Striopallidum projectionsto the pedunculopontine tegmentalnucleus in dog mesencephalon



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Using the method based on the retrograde axonal transport of the horseradish peroxidase, striopallidal afferent projections to the pedunculopontine tegmental nucleus (PPN) of the dog brain were studied. It was shown that the main source of these projections was pallidum, since the projections were directed both to the compact and diffuse parts of this nucleus from all its structures: nucleus entopeduncularis, globus pallidus and ventral pallidum. In the striatal complex, namely in the nucleus accumbens, only single labeled neurons projecting exceptionally to the compact part of the PPN, were detected Since in the distribution of the projection fibers, originating from the functionally various territorries of the striopallidum and directed to the individual substructures of the PPN, no topical elements were detected, the separation of the functionally specific (motor and limbic) regions in the PPN, on the basis of findings obtained, appears impossible.

About the authors

O G Chivileva

A I Gorbachevskaya

O G Chivilyova

RAS I.P. Pavlov Institute of Physiology

; RAS I.P. Pavlov Institute of Physiology

A L Gorbachevskaya

RAS I.P. Pavlov Institute of Physiology

; RAS I.P. Pavlov Institute of Physiology

References

  1. Горбачевская А.И. и Чивилёва О.Г. Морфологический анализ путей проведения информации в базальных ганглиях млекопитающих. Успехи физиол. наук, 2003, т. 34, № 2, с. 46-63.
  2. Горбачевская А.И. и Чивилёва О.Г. Структурная организация педункулопонтийного тегментального ядра мозга собаки. Морфология, 2004, т. 125, № 5, с. 11-15.
  3. Dua-Sharma S., Sharma K.N. and Jacobs H.L. The canine brain in stereotaxic coordinates. Cambridge, Massachusetts and London, England, The MIT Press, 1970.
  4. Groenewegen H.J., Berendse H.W. and Haber S.N. Organization of the output of the ventral striatopallidal system in the rat: Ventral pallidal efferents. Neuroscience, 1993, v. 57, № 1, p. 113-142.
  5. Hazrati L.-N. and Parent A. Contralateral pallidothalamic and pallidotegmental projections in primates: An anterograde and retrograde labeling study. Brain Res., 1991, v. 567, № 2, p. 212-223.
  6. Keating G.L. and Rye D.B. Functional organization of the brain-stem-basal ganglia interactions as viewed from the pedunculopontine region. In: Basal Ganglia and Thalamus in health and movement disorders. New York, Boston, Dordrecht, London, Moscow, Kluwer Academic / Plenum Publishers. M., 2001, p. 175-188.
  7. Mena-Segovia J., Bolam J.P. and Magill P.J. Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci., 2004, v. 27, № 10, p. 585-588.
  8. Mesulam M.M. Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J. Histochem. Cytochem., 1978, v. 26, № 2, p. 106-117.
  9. Moriizumi T. and Hattori T. Separate neuronal projections of the rat globus pallidus projecting to the subthalamic nucleus, auditory cortex and pedunculopontine tegmental area. Neuroscience, 1992 , v. 46, № 3, p. 701-710.
  10. Moriizumi T., Nakamura Y., Tokuno H. et al. Topographic projections from the basal ganglia to the nucleus tegmenti pedunculopontinus pars compacta of the cat with special reference to pallidal projections. Exp. Brain Res., 1988, v. 71, № 2, p. 298-306.
  11. Myung Sik Lee, Rinne J.O. and Marsden C.D. The pedunculopontine nucleus: its role in the genesis of movement disorders. Yonsei Med. J., 2000, v. 41, № 2, p. 167-184.
  12. Nauta H.J.W. Projections of the pallidal complex: An autoradiographic study in the cat. Neuroscience, 1979, v. 4, № 12, p. 1853-1873.
  13. Parent A. Comparative Neurobiology of the basal ganglia. N. Y., A. Wiley-Interscience publication. John Willy and Sons, 1986.
  14. Parent M. and Parent A. The pallidofugal motor fiber system in primates. Parkinsonism Rel. Disord., 2004, v. 10, p. 203-211.
  15. Rye D.B., Saper C.B., Lee H.J. et al. Pedunculopontine teg-mental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J. Comp. Neurol., 1987, v. 259, № 4, p. 483-528.
  16. Shink E., Sidibe M. and Smith Y. Efferent connections of the internal globus pallidus in the squirrel monkey: II Topography and synaptic organization of pallidal efferents to the pedunculopontine nucleus. J. Comp. Neurol., 1997, v. 382, № 3, p. 348-363.
  17. Steininger T.L., Rye D.B. and Wainer B.H. Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I.Retrograde tracing studies. J. Comp. Neurol., 1992, v. 321, № 4, p. 515-543.
  18. Takakusaki K., Saitoh K., Harada H. and Kashiwayanagi M. Role of basal ganglia-brainstem pathways in the control of motor behavior. Neurosci. Res., 2004, v. 50, № 2, p. 137-151.
  19. Winn P., Brown V.J. and Inglis W.L. On the relationships between the striatum and the pedunculopontine tegmental nucleus. Crit. Rev. Neurobiol., 1997, v. 11, № 4, p. 241-261.
  20. Zahm D.S. Is the caudomedial shell of the nucleus accumbens part of the extended amygdala? A consideration of connections. Critical reviews in neurobiology, 1998, v. 12, № 3, p. 245-265.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 1970 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies