THE AREA CENTRALIS OF THE MAMMALIAN RETINA: MORPHOLOGY AND HISTOGENESIS



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This review summarises both classical and current literature data on the structure and the histogenesis of the retina of the mammalian eye and, in particular, of its specialized region - area centralis. The review describes the modern concepts of
cytoarchitecture of area centralis, as well as the peculiarities of its blood supply, and presents the details of its histogenesis from early embryonic stages to postnatal development

About the authors

K K PANIKYAN

Department of Histology and General Biology, St. Petersburg State Academy of Veterinary Medicine

Department of Histology and General Biology, St. Petersburg State Academy of Veterinary Medicine

F N MAKAROV

Laboratory of Neuromorphology, RAS I.P. Pavlov Institute of Physiology, St. Petersburg

Laboratory of Neuromorphology, RAS I.P. Pavlov Institute of Physiology, St. Petersburg

Ye I CHUMASOV

Department of General and Special Morphology, RAMS Institute of Experimental Medicine, St. Petersburg

Department of General and Special Morphology, RAMS Institute of Experimental Medicine, St. Petersburg

References

  1. Блум Ф., Лейзерсон А. и Хофстедтер Л. Мозг, разум и поведение. М., Мир, 1988.
  2. Будко К.П., Гладкович Н.Г., Максимова Е.В. и др. Нейроонтогенез. М., Наука, 1985.
  3. Винников Я.А. Сетчатка глаза позвоночных. Экспериментальные исследования развития и строения. М., Медгиз, 1947.
  4. Догель А.С. К вопросу о строении сетчатой оболочки у человека. В кн: Гистологический кабинет профессора К.А. Арнштейна в Казани. Киев, Типография Е.Я. Федорова, 1884, с. 113-146.
  5. Догель А.С. Строение нервных клеток сетчатки. СПб., Типография Императорской Академии наук, 1895.
  6. Заварзин А.А. Очерки по эволюционной гистологии нервной системы. Т. 3. Л., Изд-во АН СССР, 1950.
  7. Капустина Е.В. Начальные этапы развития сосудистой сети в сетчатке млекопитающих. Арх. анат., 1960, т. 39, вып. 9, с. 16-23.
  8. Кнорре А.Г. Эмбриональный гистогенез. Л., Медицина, 1971.
  9. Лопашов Г.В. Механизмы развития зачатков глаз в эмбриогенезе позвоночных. М., Изд-во АН СССР, 1960.
  10. Лопашов Г.В. и Строева О.Г. Развитие глаза в свете экспериментальных исседований. М., Изд-во АН СССР, 1963.
  11. Макаров Ф.Н., Холлендер Х. и Стоун Дж. Структура взаимоотношений нейроглии и ганглиозных клеток сетчатки. Морфология, 1999, т. 116, вып. 4, с. 18-22.
  12. Огнев И.Ф. Гистологическое развитие ретины: Дис. на степень доктора мед. лекаря Ив. Огнева. М., 1884.
  13. Оленев С.Н. Развивающийся мозг. Л., Наука, 1978.
  14. Основы сенсорной физиологии. Под ред. Р. Шмидта. М., Мир, 1984.
  15. Соколова С.А. Приспособительные особенности строения глаза насекомоядных в связи с роющим образом жизни. Журн. общ. биол., 1962, т. 23, № 2, с. 135-144.
  16. Строева О.Г. Роль натяжения в дифференцировке сетчатки. Арх. анат., 1965, т. 68, вып. 5, с. 39-45.
  17. Строева О.Г. Морфогенез и врожденные аномалии глаза млекопитающих. М., Наука, 1971.
  18. Техвер Ю.Т. Гистология органов чувств домашних животных. Тарту, изд. Эстонск. сельскохозяйственной акад., 1978.
  19. Фельдман Б.В. и Асфандияров Р.И. Структура развивающейся и дефинитивной сетчатки глаза малого суслика. Морфология, 2003, т. 124, вып. 4, с. 53-56.
  20. Хьюбел Д. Глаз, мозг, зрение. М., Мир, 1990.
  21. Шибкова С.A. О взаимоотношениях сосудов и нервных структур в сетчатке. Арх. анат., 1960, т. 38, вып. 2, с. 39-47.
  22. Школьник-Яррос Е.Г. и Калинина А.В. Нейроны сетчатки. М., Наука, 1986.
  23. Ahnelt P., Schubert C., Kübber-Heiss A. et al. Independend variation of retinal S and M cone photoreceptor topographies: A survey of four families of mammals. Vis. Neurosci., 2006, v. 23, № 3-4, p. 429-435.
  24. Altunay H. Fine structure of the retinal pigment epithelium, Bruch's membrane and choriocapillaris in the horse. Anat. Histol. Embryol., 2000, v. 29, № 3, p. 135-139.
  25. Altunay H. Fine structure of the retinal pigment epithelium, Bruch's membrane and choriocapillaris in the camel. Anat. Histol. Embryol., 2007, v. 36, № 2, p. 116-120.
  26. Ault S. and Leventhal A. Postnatal development of different classes of cat retinal ganglion cells. J. Comp. Neurol., 1994, v. 339, № 1, p. 106-116.
  27. Bartelmez G. Neural crest from the forebrain in mammals. Anat. Rec., 1960, v. 138, p. 269-281.
  28. Bodnarenko S., Yeung G., Thomas L. et al. The development of retinal ganglion cell dendritic stratification in ferrets. Neuroreport, 1999, v. 10, № 14, p. 2955-2959.
  29. Boycott B. and Wässle H. The morphological types of ganglion cells of the domestic cat's retina. J. Physiol., 1974, v. 240, № 2, p. 397-419.
  30. Casini G., Rickman D., Trasati L. et al. Postnatal development of parvalbumin immunoreactive amacrine cells in the rabbit retina. Brain. Res. Dev. Brain. Res., 1998, v. 111, № 1, p. 107-117.
  31. Chan-Ling T. Glial, vascular, and neuronal cytogenesis in whole-mount cat retina. Microsc. Res. Tech., 1997, v. 36, № 1, p. 1-16.
  32. Chan-Ling T., Gock B. and Stone J. The effect of oxygen on vasoformative cell division. Evidence that «physiological hypoxia» in the stimulus for normal retinal vasculogenesis. Invest. Ophthalmol. Vis. Sci., 1995, v. 36, № 7, p. 1201-1214.
  33. Chan-Ling T., Halasz P. and Stone J. Development of retinal vasculature in the cat: processes and mechanisms. Curr. Eye Res., 1990, v. 9, № 5, p. 459-478.
  34. Chan-Ling T., McLeod D., Hughes S. et al. Astrocyte-endothelial cell relationships during human retinal vascular development. Invest. Ophthalmol. Vis. Sci., 2004, v. 45, № 6, p. 2020-2032.
  35. Connaughton V., Graham D. and Nelson R. Identification and morphological classification of horizontal, bipolar, and amacrine cells within the zebrafish retina. J. Comp. Neurol., 2004, v. 477, № 4, p. 371-385.
  36. Cornish E., Hendrickson A. and Provis J. Distribution of shortwavelength-sensitive cones in human fetal and postnatal retina: early development of spatial order and density profiles. Vision Res., 2004, v. 44, № 17, p. 2019-2026.
  37. Curcio C. and Allen K. Topography of ganglion cells in human retina. J. Comp. Neurol., 1990, v. 300, № 1, p. 5-25.
  38. Curcio C., Sloan K., Kalina R. et al. Human photoreceptor topography. J. Comp. Neurol., 1990, v. 292, № 4, p. 497-523.
  39. Dann J., Buhl E. and Peichl L. Postnatal dendritic maturation of alpha and beta ganglion cells in the cat retina. J. Neurosci., 1988, v. 8, № 5, p. 1485-1499.
  40. Deich C., Seifert B., Peichl L. et al. Development of dendritic trees of rabbit retinal alpha ganglion cells: relation to differential retinal growth. Vis. Neurosci., 1994, v. 11, № 5, p. 979-988.
  41. Distler C. and Dreher Z. Glia cells of the monkey retina. II. M ller cells. Vision Res., 1996, v. 36, № 16, p. 2381-2394.
  42. Distler C. and Kopatz K. Macroglia cells in the macaque monkey retina. Rev. Bras. Biol., 1996, v. 1, № 1, p. 53-67.
  43. Distler C., Weigel H. and Hoffman K. Glia cells of the monkey retina. I. Astrocytes. J. Comp. Neurol., 1993, v. 333, № 1, p. 134-147.
  44. Dowling J. The Retina. An Approachable Part of the Brain, Harvard University Press, Cambridge, Mass., 1987.
  45. van Driel D., Provis J. and Billson F. Early differentiation of ganglion, amacrine, bipolar, and M ller cells in the developing fovea of human retina. J. Comp. Neurol., 1990, v. 291, № 2, p. 203-219.
  46. Famiglietti E. and Kolb H. A Bistratifield amacrine cells and synaptic circuitry in the inner plexiform layer of the retina. Brain Res., 1975, v. 84, № 2, p. 293-300.
  47. Farah M. Neurogenesis and cell death in the ganglion cell layer of vertebrate retina. Brain. Res. Rev., 2006, v. 52, № 2, p. 264-274.
  48. Filipek S. Organization of rhodopsin molecules in native membranes of rod cells - an old theoretical model compared to new experimental data. J. Mol. Model, 2005, v. 11, № 4-5, p. 385-391.
  49. Fucuda Y., Hsiao C., Watanabe M. et al. Morphological correlates of physiologically identified Y-, X-, and W-cells in cat retina. J. Neurophysiol., 1984, v. 52, № 6, p. 999-1013.
  50. Hendrickson A. A morphological comparison of foveal development in man and monkey. Eye, 1992, v. 6, № 2, p. 136-144.
  51. Hendrickson A., Djajadi H., Erickson A. et al. Development of the human retina in the absence of ganglion cells. Exp. Eye Res., 2006, v. 83, № 4, p. 920-931.
  52. Hendrickson A., Troilo D., Rossin D. et al. Development of the neural retina and its vasculature in the marmoset Callithrix jacchus. J. Comp. Neurol., 2006, v. 497, № 2, p. 270-286.
  53. Hendrickson A. and Yuodelis C. The morphological development of the human fovea. Ophthalmology, 1984, v. 91, № 6, p. 603-612.
  54. Henle I. Ueber die aussere Kornerschicht der Retina. Univ. zu Gottingen, 1864.
  55. Holden A. Classifying and comparing retinal ganglion cells. Brain Behav. Evol., 1981, v. 18, № 4, p. 188-193.
  56. Holländer H., Makarov F., Dreher Z. et al. Structure of the macroglia of the retina: sharing and division of labour between astrocytes and Müller cells. J. Comp. Neurol., 1991, v. 313, № 4, p. 587-603.
  57. Hutsler J. and Chalupa L. Development of neuropeptide Y immunoreactive amacrine and ganglion cells in the pre- and postnatal cat retina. J. Comp. Neurol., 1995, v. 361, № 1, p. 152-164.
  58. Kirby M. and Steinke T. Morphogenesis of retinal ganglion cells during formation of the fovea in the Rhesus macaque. Vis. Neurosci., 1992, v. 9, № 6, p. 603-616.
  59. Kolb H., Mariani A. and Gallego A. A second type of horizontal cells in the monkey retina. J. Comp. Neurol., 1980, v. 189, № 1, p. 31-44.
  60. Kolb H., Nelson R. and Mariani A. Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study. Vision Res., 1981, v. 21, № 11, p. 1081-1114.
  61. La Vail M., Rapaport D. and Rakic P. Cytogenesis in the monkey retina. J. Comp. Neurol., 1991, v. 309, № 5, p. 86-114.
  62. Levental A., Ault S., Vitek D. et al. Extrinsic determinants of retinal ganglion cell development in primates. J. Comp. Neurol., 1989, v. 286, № 2, p. 170-189.
  63. Li Z., Da F. and Costa L. Investigating shape function relationship in retinal ganglion cells. J. Integr. Neurosci., 2002, v. 1, № 2, p. 195-215.
  64. Lia B., Williams R. and Chalupa L. Formation of retinal ganglion cell topography during prenatal development. Science, 1987, v. 236, № 4803, p. 848-851.
  65. Liets L. and Chalupa L. Glutamate-mediated responses in developing retinal ganglion cells. Prog. Brain Res., 2001, v. 134, p. 1-16.
  66. Ling T., Mitrofanis J. and Stone J. Origin of retinal astrocytes in the rat: evidence of migration from the optic nerve. J. Comp. Neurol., 1989, v. 286, № 3, p. 345-352.
  67. Ling T. and Stone J. The development of astrocytes in the cat retina: evidence of migration from the optic nerve. Brain. Res. Dev. Brain. Res., 1988, v. 44, № 1, p. 73-85
  68. Makaretz M. and Levine R. A light microscopic study of the bifoveate retina in the lizard Anolis carolinensis: General observation and convergence rations. Vision Res., 1980, v. 20, № 8, p. 679-686.
  69. Mangrum W., Dowling J. and Cohen E. A morphological classification of ganglion cells in the zebrafish retina. Vis. Neurosci., 2002, v. 19, № 6, p. 767-779.
  70. Mann I. The Development of the Human Eye, 3rd ed. London, British Medical Association, 1964.
  71. Maslim J., Webster M. and Stone J. Stages in the structural differentiation of retinal ganglion cells. J. Comp. Neurol., 1986, v. 254, № 3, p. 382-402.
  72. Miller E., Tran M., Wong G. et al. Morphological differentiation of bipolar cells in the ferret retina. Vis. Neurosci., 1999, v. 16, № 6, p. 1133-1144.
  73. Milleret C., Buisseret P. and Gary-Bobo E. Area centrais position relative to optic disc projection in kittens as a function of age. Invest. Ophthalmol. Vis. Sci., 1988, v. 29, № 8, p. 1299-1305.
  74. Missoten L. Estimation of the ratio of cones to neurons in the fovea of the human retina. Invest. Ophthalmol., 1974, v. 13, № 12, p. 1045-1049.
  75. Miyake E., Imagawa T. and Uehara M. Fine structure of the retino-optic nerve junction in dogs. J. Vet. Med. Sci., 2004, v. 66, № 12, p. 1549-1554.
  76. Müller H. Zur Histologie der Netzhaut. Z. wiss. Zool., 1851, Bd. 3, № 2, S. 234-277.
  77. O'Brien K., Schulte D. and Hendrickson A. Expression of photoreceptor-associated molecules during human fetal eye development. Mol. Vis., 2003, v. 28, № 9, p. 401-409.
  78. Pan F. and Massey S. Rod and cone input to horizontal cells in the rabbit retina. J. Comp. Neurol., 2007, v. 500, № 5, p. 815-831.
  79. Polyak S. The Retina. Chicago, Univ. Press, 1941.
  80. Provis J. Development of the primate retinal vasculature. Prog. Retin. Eye Res., 2001, v. 20, № 6, p. 779-821.
  81. Provis J., Billson F. and Russel P. Ganglion cell topography in human fetal retinae. Invest. Ophthalmol. Vis. Sci., 1983, v. 24, № 9, p. 1316-1320.
  82. Provis J., Diaz C. and Dreher B. Ontogeny of the primate fovea: a central issue in retinal development. Prog. Neurobiol., 1998, v. 54, № 5, p. 549-580.
  83. Provis J. and van Driel D. Retinal development in humans: the roles of differential drowth rates, cell migration and naturally occurring cell death. Aust N. Z. J. Ophthalmol., 1985, v. 13, № 2, p. 125-133.
  84. Provis J., van Driel D., Billson F. et al. Development of the human retina: patterns of cell distribution and redistribution in the ganglion cell layer. J. Comp. Neurol., 1985а, v. 233, № 4, p. 429-451.
  85. Provis J., van Driel D., Billson F. et al. Human fetal optic nerve: overproduction and elimination of retinal axons during development. J. Comp. Neurol., 1985, v. 238, № 1, p. 92-100.
  86. Provis J., Sandercoe T. and Hendrickson A. Astrocytes and blood vessels define the foveal rim during primate retinal development. Invest. Ophthalmol., 2000, v. 41, № 10, p. 2827-2836.
  87. Ramoa A., Campbell G. and Shatz C. Dendritic growth and remodeling of cat retinal ganglion cells during fetal and postnatal development. J. Neurosci., 1988, v. 8, № 11, p. 4239-4261.
  88. Ramon-y-Cajal S. The structure of the retina. Springfield, Thomas, 1972.
  89. Rapaport D., Robinson S. and Stone J. Cytogenesis in the developing retina of the cat. Aust. N. Z. J. Ophthalmol., 1985, v. 13, № 2, p. 113-124.
  90. Rapaport D. and Stone J. The area centralis of the retina in the cat and other mammals: focal point for function and development of the visual system. Neuroscience, 1984, v. 11, № 2, p. 289-301.
  91. Reichenbach A., Schnitzer J., Friedrich A. et al. Development of the rabbit retina. I. Size of eye and retina, and postnatal cell proliferation. Anat. Embryol. (Berlin), 1991, v. 183, № 3, p. 287-297.
  92. Robinson S. Ontogeny of the area centralis in the cat. J. Comp. Neurol., 1987, v. 255, № 1, p. 50-67.
  93. Robinson S. Cell death in the inner and outer nuclear layers of the developing cat retina. J. Comp. Neurol., 1988, v. 267, № 4, p. 507-515.
  94. Robinson S. and Dreher Z. M ller cells in adult rabbit retinae: morphology, distribution and implications for function and development. J. Comp. Neurol., 1990, v. 292, № 2, p. 178- 192.
  95. Robinson S., Horsburgh G., Dreher B. et al. Changes in the numbers of retinal ganglion cells and optic nerve axons in the developing albino rabbit. Brain Res., 1987, v. 432, № 2, p. 161-174.
  96. Robinson S., Rapaport D. and Stone J. Cell division in the developing cat retina occurs in two zones. Brain Res., 1985, v. 351, № 1, p. 101-109.
  97. Rodger J., Dunlop S., Beaver R. et al. The development and mature organization of the end-artery retinal vasculature in a marsupial, the dunnart Sminthopsis crassicaudata. Vision Res., 2001, v. 41, № 1, p. 13-21.
  98. Rowe M. and Dreher B. Functional morphology of beta cells in the area centralis of the cat's retina: a model for evolution of central retinal specialisations. Brain Behav. Evol., 1982, v. 21, № 1, p. 1-23.
  99. Sengelaub D., Dolan R. and Finlay B. Cell generation, death, and retinal growth in the development of the hamster retinal ganglion cell layer. J. Comp. Neurol., 1986, v. 246, № 4, p. 527-543.
  100. Sharma R. and Ehinger B. Mitosis in developing rabbit retina: an immunohistochemical study. Exp. Eye Res., 1997, v. 64, № 1, p. 97-106.
  101. Sharma R., O'Learly T. , Fields C. et al. Development of the outer retina in the mouse. Brain. Res. Dev. Brain. Res., 2003, v. 145, № 1, p. 93-105.
  102. Shatz C. Competitive interactions between retinal ganglion cells during prenatal development. J. Neurobiol., 1990, v. 21, № 1, p. 197-211.
  103. Skaliora I., Scobey R. and Chalupa L. Prenatal development of excitability in cat retinal ganglion cells: action potentials and sodium currents. J. Neurosci., 1993, v. 13, № 1, p. 313-323.
  104. Stretavan D. and Shatz C. Prenatal development of retinal ganglion cells axons: segregation into eye-specific layers within the cat's lateral geniculate nucleus. J. Neurosci., 1986, v. 6, № 1, p. 234-251.
  105. Stone J. A quantitative analysis of the distribution of ganglion cells in the cat's retina. J. Comp. Neurol., 1965, v. 124, № 3, p. 337-352.
  106. Stone J., Itin A., Alon T. et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci., 1995, v. 15, № 7, p. 4738-4747.
  107. Stone J., Makarov F. and Holl nder H. The glial ensheathment of the soma and axon hillock of retinal ganglion cells. Vis. Neurosci., 1995, v. 12, № 2, p. 273-279.
  108. Tetsumoto K., Sugiura S., Asai T. et al. Retinal ganglion cell topography during prenatal development. Nippon Ganka Gakkai Zasshi., 1990, v. 94, № 10, p. 941-950.
  109. Tootle J. Early postnatal development of visual function in ganglion cells of the cat retina. J. Neurophysiol., 1993, v. 69, № 5, p. 1645-1660.
  110. Wadhwa S., Jotwani G. and Bijlani V. Human retinal ganglion cell development in early prenatal period using carbocyanine dye Dil. Neuroscience, 1993, v. 157, № 2, p. 175-178.
  111. Walsh C. and Polley E. The topography of ganglion cell production in the cat's retina. J. Neurosci., 1985, v. 5, № 3, p. 741-750.
  112. Webb S. and Kaas I. The sizes and distribution of ganglion cells in the retina of the owl monkey, Aotus trivirgatus. Vision Res., 1976, v. 16, № 11, p. 1247-1254.
  113. Weber A., Kalil R. and Stanford L. Dendritic field development of retinal ganglion cells in the cat following neonatal damage to visual cortex: evidence for cell class specific interactions. J. Comp. Neurol., 1998, v. 390, № 4, p. 470-480.
  114. Wong R. and Hughes A. Developing neuronal populations of the cat retinal ganglion cell layer. J. Comp. Neurol., 1987, v. 262, № 4, p. 473-495.
  115. Yamasaki E., Krupnik V. and Chun L. Developmental study of Müller cells in the rat retina using a new monoclonal antibody, RT10F7. Neuroscience, 1998, v. 85, № 2, p. 627-636.
  116. Yamasaki E. and Ramoa A. Dendritic remodeling of retinal ganglion cell during development of the rat. J. Comp. Neurol., 1993, v. 329, № 2, p. 277-289.
  117. Zhang W., Ito Y., Berlin E. et al. Role of hypoxia during normal vessel development and in experimental retinopathy of prematurity. Invest. Ophthalmol., 2003, v. 44, № 7, p. 3119-3123.
  118. Zhang J., Yang Z. and Wu S. Development of cholinergic amacrine cells in visual activity-dependent in the postnatal mouse retina. J. Comp. Neurol., 2005, v. 484, № 3, p. 331-343.
  119. Zimmerman R., Polley E. and Fortney R. Cell birthdays rate of differentiation of ganglion and horizontal cells of the developing cat's retina. J. Comp. Neurol., 1988, v. 274, № 1, p. 77-90.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 1970 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies