Biocompatibility of barium-doped dicalcium phosphate dihydrate obtained via low-temperature synthesis for use in regenerative medicine
- Authors: Smirnova P.V.1, Teterina A.Y.1, Smirnov I.V.1, Minaychev V.V.1,2, Salynkin P.S.2, Kobyakova M.I.1,2, Pyatina K.V.1,2, Meshcheriakova E.I.2, Fadeeva I.S.1,2, Barinov S.M.1, Komlev V.S.1
-
Affiliations:
- Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
- Issue: Vol 163, No 3 (2025)
- Pages: 220-233
- Section: Original Study Articles
- Submitted: 25.11.2024
- Accepted: 03.04.2025
- Published: 06.08.2025
- URL: https://j-morphology.com/1026-3543/article/view/642219
- DOI: https://doi.org/10.17816/morph.642219
- EDN: https://elibrary.ru/VDYDOJ
- ID: 642219
Cite item
Abstract
BACKGROUND: Synthetic materials based on calcium phosphate compounds (CPCs) are increasingly used in modern regenerative medicine to stimulate bone tissue regeneration. AIM: The work aimed to assess key parameters of biocompatibility in vitro, including the content of acidic compartments and reactive oxygen species production, during the interaction of human macrophages with low-temperature-synthesized barium doped dicalcium phosphate dihydrate under normal and lipopolysaccharide (LPS)-induced inflammatory conditions.
METHODS: Morphology and qualitative and quantitative elemental composition of dicalcium phosphate dihydrate (DCPD) powder and its barium-doped form (DCPD-Ba) were evaluated using scanning electron microscopy, infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Cell viability, lysosomal content, and reactive oxygen species production were assessed by flow cytometry after co-culturing primary human macrophages with DCPD and DCPD-Ba under both normal and LPS-stimulated conditions.
RESULTS: Barium-doped DCPD samples were synthesized using a low-temperature method at Ba²⁺ concentrations of 1%, 5%, and 10% of the theoretically possible substitution level (theor.%). For each variant, the calculated actual substitution percentage amounted to 0.62, 1.43, and 6.43 atomic %, respectively. X-ray diffraction analysis confirmed complete transformation of the initial α-tricalcium phosphate into DCPD at all Ba2+ concentrations. The infrared spectroscopy data validated the conformity of DCPD structure to the reference standard across all Ba2+ doping levels. Doping with Ba2+ ions has been found to enhance the hydration activity of DCPD and cause deformation of its crystal structure. The results of in vitro studies indicate that substitution of Ca2+ with Ba2+ in the DCPD structure does not affect the cytotoxic properties of the material. Furthermore, DCPD-Ba did not suppress lysosomal biogenesis and promoted reactive oxygen species production in non-activated macrophages, whereas suppressing reactive oxygen species production under LPS-induced inflammatory conditions.
CONCLUSION: Thus, both DCPD and its Ba substituted variants represent promising candidates for incorporation into materials intended for regenerative medicine. The proposed low temperature synthesis of Ba2+-substituted DCPD is of considerable interest for the development of specialized osteoplastic CPC based materials. The most effective DCPD variant, with the highest Ca2+-to-Ba2+ substitution level (6.43 atomic %), demonstrated potential regulatory activity on activated macrophages (i.e., under inflammatory conditions). This property may be of critical importance for modulating the immune response and promoting effective osteointegration of the material in the recipient’s body.
Full Text

About the authors
Polina V. Smirnova
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: smirnova-imet@mail.ru
ORCID iD: 0000-0002-5437-7052
SPIN-code: 5022-2890
Russian Federation, Moscow
Anastasia Y. Teterina
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: teterina_imet@mail.ru
ORCID iD: 0009-0005-1405-2607
SPIN-code: 5514-8643
Cand. Sci. (Engineering)
Russian Federation, MoscowIgor V. Smirnov
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: baldyriz@gmail.com
ORCID iD: 0000-0003-3602-0276
SPIN-code: 3680-5330
Russian Federation, Moscow
Vladislav V. Minaychev
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences; Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Email: vminaychev@gmail.com
ORCID iD: 0000-0002-8498-4566
SPIN-code: 9217-1374
Cand. Sci. (Biology)
Russian Federation, Moscow; PushchinoPavel S. Salynkin
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Email: salynkin.p.s@gmail.com
ORCID iD: 0009-0002-0959-8072
SPIN-code: 2594-8099
Russian Federation, Pushchino
Margarita I. Kobyakova
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences; Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Email: kobyakovami@gmail.com
ORCID iD: 0000-0002-6846-9994
SPIN-code: 5611-8437
Russian Federation, Moscow; Pushchino
Kira V. Pyatina
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences; Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Email: kirapyatina01@gmail.com
ORCID iD: 0009-0003-0194-6922
SPIN-code: 2935-4432
Russian Federation, Moscow; Pushchino
Elena I. Meshcheriakova
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Email: elena.mesh2311@gmail.com
ORCID iD: 0009-0001-6148-5211
SPIN-code: 6332-6772
Russian Federation, Pushchino
Irina S. Fadeeva
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences; Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences
Author for correspondence.
Email: fadeeva.iteb@gmail.com
ORCID iD: 0000-0002-1709-9970
SPIN-code: 6475-1023
Cand. Sci. (Biology)
Russian Federation, Moscow; PushchinoSergey M. Barinov
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: barinov_s@mail.ru
ORCID iD: 0000-0003-4544-2817
SPIN-code: 5876-1906
Scopus Author ID: 7004365385
Dr. Sci. (Engineering), Professor
Russian Federation, MoscowVladimir S. Komlev
Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Email: komlev@mail.ru
ORCID iD: 0000-0003-2068-7746
SPIN-code: 2668-0066
Dr. Sci. (Engineering), Professor
Russian Federation, MoscowReferences
- Navarro M, Aparicio C, Charles-Harris M, et al. Development of a biodegradable composite scaffold for bone tissue engineering: physicochemical, topographical, mechanical, degradation, and biological properties. In: Julius Vancso G, editor. Ordered polymeric nanostructures at surfaces. Heidelberg: Springer Berlin; 2006. P:209–231. doi: 10.1007/12_068
- Bose S, Fielding G, Tarafder S, Bandyopadhyay A. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol. 2013;31(10):594–605. doi: 10.1016/j.tibtech.2013.06.005
- Liu S, Lin Z, Qiao W, et al. Cross-talk between biometal ions and immune cells for bone repair. Engineered Regeneration. 2024;5:375–408. doi: 10.1016/j.engreg.2024.01.003 EDN: VJRRDN
- Goldberg MA, Krohicheva PA, Fomin AS, et al. In situ magnesium calcium phosphate cements formation: From one pot powders precursors synthesis to in vitro investigations. Bioact Mater. 2020;5(3):644–658. doi: 10.1016/j.bioactmat.2020.03.011 EDN: CFYWUC
- Teterina AY, Smirnov IV, Fadeeva IS, et al. Octacalcium phosphate for bone tissue engineering: synthesis, modification, and in vitro biocompatibility assessment. Int J Mol Sci. 2021;22(23):12747. doi: 10.3390/ijms222312747 EDN: LUUCKM
- Golubchikov D, Evdokimov P, Zuev D, et al. Three-dimensional-printed molds from water-soluble sulfate ceramics for biocomposite formation through low-pressure injection molding. Materials (Basel). 2023;16(8):3077. doi: 10.3390/ma16083077 EDN: JFVLIL
- Kovrlija I, Locs J, Loca D. Incorporation of barium ions into biomaterials: dangerous liaison or potential revolution? Materials. 2021;14(19):5772. doi: 10.3390/ma14195772 EDN: YDFSQT
- Oskarsson A. Barium. In: Nordberg GF, Fowler BA, Nordberg M, editors. Handbook on the toxicology of metals. 4th edition. Academic Press (Elsevier); 2015. P:625–634. doi: 10.1016/B978-0-444-59453-2.00029-9
- Kravchenko J, Darrah TH, Miller RK, et al. A review of the health impacts of barium from natural and anthropogenic exposure. Environ Geochem Health. 2014;36(4):797–814. doi: 10.1007/s10653-014-9622-7 EDN: YBTVCE
- U.S. Environmental Protection Agency. Toxicological review of barium and compounds [Internet]. In: Support of Summary Information on the Integrated Risk Information System (IRIS); EPA: Washington: Integrated Risk Information System (IRIS), 1998 [cited 03 June 2025]. Available at: https://iris.epa.gov/static/pdfs/0010tr.pdf
- Emsley J. Nature’s building blocks: an A-Z guide to the elements. Oxford: Oxford University Press; 2011. ISBN: 9780199605637
- Poddalgoda D, Macey K, Assad H, Krishnan K. Development of biomonitoring equivalents for barium in urine and plasma for interpreting human biomonitoring data. Regul Toxicol Pharmacol. 2017;86:303–311. doi: 10.1016/j.yrtph.2017.03.022
- Majumdar S, Hira SK, Tripathi H, et al. Synthesis and characterization of barium-doped bioactive glass with potential anti-inflammatory activity. Ceramics International. 2021;47(5):7143–7158. doi: 10.1016/j.ceramint.2020.11.068 EDN: RVTMIR
- Liu H, Zhang Z, Gao C, et al. Enhancing effects of radiopaque agent BaSO4 on mechanical and biocompatibility properties of injectable calcium phosphate composite cement. Mater Sci Eng C Mater Biol Appl. 2020;116:110904. doi: 10.1016/j.msec.2020.110904 EDN: JWQYPT
- Arepalli SK, Tripathi H, Vyas VK, et al. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass. Mater Sci Eng C Mater Biol Appl. 2015;49:549–559. doi: 10.1016/j.msec.2015.01.049 EDN: YFCBKH
- Li G, Zhang G, Sun R, Wong CP. Mechanical strengthened alginate/ polyacrylamide hydrogel crosslinked by barium and ferric dual ions. J Mater Sci. 2017;52:8538–8545. doi: 10.1007/s10853-017-1066-x EDN: FZUBOL
- Gasa JV, Weiss RA, Shaw MT. Ionic crosslinking of ionomer polymer electrolyte membranes using barium cations. Journal of Membrane Science. 2007;304(1–2):173–180. doi: 10.1016/j.memsci.2007.07.031 EDN: KKJQWR
- Zellermann AM, Bergmann D, Mayer C. Cation induced conformation changes in hyaluronate solution. European Polymer Journal. 2013;49(1):70–79. doi: 10.1016/j.eurpolymj.2012.09.025 EDN: YDHPKP
- Alizadeh Sardroud H, Nemati S, Baradar Khoshfetrat A, et al. Barium-cross-linked alginate-gelatine microcapsule as a potential platform for stem cell production and modular tissue formation. J Microencapsul. 2017;34(5):488–497. doi: 10.1080/02652048.2017.1354940
- Machida-Sano I, Hirakawa M, Namiki H. Cell compatibility of three-dimensional porous barium-cross-linked alginate hydrogels. Journal of Scientific Research and Reports. 2014;3(20):2611–2621. doi: 10.9734/JSRR/2014/12407
- Huang TY, Su WT, Chen PH. Comparing the Effects of chitosan scaffolds containing various divalent metal phosphates on osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Biol Trace Elem Res. 2018;185(2):316–326. doi: 10.1007/s12011-018-1256-7 EDN: HUVVYH
- Rocca A, Marino A, Rocca V, et al. Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts. Int J Nanomedicine. 2015;10:433–445. doi: 10.2147/IJN.S76329 EDN: URKZAH
- Mores L, França EL, Silva NA, et al. Nanoparticles of barium induce apoptosis in human phagocytes. Int J Nanomedicine. 2015;10:6021–6026. doi: 10.2147/IJN.S90382 EDN: VGXKWR
- Schroeder HA, Tipton IH, Nason AP. Trace metals in man: Strontium and barium. J Chronic Dis. 1972;25(9):491–517. doi: 10.1016/0021-9681(72)90150-6
- Lomovskaya YV, Kobyakova MI, Senotov AS, et al. Macrophage-like THP-1 cells derived from high-density cell culture are resistant to TRAIL-induced cell death via down-regulation of death-receptors DR4 and DR5. Biomolecules. 2022;12(2):150. doi: 10.3390/biom12020150 EDN: YAYKAX
- Chen Y, Liu Z, Jiang T, et al. Strontium-substituted biphasic calcium phosphate microspheres promoted degradation performance and enhanced bone regeneration. J Biomed Mater Res. 2020;108(4):895–905. doi: 10.1002/jbm.a.36867
- Minaychev VV, Smirnova PV, Kobyakova MI, et al. Low-temperature calcium phosphate ceramics can modulates monocytes and macrophages inflammatory response in vitro. Biomedicines. 2024;12(2):263. doi: 10.3390/biomedicines12020263 EDN: TQUFDT
- Sabido O, Figarol A, Klein JP, et al. Quantitative flow cytometric evaluation of oxidative stress and mitochondrial impairment in RAW 264.7 macrophages after exposure to pristine, acid functionalized, or annealed carbon nanotubes. Nanomaterials (Basel). 2020;10(2):319. doi: 10.3390/nano10020319 EDN: HSJLCT
- Okamoto K, Takayanagi H. Osteoimmunology. Cold Spring Harb Perspect Med. 2019;9(1):a031245. doi: 10.1101/cshperspect.a031245
- Zhao T, Chu Z, Ma J, Ouyang L. Immunomodulation effect of biomaterials on bone formation. J Funct Biomater. 2022;13(3):103. doi: 10.3390/jfb13030103 EDN: XGMGIY
- Yang Y, Chu C, Xiao W, et al. Strategies for advanced particulate bone substitutes regulating the osteo-immune microenvironment. Biomed Mater. 2022;17(2). doi: 10.1088/1748-605X/ac5572 EDN: AWKWKK
- Volkov AV. Morphology of reparative osteogenesis and osseointegration in maxillofacial surgery [dissertation]. Moscow; 2019. Available at: https://www.dissercat.com/content/morfologiya-reparativnogo-osteogeneza-i-osteointegratsii-v-chelyustno-litsevoi-khirurgii (In Russ.)
- Minaychev VV. Cellular and tissue aspects of the biocompatibility of calcium-phosphate compounds obtained through by low-temperature synthesis [dissertation]. Pushchino; 2024. Available at: https://www.dissercat.com/content/kletochnye-i-tkanevye-aspekty-biosovmestimosti-kaltsii-fosfatnykh-soedinenii-poluchennykh (In Russ.) EDN: HGMSQR
- Pankratov AS, Fadeeva Is, Minaychev VV, et al. A biointegration of microand nanocrystalline hydroxyapatite: problems and perspectives. Genes & Cells. 2018;13(3):46–51. doi: 10.23868/201811032 EDN: VUGEKS
- Minaychev VV, Teleshev AT, Gorshenev VN, et al. Limitation of biocompatibility of hydrated nanocrystalline hydroxyapatite. IOP Conf Ser: Mater Sci Eng. 2018;347:012045. doi: 10.1088/1757-899X/347/1/012045 EDN: RYGMEL
- Terkawi MA, Matsumae G, Shimizu T, et al. Interplay between inflammation and pathological bone resorption: insights into recent mechanisms and pathways in related diseases for future perspectives. Int J Mol Sci. 2022;23(3):1786. doi: 10.3390/ijms23031786 EDN: DKWORK
- Ponzetti M, Rucci N. Updates on osteoimmunology: What’s new on the cross-talk between bone and immune system. Front Endocrinol (Lausanne). 2019;10:236. doi: 10.3389/fendo.2019.00236 EDN: GOFNBJ
- Takayanagi H. Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 2007;7(4):292–304. doi: 10.1038/nri2062
Supplementary files
