murphy R.J.L., Houle J.D. et al. Activated satellite cells fail to restore myonuclear number in spinal cord transected and exercised rats. Am. J. Cell. Physiol., 1999, v. 277, p. C589-C597.
  43. Dupont-Versteegden E.E., Murphy R.J.L., Houle J.D. et al. Mechanisms leading to restoration of muscle size with exercise and transplantation after spinal cord injury. Am. J. Physiol., 2000, v. 279, p. C1677-C1684.
  44. Evans W.J. and Cannon J.G. The metabolic effects of exercise-induced muscle damage. Exerc. Sports Sci. Rev., 1991, v. 19, p. 99-125.
  45. Faulkner J.A., Brooks S.V. and Opiteck J.A. Injury to skeletal muscle fibers during contraction: conditions of occurrence and prevention. Phys. Ther., 1993, v. 73, p. 911-921.
  46. Farid M., Reid M.B., Li Y.P. et al. Effects of dietary curcumin or N-acetylcysteine on NF-kappaB activity and contractile performance in ambulatory and unloaded murine soleus. Nutr. Metab. (Lond.), 2005, v. 2, p. 20.
  47. Fitts R.H., Riley D.R. and Widrick J.J. Functional and structural adaptations of skeletal muscle to microgravity. J. Exp. Biol., 2001, v. 204, p. 3201-3208.
  48. Friden J. and Lieber R.L. Structural and mechanical basis of exercise-induced muscle injury. Med. Sci. Sports Exerc., 1992, v. 24, p. 521-530.
  49. Friden J. and Lieber R.L. Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiol. Scand., 2001, v. 171, p. 321-326.
  50. Glatz J.F., Van der Vusse G.J., Maessen J.G. et al. Fatty acid-binding protein as marker of muscle injury: experimental findings and clinical application. Acta Anaesthesiol. Scand., 1997, v. 111, Suppl., p. 292-294.
  51. Granger D.N. and Korthuis R.J. Physiologic mechanisms of postischemic tissue injury. Ann. Rev. Physiol., 1995, v. 57, p. 311-332.
  52. Grisham M.B., Hernandez L.A. and Granger D.N. Adenosine inhibits ischemia-reperfusion-induced leukocyte adherence and extravastion. Am. J. Physiol., 1989, v. 257, p. H1334-H1339.
  53. Hagerman F., Hikada R. and Staron R. Muscle fiber necrosis in marathon runners. Med. Sci. Sports Exerc., 1983, v. 15, p. 164-167.
  54. Hearse D.J., Humphrey R.M. and Chain E.B. Abrupt reoxygenation of the anoxic potassium arrested rat heart: a study of myocardial enzyme release. J. Mol. Cell. Cardiol., 1973, v. 5, p. 395-407.
  55. Heer M., De Santo N.G., Cirillo M. and Drummer C. Body mass changes, energy, and protein metabolism in space. Am. J. Kidney Dis., 2001, v. 38, p. 691-695.
  56. Henriksson J. Effect of training and nutrition on the development of skeletal muscle. J. Sports Sci., 1995, v. 13, p. S25-S30.
  57. Hilder T.L., Baer L.A., Fuller C.A. et al. Insulin-independent pathways mediating glucose uptake in hindlimb suspended skeletal muscle. J. Appl. Physiol., 2005, v. 99, p. 2181-2188.
  58. Hoppeler H. and Desplanches D. Muscle structural modifications in hypoxia. Int. J. Sports Med., 1992, v. 13 (suppl.1), p. 166-168
  59. Iiboshi A., Tokuda S., Nishimura T. and Otsuji S. Biphasic changes of blood myoglobin level in weight training. J. Sports Med., 1982, v. 22, p. 284-294.
  60. Ishimitsu T., Tobian L., Sugimoto K. and Lange J.M. High potassium diets reduce macrophage adherence to the vascular wall is stroke-prone spontaneously hypertensive rats. J. Vasc. Res., 1995, v. 32, p. 406-412.
  61. Jones D.A., Jackson M.J. and Edwards R.H. Release of intracellular enzymes from an isolated mammalian skeletal muscle preparation. Clin. Sci., 1983, v. 65, p. 193-201.
  62. Kanter M.M., Kaminsky L.A., La Ham-Saeger J. et al. Serum enzymes and lipid peroxidation in ultramarathon runners. Ann. Sports Med., 1986, v. 3, p. 39-41.
  63. Kanter M.M., Lesmes G.R., Kaminsky L.A. et al. Serum creatine kinase and lactate dehydrogenase changes following an eighty kilometer race. Relationship to lipid peroxidation. Eur. J. Appl. Physiol., 1988, v. 57, p. 60-63.
  64. Karman R.L., Goheen B., Patton R. and Raven P. The effects of near maximum exercise on serum enzymes: The exercise profile versus the cardiac profile. Clin. Chim. Acta, 1977, v. 81, p. 145-152.
  65. King S.W., Statland B.E. and Savory J. The effect of short burst of exercise on activity values of enzymes in sera of healthy young men. Clin. Chem. Acta, 1976, v. 72, p. 211-218.
  66. Kofsky E.R., Julia P.L., Buckberg G.D. et al. Studies of controlled reperfusion after ischemia. XXII. Reperfusate composition: effects of leukocyte depletion of blood cardioplegic perfusates after acute coronary occlusion. J. Thor. Cardiovasc. Surg., 1991, v. 101, p. 350-359.
  67. Koishi K., Zhang M., McLennan I. and Harris A. MyoD protein accumulates in satellite cells and is neurally regulated in regenerating myotubes and skeletal muscle fibers. Dev. Dyn., 1995, v. 202, p. 244-254.
  68. Korthuis R.J., Smith J.K. and Carden D.L. Hypoxic reperfusion attenuates postischemic microvascular injury. Am. J. Physiol., 1989, v. 256, p. H315-H319.
  69. Kuipers H., Drukker J., Frederik P.M. et al. Muscle degeneration after exercise in rats. Int. J. Sports Med., 1983, v. 4, p. 45-51
  70. Jerome S.N., Akimitsu T., Gute D.C. and Korthuis R.J. Ischemic preconditioning attenuates capillary no-reflow induced by prolonged ischemia and reperfusion. Am. J. Physiol., 1995, v. 268, p. H2063-H2067.
  71. Lalani R., Bhasin S., Byhover F. et al. Myostatin and insulin-like growth factor-I and -II expression in the muscle of rats exposed to the microgravity environment of the NeuroLab space shuttle flight. J. Endocrinol., 2000, v. 167, p. 417-428.
  72. Lieber R.L., Thornell L.E. and Friden J. Muscle cytoskeletal disruption occurs within the first 15 min of cyclic eccentric contraction. J. Appl. Physiol., 1996, v. 80, p. 278-284.
  73. MacAllister R.M., Amann J.F. and Laughlin M.H. Skeletal muscle fiber types and their vascular support. J. Reconstr. Microsurg., 1993, v. 9, p. 313-317.
  74. Mauro A. Satellite cell of skeletal muscle fibres. J. Biophys. Biochem. Cytol., 1961, v. 9, p. 493-495.
  75. McLoon L., Nguyen L., Wirtschafter J. et al. Time course of the regenerative responses in bupivacaine injured orbicularis oculi muscle. Cell Tissue Res., 1998, v. 294, p. 439-447.
  76. Menetrey J., Kasemkijwattana C., Day C.S. et al. Direct-, fibroblast- and myoblast-mediated gene transfer to the anterior cruciate ligament. Tissue Eng., 1999, 5, p. 435-442.
  77. Michurina T.V., Domaratskaya E.I., Nikonova T.M. and Khrushchov N.G. Blood and clonogenic hemopoietic cells of newts after the space flight. Res. Adv. Space, 1996, v. 17, p. 295-298.
  78. Morozov V.I., Pryatkin S.A., Kalinski M.I. and Rogozkin V.A. Effect of exercise to exhaustion on myeloperoxidase and lysozyme release from blood neutrophils. Eur. J. Appl. Physiol., 2003, v. 89, p. 257-262.
  79. Morozov V.I., Usenko T.N. and Rogozkin V.A. Neutrophil antiserum response to decrease in proteolytic activity in loaded rat muscle. Eur. J. Appl. Physiol., 2001, v. 84, p. 195-200.
  80. Morris J.B., Haglund U. and Bulkley G.B. The protection from postischemic injury by xantine oxidase inhibition: blockade of free radical generation or purine salvage. Gastroenterology, 1987, v. 92, p. 1542-1547.
  81. Musacchia X.J., Steffen J.M., Fell R.D. and Dombrowski M.J. Comparative morphometry of fibers and capillaries in soleus following weghtlessness (SL-3) and suspension. Physiologist, 1988, v. 31 (1 Suppl.), p. S28-S29.
  82. Nechiporenko U., Danilova M. and Morozov V. Effect of aspirin per os administration on blood post-exercise creatine kinase activity of rats. Book of abstracts of the 9th ECSS Congress, July 3-6, 2004, Clermont-Ferrand, 2004, p. 344.
  83. Niblock A.E., Jablonsky G., Leung E.Y. and Henderson A.R. Changes in mass and catalytic activity concentrations of aspartate aminotransferase isoenzymes in serum after a myocardial infarction. Clin. Chem., 1986, v. 32, p. 496-500.
  84. Oguro A., Sakurai T., Okuno M. et al. The change of HSP47, collagen specific molecular chaperone, expression in rat skeletal muscle may regulate collagen production with gravitational conditions. Biol Sci Space, 2004, v. 18, p. 150-151.
  85. Ohnishi T., Takahashi A., Wang X. et al. Accumulation of a tumor suppressor p53 protein in rat muscle during a space flight. Mutat. Res., 1999, v. 430, p. 271-274.
  86. Parker M.H., Seale P. and Rudnicki M.A. Looking back to the embrio: defining transcriptional networks in adult myogenesis. Nat. Rev. Genet., 2003, v. 4, p. 497-507.
  87. Parks D.A. and Granger D.N. Xantine oxidase: biochemistry, distribution, and physiology. Acta Physiol. Scand., 1986, v. 548, p. 87-100.
  88. Peake J.M., Suzuki K., Wilson G. et al. Exercise-induced muscle damage, plasma cytokines, and markers of neutrophil activation. Med. Sci. Sports Exerc., 2005, v. 37, p. 737-745.
  89. Pelinkovic D., Lee J.Y., Adachi N. et al. Muscle-based gene therapy and tissue engineering. Crit. Rev. Eukaryot Gene Expr., 2001, v. 11, p. 121-129.
  90. Perry M.A. and Wadhaw S.S. Gradual reintroduction of oxygen reduces reperfusion injury in cat stomach. Am. J. Physiol., 1988, v. 254, p. G366-G372.
  91. Renault V., Piron-Hamelin G., Forestier C. et al. Skeletal muscle regeneration and mitotic clock. Exp. Gerotol., 2000, v. 35, p. 711-719.
  92. Roti S., Iori E., Guiducci V. et al. Serum concentrations of myoglobin, creatine phosphokinase and lactate dehydrogenase after exercise in trained and untrained athletes. J. Sports Med. Phys. Fitness, 1981, v. 21, p. 113-118.
  93. Roy R.R., Baldwin K.M. and Edgerton V.R. Response of the neuromuscular unit to spaceflight: what has been learned from the rat model. Exerc. Sport Sci. Rev., 1996, v. 24, p. 399-425.
  94. Roy R.R., Talmadge R.J., Hodgson J.A. et al. Training effects on soleus of cats spinal cord transected (T12-T13) as adults. Muscle Nerve, 1998, v. 21, p. 63-71.
  95. Sabourin L.A. and Rudnicki M.A. The molecular regulation of myogenesis. Clin. Genet., 2000, v. 57, p. 16-25.
  96. Saxena K.K., Gupta B., Srivastava V.K. et al. Creatine kinase and aspartate aminotransferase in an experimental model to predict size of cardiac infarct. Indian J. Exp. Biol., 1988, v. 26, p. 235-236.
  97. Schultz E. Satellite cell behavior during skeletal muscle growth and regeneration. Med. Sci. Sports Exerc., 1989, v. 21, p. S181-S186.
  98. Schultz E. and McCormick K.M. Skeletal muscle satellite cells. Rev. Physiol. Biochem. Pharmacol., 1994, v. 123, p. 213-257.
  99. Seale P. and Rudnicki M.A. A new look at the origin, function, and «stem-cell» status of satellite cells. Dev. Biol., 2000, v. 218, p. 115-124.
  100. Shave R.E., Dawson E., Whyte P.G. et al. Cardiac troponin T in female athletes during a two-day mountain marathon. Scott. Med. J., 2003, v. 48, p. 41-42.
  101. Shoor S. Athletes, non-steroidal anti-inflammatory drugs, coxbs, and the gastrointestinal tract. Curr. Sports Med. Rep., 2002, v. 1, p. 107-115.
  102. Shvets V.N. and Portugalov V.V. Space flight effects on the hemopoietic function of bone marrow of the rat. Aviat. Space Environ. Med., 1976, v. 47, p. 746-749.
  103. Sipe J.D. Tissue engineering and reparative medicine. Ann. N.Y. Acad. Sci., 2002, v. 961, p. 1-9.
  104. Sorichter S., Puschendorf B. and Mair J. Skeletal muscle injury induced by eccentric muscle action: muscle proteins as markers of muscle fiber injury. Exerc. Immunol. Rev., 1999, v. 5, p. 5-21.
  105. Sonnenfeld G., Davis S., Taylor G.R. et al. Effect of space flight on cytokine production and other immunologic parameters of rhesus monkeys. J. Interferon Cytokine Res., 1996, v. 16, p. 409-415.
  106. Tasch P. Muscle fatigue in man with special reference to lactate accumulation during short term intense exercise. Acta Physiol. Scand., 1980, v. 480, Suppl., p. 5-40.
  107. Tchaikovski V.S., Astratenkova I.V. and Basharina O.B. The effect of exercises on the content and reception of the steroid hormones in rat skeletal muscles. J. Steroid Biochem., 1986, v. 24, p. 251-253.
  108. Torbicki A., Kurzyna M., Kuca P. et al. Detectable serum cardiac troponin T as a marker of poor prognosis among patients with chronic precapillary pulmonary hypertension. Circulation, 2003, v. 108, p. 844-888.
  109. Tsintzas K. and Williams C. Human muscle glycogen metabolism during exercise. Effect of carbohydrate supplementation. Sports Med., 1998, v. 25, p. 7-23.
  110. Tsivitse S.K., McLoughlin T.J., Peterson J.M. et al. Downhill running in rats: influence on neutrophils, macrophages, and MyoD+ cells in skeletal muscle. Eur. J. Appl. Physiol., 2003, v. 90, p. 633-638.
  111. Vuorimaa T., Vasankary T., Mattila K. et al. Serum hormone and myocellular protein recovery after intermittent runs at the velocity associated with VO2max. Eur. J. Appl. Physiol. Occup. Physiol., 1999, v. 80, p. 575-581.
  112. Walker P.M., Lindsay T.F., Labbe R. et al. Salvage of skeletal muscle with free radical scavengers. J. Vasc. Surg., 1987, v. 5, p. 68-75.
  113. Wang E. Age-dependent atrophy and microgravity travel: what do they have in common? FASEB J., 1999, v. 13, p. S167-S174.
  114. Weiss S.J. Tissue destruction by neutrophils. N. Engl. J. Med., 1989, v. 320, p. 365-376.
  115. Wright J.G., Fox D., Kerr J.C. et al. Rate of reperfusion blood flow modulates reperfusion injury in skeletal muscle. J. Surg. Res., 1988, v. 44, p. 754-763.
  116. Yamakuchi M., Higuchi I., Masuda S. et al. Type I muscle atrophy caused by microgravity-induced decrease of myocyte enhancer factor 2C (MEF2C) protein expression. FEBS Lett., 2000, v. 477, p. 135-140.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2006 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies