NEUROENDOCRINE REGULATION OF AMYGDALA FUNCTIONS: THE ROLE OF SEX STEROIDS AND NORADRENALINE



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The aim of this review was to summarize the literature data, which characterize the participation of brain noradrenergic system and sex steroids in the regulation/modulation of amygdala functions. Structural organization of noradrenergic system and its representation in corticomedial and basolateral divisions of amygdala is described. This is important for further development of the understanding of the heterogeneity and structural organization complexity of the amygdale, which possesses functional multiplicity. The evidence is presented that may help in comprehension of the influence of gender factor on human personality characteristics, cognitive abilities and behavioral reactions. These data may also be applied for development of optimal clinical medicinal treatment of psychoneurological diseases.

References

  1. Акмаев И.Г. и Гриневич В.В. Нейроиммуноэндокринология гипоталамуса. М., Медицина, 2003.
  2. Акмаев И.Г. и Калимуллина Л.Б. Миндалевидный комплекс мозга: функциональная морфология и нейроэндокринология. М., Наука, 1993.
  3. Бериташвили И.С. Выступление в прениях по докладу A.M. Гурвича и соавт. В кн.: Гагрские беседы: Структура и функции архипалеокортекса. М., Наука, 1968, с. 289.
  4. Ещенко Н.Д. Биохимия психических и нервных заболеваний. СПб., Издательский дом Санкт-Петербургск. ун-та, 2004.
  5. Ильюченок Р.Ю., Гилинский М.А., Лоскутова Л.В. и др. Миндалевидный комплекс (связи, поведение, память). Новосибирск., Наука, 1981.
  6. Любашина О.А. Миндалевидный комплекс мозга в системе центральной регуляции висцеральных функций: Автореф. дис. … д-ра биол. наук. СПб., 2008.
  7. Носенко Н.Д. Нейроэндокринные эффекты неонатального воздействия ингибитора катехол-О-метилтрансферазы и половых стероидов. Пробл. эндокринол., 1989, т. 35, № 5, с. 64-68.
  8. Резников А.Г. Половые гормоны и дифференциация мозга. Киев, Наук. думка, 1982.
  9. Резников А.Г., Акмаев И.Г., Фиделина О.В. и др. Метаболизм тестостерона в дискретных областях мозга плодов крыс. Пробл. эндокринол., 1990, т. 36, № 3, с. 57-61.
  10. Резников А.Г., Пишак В.П., Носенко Н.Д. и др. Пренатальный стресс и нейроэндокринная патология. Черновцы, Медакадемия, 2004.
  11. Симонов П.В. Мотивированный мозг. М., Наука, 1987.
  12. Чепурнов С.А. и Чепурнова Н.Е. Миндалевидный комплекс мозга. М., Изд-во МГУ, 1981.
  13. Шаляпина В.Г. Основы нейроэндокринологии. СПб., Элби, 2005.
  14. Шуваев В.Т. и Суворов Н.Ф. Базальные ганглии и поведение. CПб., Наука, 2001.
  15. Шульговский В.В. Физиология высшей нервной деятельности с основами нейробиологии. М., Academia, 2003.
  16. Agis Balboa R., Pinna G., Zhubi A. et al. Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc. Natl. Acad. Sci. USA, 2006, v. 103, № 39, p. 14602-14607.
  17. Aroniadou-Anderjaska V., Qashu F., Braga M. et al. Mechanisms regulating GABAergic inhibitory transmission in the basolateral amygdala: implications for epilepsy and anxiety disorders. Amino Acids, 2007, v. 32, № 3, p. 305-315.
  18. Asan E. The catecholaminergic innervation of the rat amygdala. Adv. Anat. Embryol. Cell Biol., 1998, v. 142, № 2, p. 1-118.
  19. Barraclough C., Wise P. and Selmanoff M. A role for hypothalamic catecholamine in regulation of gonadotropin secretion. Recent Prog. Horm. Res., 1984, v. 40, № 1, p. 487-529.
  20. Cameron N., Carry P. and Erskine M. Medullary noradrenergic neurons release norepinephrine in the medial amygdala in females in response to mating stimulation sufficient for pseudopregnancy. Brain Res., 2004, v. 1022, № 1-2, p. 137-147.
  21. Chung S., Pfaff D. and Cohen R. Estrogen-induced alteration in synaptic morphology in the midbrain central gray. Exp. Brain Res., 1988, v. 69, p. 522-530.
  22. Clugnet M. and Price J. Olfactory input to prefrontal cortex in the rat. Chem. Senses, 1986, v. 11, № 4, p. 590-596.
  23. Cordon T., Ronnekleiv O. and Kelley M. Estrogen modulation of the a-1 adrenergic response of hypothalamic neurons Neuroendocrinology, 1989, v. 50. p. 51-58.
  24. Crowley W., O'Donohue T. and Jacobowitz D. Sex differences in catecholamine content in discrete brain nuclei of the rat: effects of neonatal castration or testosterone treatment. Acta Endocrinol. (Copenh.), 1978, v. 89, № 1, p. 20-28.
  25. Dahlstrom A. and Fuxe K. Evidence for the existence of monoamine containing neurons in the central nervous system. 1. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand., 1964, v. 62, suppl. 232, p. 1-55.
  26. Dayas C. and Day T. Opposing roles for medial and central amygdala in the initiation of noradrenergic cell responses to a psychological stressor. Eur. J. Neurosci., 2002, v. 15, № 10, p. 1712-1718.
  27. Doroftein M., Orasan R., Marina C. et al. The phagocytic activity of rats with stereotaxic distinctions in the main zones of amygdala, Eur. J. Physiol., 1995, v. 5, № 4,p. 109-115.
  28. Fallon J. H., Koziell D. A. and Moore R. Y. Catecholamine innervation of the basal forebrain. 2. Amygdala, suprarhinal cortex and entorhinal cortex. J. Соmр. Neurol., 1978, v. 180, № 3, p. 509-532.
  29. Hatfield T., Spanis C. and McGaugh J. Response of amygdalar norepinephrine to footshock and GABAergic drugs using in vivo microdialysis and HPLC. Brain Res., 1999, v. 24, № 2, p.340-345.
  30. Honma K. and Wuttke W. Norepinephrine and dopamine turnover rates in medial preoptic area and the meduobasal hypothalamus of the brain after varios endocrinological manipulation. Endocrinology, 1980, v. 106, p. 1848-1853.
  31. Juptner A., Jussfie M. and Hiemke C. Effects of ovariectomy and steroid replacement of GABAa receptor binding in female rat brain J. Steroid Biochem. Mol. Biol., 1991, v. 38, p. 141-147.
  32. Kuntzman R., Shore P., Bogdanski D. and Brodie D. Microanalytical procedures for fluoremetric assay of brain dopa-5HT-decarboxylase, norepinephrine and serotonin and a detailed mapping of decarboxylase activity in brain. J.Neurochem., 1961, v. 6, № 2, p. 226-232.
  33. Larry H., Elger W., Duker E. and Wuttke W. Pituitary-dependent effects of estradiol-17β on catecholamine turnover rates, gammaaminobuteric acid, and glutamate concentrations in various hypothalamic and limbic brain structures. Acta Endocrinol. (Copenh.), 1988, v. 118, p. 538-543.
  34. Ma S. and Morilak D. Norepinephrine release in medial amygdala facilitates activation of the hypothalamic-pituitary-adrenal axis in response to acute immobilisation stress. J. Neuroendocrinol., 2005, v. 17, № 1, p. 22-28.
  35. Maggi A. and Perez J. Estrogen-induced up-regulation of gammaimunobutyric acid receptor in the CNS of rodents J. Neurochem., 1986, v. 47, p. 1793-1797.
  36. Mason S.Т. and Fibiger H.C. Regional topography within noradrehergic locus coeruleus as revealed by retrograde transport of horseradish peroxidase. J. Соmp. Neurol., 1979, v. 187, № 4, p. 703-724.
  37. Meyer D.S. Serotonin and norepinephrine uptake in discrete brain regions during the pregnant mare serum (PMS) induced estrous cycle in the rat. Chronobiologia, 1983, v. 10, № 3, p. 269-279.
  38. Milner T., Drake C., Lessard A.et al. Angiotensin II-induced hypertension differentially affects estrogen and progestin receptors in central autonomic regulatory areas of female rats. Exp. Neurol., 2008, v. 212, № 2, p. 393-406.
  39. Moore R. and Card J. Noradrenaline-containing neuron systems. In: Handbook of chemical transmitters in the CNS. 1984, v. 2, part I. Amsterdam, Elsevier, p. 123-156.
  40. Morilak D., Barrera G., Echevarria D. et al. Role of brain norepinephrine in the behavioral response to stress. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2005, v. 29, № 8, p. 1214-1224.
  41. Ostlund H., Keller E. and Hurd Y. Estrogen receptor gene expression in relation to neuropsychiatric disorders. Ann. N.Y. Acad. Sci., 2003, v. 1007, № 5, p. 54-63.
  42. Palkovits M., Fekete M., Nakara G. В. and Herman J. P. Total and partial hypothalamic deafferentations for topographical identification of catecholaminergic innervations of certain preoptic and hypothalamic nuclei. Brain Res., 1977, v. 127, № 54, p. 127-136.
  43. Raber J. and Bloom F.E. Arginin vasopressin release by acetylcholine or norepineph-rine: region-specific and cytokine-specific regulation. Neuroscience, 1996, v. 71, № 3, p. 747-759.
  44. Ramhres-Amaya V., Alvares-Borda B. and Bermzdez-Rattoni F. Differential effect of NMDA induces legion into the insular cortex and amygdala on the acquision and evocation of conditioned immunosuppression. Brain Behav. Immunol., 1998, v. 12, № 2, p. 140-160.
  45. Ramos B.P. and Arnsten A.F. Adrenergic pharmacology and cognition: focus on the prefrontal cortex. Pharmacol. ther., 2007, v.113, № 3, p.523-536.
  46. Rincavage H., McDonnell D. and Kuhn C. Expression of functional estrogen receptor beta in locus coeruleus-derived Cath.a cells. Endocrinology, 2003, v. 144, № 7, p. 2829-2835.
  47. Roozendaal B., Okuda S., Van der Zee E. and McGaugh J. Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala. Proc.Natl. Acad. Sci. USA, 2006, v. 103, № 17, p. 6741-6746.
  48. Speciale S.G., Crobtey W.R., O'Dononue T.L. and Jacobowitz D.M. Forebrain catecholamine projections of the A5 cell group. Brain Res., 1978, v. 154, № 1, p. 128-133.
  49. Tully K., Li Y., Tsvetkov E. et al. Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses. Proc. Natl. Acad. Sci USA, 2007, v. 104, № 35. p. 14146-1450.
  50. Van Stegeren A., Goekoop R., Everaerd W. et al. Noradrenaline mediates amygdala activation in men and women during encoding of emotional material. Neuroimage, 2005, v. 24, № 3, p. 898-909.
  51. Wallace D., Magnuson D. and Gray T. Organization of amygdaloid projections to brainstem dopaminergic, noradrenergic, and adrenergic cell groups in the rat. Brain Res. Bull., 1992, v. 28, № 3, p.447-454.
  52. Wang G., Drake C., Rozenblit M. et al. Evidence that estrogen directly and indirectly modulates C1 adrenergic bulbospinal neurons in the rostral ventrolateral medulla. Brain Res., 2006, v. 1094, № 1, p. 163-278.
  53. Weidenfeld J., Newman M., Itzik A. and Feldman S. Adrenocortical axis responses to adrenergic and glutamate stimulation are regulated by the amygdala. Neuroreport, 2005, v. 16, № 11, p. 1245-1249.
  54. Weiland N. and Wise P. Estrogen alters diural rhythm of α1- andrenergic receptor densities in selected brain regions Endocrinology, 1987, v. 121, p. 1751-1758.
  55. Zald D., Donndelinger M. and Pardo J. Elucidating brain interactions with across-subjects correlational analyses of positron emission tomographic data: the functional connectivity of the amygdala and orbitofrontal cortex during olfactory tasks. J. Cereb. Blood Flow Metab., 1998, v. 18, № 8, p. 896-905.
  56. Zhao R., Chen H. and Sharp B. Nicotine-induced norepinephrine release in hypothalamic paraventricular nucleus and amygdala is mediated by N-methyl-D-aspartate receptors and nitric oxide in the nucleus tractus solitarius. J. Pharmacol. Exp. ther., 2007, v. 329, № 2, p. 837-844.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2010 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies