Influence of dark deprivation on the ultrastructure and mitochondrial apparatus of rat hepatocytes

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Melatonin is a hormone with a wide range of biological activities. The diversity of biological regulatory effects inherent in MT involves this hormone in the formation of adaptive reactions and in the pathogenesis of various diseases. А decrease оf мelatonin secretion due to exposure to light at night is observed in a significant proportion of people. A number of previous studies have shown that melatonin deficiency, causes significant changes in the structure of the liver of laboratory animals. The state of ultrastructural features of hepatocytes, and in particular their mitochondria, under conditions of dark deprivation remains poorly understood.

AIM: To study the ultrastructural features of liver hepatocytes of male Wistar rats under conditions of 21-day dark deprivation.

MATERIALS AND METHODS: The study was performed on 40 male Wistar rats, divided into 2 groups: group 1 was kept under a fixed light regime; group 2 was kept under dark deprivation conditions for 24 h a day. Liver samples, were analyzed using a transmission electron microscope. Micromorphometric methods were used to assess the mitochondrial apparatus of hepatocytes. Statistical processing of the results was performed in the GraphPad Prism v. 8.4.1 program (GraphPad, USA).

RESULTS: In hepatocytes of rats of II group, dark deprivation causes a transformation in the shape of the nuclei, accompanied by swelling of the cytoplasm and the presence of a significant number of lipid-containing vacuoles. Mitochondria are characterized by pronounced hyperplasia, size polymorphism, high electron density, and disordered cristae orientation. In the cytoplasm, the phenomenon of shedding of ribosomes from the endoplasmic reticulum is observed. The number of glycogen granules is significantly reduced. The studied micromorphometric parameters of mitochondria are significantly reduced relative to the control.

CONCLUSIONS: The study suggests that melatonin deficiency, resulting from dark deprivation, leads to a number of significant ultrastructural changes in hepatocytes, especially their mitochondrial apparatus.

Full Text

Restricted Access

About the authors

David A. Areshidze

Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery

Author for correspondence.
Email: labcelpat@mail.ru
ORCID iD: 0000-0003-3006-6281
SPIN-code: 4348-6781

Cand. Sci. (Biology)

Russian Federation, Moscow

References

  1. Chen L, Gu T, Li B, et al. Delta-like ligand 4/DLL4 regulates the capillarization of liver sinusoidal endothelial cell and liver fibrogenesis. Biochim Biophys Acta Mol Cell Res. 2019;1866(10):1663–1675. doi: 10.1016/j.bbamcr.2019.06.011
  2. Wang J, Mauvoisin D, Martin E, et al. Nuclear proteomics uncovers diurnal regulatory landscapes in mouse liver. Cell Metab. 2017;25(1):102–117. doi: 10.1016/j.cmet.2016.10.003
  3. Hu S, Yin S, Jiang X, et al. Melatonin protects against alcoholic liver injury by attenuating oxidative stress, inflammatory response, and apoptosis. Eur J Pharmacol. 2009;616(1-3):287–292. doi: 10.1016/j.ejphar.2009.06.044
  4. Wu N, Meng F, Zhou T, et al. Prolonged darkness reduces liver fibrosis in a mouse model of primary sclerosing cholangitis by miR-200b down-regulation. FASEB J. 2017;31(10):4305–4324. doi: 10.1096/fj.201700097R
  5. Berezovskiy VA, Yanko RV, Litovka IG, Volovich OI. Exogenous melatonin effects on the reactivity of rats liver parenchima. Ukraїns’kij morfologіchnij al’manah. 2012;10(4):178–181. EDN: RPDYJB
  6. Yanko R. The combined influence of the intermittent normobaric hypoxia and melatonin on morphofunctional activity of the rat’s liver parenchyma. Bulletin of Taras Shevchenko National University of KyivProblems of Physiological Functions Regulation. 2018;25(2):36–40.
  7. Abbasoglu O, Berker M, Ayhan A, et al. The effect of the pineal gland on liver regeneration in rats. J Hepatol. 1995;23(5):578–581. doi: 10.1016/0168-8278(95)80065-4
  8. Pan M, Song YL, Xu JM, Gan HZ. Melatonin ameliorates nonalcoholic fatty liver induced by high-fat diet in rats. J Pineal Res. 2006;41(1):79–84. doi: 10.1111/j.1600-079X.2006.00346.x
  9. Owino S, Contreras-Alcantara S, Baba K, Tosini G. Melatonin signaling controls the daily rhythm in blood glucose levels independent of peripheral clocks. PLoS One. 2016;11(1):e0148214. doi: 10.1371/journal.pone.0148214
  10. Fosslien E. Mitochondrial medicine — molecular pathology of defective oxidative phosphorylation. Ann Clin Lab Sci. 2001;31(1):25–67.
  11. Acuña Castroviejo D, Martín M, Macías M, et al. Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res. 2001;30(2):65–74. doi: 10.1034/j.1600-079x.2001.300201.x
  12. Reiter RJ, Tan DX, Mayo JC, et al. Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol. 2003;50(4):1129–1146. doi: 10.18388/abp.2003_3637
  13. Balkanov AS, Rozanov ID, Golanov AV, et al. Endothelium changes of peritumoral zone capillaries after brain glioblastoma adjuvant radiation therapy. Clinical and Experimental Morphology. 2021;10(1):33–40. EDN: KOULJY doi: 10.31088/CEM2021.10.1.33-40
  14. Kurbat MN, Kravchuk RI, Ostrovskaya AB. Effect of melatonin on the morphology of mitochondria and other cellular components of the hepatocyte. Hepatology and Gastroenterology. 2018;2(2):138–142. EDN: TTCMUQ
  15. Bezborodkina NN, Okovity SV, Kudryavtseva MV, et al. Morphometry of hepatocyte mitochondrial apparatus in normal and cirrhotic rat liver. Tsitologiya. 2008;50(3):228–237. EDN: ILHEHH
  16. Chrustek A, Olszewska-Słonina D. Melatonin as a powerful antioxidant. Acta Pharm. 2020;71(3):335–354. doi: 10.2478/acph-2021-0027
  17. Xiong Y, Ma C, Li Q, et al. Melatonin ameliorates simulated-microgravity-induced mitochondrial dysfunction and lipid metabolism dysregulation in hepatocytes. FASEB J. 2023;37(9):e23132. doi: 10.1096/fj.202301137R
  18. Areshidze DA, Kakturskiy LV, Mikhaleva LM, Kozlova MA. Influence of dark deprivation and chronic alcohol intoxication on the liver of rats. Morphology. 2023;161(2):23–35. doi: 10.17816/morph.623050
  19. Hatzis G, Ziakas P, Kavantzas N, et al. Melatonin attenuates high fat diet-induced fatty liver disease in rats. World J Hepatol. 2013;5(4):160–169. doi: 10.4254/wjh.v5.i4.160
  20. Terziev D, Terzieva D. Experimental data on the role of melatonin in the pathogenesis of nonalcoholic fatty liver disease. Biomedicines. 2023;11(6):1722. doi: 10.3390/biomedicines11061722
  21. Ku H, Kim Y, Kim AL, et al. Protective effects of melatonin in high-fat diet-induced hepatic steatosis via decreased intestinal lipid absorption and hepatic cholesterol synthesis. Endocrinol Metab (Seoul). 2023;38(5):557–567. doi: 10.3803/EnM.2023.1672
  22. Lebeaupin C, Vallée D, Hazari Y, et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol. 2018;69(4):927–947. doi: 10.1016/j.jhep.2018.06.008
  23. Fernández A, Ordóñez R, Reiter RJ, et al. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J Pineal Res. 2015;59(3):292–307. doi: 10.1111/jpi.12264
  24. Watanabe K, Katagiri S, Hattori A. Melatonin and glucose metabolism. Glycative Stress Research. 2020;7(1):105–109.
  25. Devin A, Rigoulet M. Mechanisms of mitochondrial response to variations in energy demand in eukaryotic cells. Am J Physiol Cell Physiol. 2007;292(1):C52–C58. doi: 10.1152/ajpcell.00208.2006
  26. Baker N, Patel J, Khacho M. Linking mitochondrial dynamics, cristae remodeling and supercomplex formation: how mitochondrial structure can regulate bioenergetics. Mitochondrion. 2019;49:259–268. doi: 10.1016/j.mito.2019.06.003
  27. Guan Q, Wang Z, Cao J, et al. Mechanisms of melatonin in obesity: a review. Int J Mol Sci. 2021;23(1):218. doi: 10.3390/ijms23010218
  28. Guha M, Maity P, Choubey V, et al. Melatonin inhibits free radicalmediated mitochondrial-dependent hepatocyte apoptosis and liver damage induced during malarial infection. J Pineal Res. 2007;43(4):372–381. doi: 10.1111/j.1600-079X.2007.00488.x
  29. Wu J, Danielsson A. Detection of hepatic fibrogenesis: a review of available techniques. Scand J Gastroenterol. 1995;30(9):817–825. doi: 10.3109/00365529509101585

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Ultrastructure of hepatocytes of rats of the control group (transmission electron microscopy, ×6700). Here: АЭС — agranular endoplasmic reticulum; ГЭС — granular endoplasmic reticulum; M — mitochondria; Я — nucleus

Download (362KB)
3. Fig. 2. Ultrastructure of hepatocytes in experimental group rats (transmission electron microscopy): a — ×10 000, b — ×14 000. Here: ГЭС — granular endoplasmic reticulum; B — vacuole; Л — lipids; M — mitochondria; X — chromatin; Я — nucleus

Download (337KB)

Copyright (c) 2024 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: № 0110212 от 08.02.1993.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies