再生骨骼肌组织中MyoD-和MyoD+细胞核的分布密度:光生物调制的影响

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

论证低强度激光已被广泛应用于细胞活性刺激,其光调制效果取决于激光波长及相应组织受体对光能的吸收。已有研究表明,红外激光照射能够刺激细胞的增殖与分化。绿色激光对组织的影响研究较少,我们尚未发现关于低强度绿色光生物调制作用于骨骼肌干细胞储备细胞的相关研究。与此同时,寻找能够有效促进损伤后骨骼肌组织完整再生的方法仍是当前的重要课题。

目的:分析红外与绿色激光对损伤骨骼肌纤维中细胞核总数,以及MyoD+(肌卫星细胞核)与MyoD-细胞核数量的影响。

材料与方法。研究在Wistar雄性大鼠中进行,将其分为4个实验组:第0组为完整对照组(n = 8);第I组为具有切割性肌肉损伤的大鼠(n = 40);第II组为具有切割性肌肉损伤并接受红外激光照射(波长980 nm)的实验动物(n = 40);第III组为具有切割性肌肉损伤并接受绿色激光照射(波长520 nm)的实验大鼠(n = 40)。激光以连续模式单次照射180秒。在损伤后第1、3、7、14和30天分别采样,测定完整区与损伤核心区骨骼肌纤维中的细胞核数量。组织切片经HE染色及MyoD免疫组化染色。

结果。红外和绿色光生物调制在损伤后第1天和第7天可促进损伤区骨骼肌纤维中细胞核分布密度的增加,与第I组动物相比差异显著。通过使用MyoD抗体的免疫组织化学分析,确认在实验第3天,损伤区域MyoD+和MyoD-细胞核的分布密度较I组动物有所增加。在激光照射后,与第I对照组动物相比,MyoD+细胞核在总细胞核中的比例增加。

结论。红外与绿色激光光生物调制可在早期(第1与第7天)促进骨骼肌纤维细胞核总数的增加,其中波长为980 nm的激光效果更为显著。同时,MyoD+活性肌卫星细胞的分布密度也有所增加,其中绿色激光作用后的效果更为显著。绿色激光诱导的肌卫星细胞激活反应较早且短暂,而红外激光则引发较晚但更持久的反应。研究结果整体表明,激光照射可促进受损骨骼肌组织的再生过程。

全文:

受限制的访问

作者简介

Rostislav V. Takhaviev

South Ural State University

Email: rkenpachi@bk.ru
ORCID iD: 0000-0002-8994-570X
SPIN 代码: 9619-9800
俄罗斯联邦, Chelyabinsk

Gennady V. Bryukhin

South Ural State University (national research university)

Email: bgenvas@mail.ru
ORCID iD: 0000-0002-3898-766X
SPIN 代码: 7691-8383

Dr. Sci. (Medicine), Professor

俄罗斯联邦, Chelyabinsk

Elena S. Golovneva

South Ural State University (national research university)

编辑信件的主要联系方式.
Email: micron30@mail.ru
ORCID iD: 0000-0002-6343-7563
SPIN 代码: 1728-1640

Dr. Sci. (Medicine), Associate Professor

俄罗斯联邦, Chelyabinsk

参考

  1. Shurygin MG, Bolbat AV, Shurygina IA. Myogenic satellite cells as a source of muscle tissue regeneration. Fundamental’nye issledovaniya. 2015;1(8):1741–1746. (In Russ.) EDN: TXQNRL
  2. Lebedeva AI, Muslimov SA, Vagapova VSh, Shcherbakov DA. Morphological aspects of the regeneration of skeletal muscle tissue induced by allogeneic biomaterial. Praktical Medicine. 2019;17(1):98–102. (In Russ.) EDN: ZAQPKP
  3. Odintsova IA Chepurnenko MN, Komarova AS. Myogenic satellite cells are a cambial reserve of muscle tissue. Genes & Cells. 2014;9(1):6–14. (In Russ.) doi: 10.23868/gc120237 EDN: SKAGZF
  4. Carlson ME, Suetta C, Conboy MJ, et al. Molecular aging and rejuvenation of human muscle stem cells. EMBO Mol Med. 2009;1(8-9):381–391. doi: 10.1002/emmm.200900045
  5. Kuang S, Kuroda K, Le Grand F, Rudnicki MА. Asymmetric selfrenewal and commitment of satellite stem cells in muscle. Cell. 2007;129(5):999–1010. doi: 10.1016/j.cell.2007.03.044
  6. Mokalled MH, Johnson AN, Creemers EE, Olson EN. MASTR directs MyoD-dependent satellite cell differentiation during skeletal muscle regeneration. Genes Dev. 2012;26(2):190–202. doi: 10.1101/gad.179663.111
  7. De Lima Rodrigues D, Alves AN, Guimarães BR, et al. Effect of prior application with and without post-injury treatment with low-level laser on the modulation of key proteins in the muscle repair process. Lasers Med Sci. 2018;33(6):1207–1213. doi: 10.1007/s10103-018-2456-2 EDN: JQOHCN
  8. Avci P, Gupta A, Sadasivam M, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg. 2013;32(1):41–52. EDN: YBMTGD
  9. Vladimirov IA, Klebanov GI, Borisenko GG, Osipov AN. Molecular and cellular mechanisms of the low intensity laser radiation effect Molekuljarnye i kletochnye mehanizmy dejstvija nizkointensivnogo lazernogo izluchenija. Biofizika. 2004;49(2):339–350. (In Russ.) EDN: MPRLSL
  10. Gallyamutdinov RV, Golovneva ES, Revel’-Muroz ZhA, Elovskikh IV. Infrared laser exposure combined with branched chain amino acid supplementation stimulates physiological adaptation of skeletal muscle. Laser medicine. 2022;25(3):40–46. (In Russ.)
  11. Mesquita-Ferrari RA, Martins MD, Silva JA Jr, et al. Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process. Lasers Med Sci. 2011;26(3):335–340. doi: 10.1007/s10103-010-0850-5 EDN: HVIOGL
  12. Fekrazad R, Mirmoezzi A, Kalhori KA, Arany P. The effect of red, green and blue lasers on healing of oral wounds in diabetic rats. J Photochem Photobiol B. 2015;148:242–245. doi: 10.1016/j.jphotobiol.2015.04.018 EDN: NRBEKE
  13. Merigo E, Bouvet-Gerbettaz S, Boukhechba F, et al. Green laser light irradiation enhances differentiation and matrix mineralization of osteogenic cells. J Photochem Photobiol B. 2016;155:130–136. doi: 10.1016/j.jphotobiol.2015.12.005
  14. Khorsandi K, Hosseinzadeh R, Abrahamse H, Fekrazad R. Biological responses of stem cells to photobiomodulation therapy. Curr Stem Cell Res Ther. 2020;15(5):400–413. doi: 10.2174/1574888X15666200204123722 EDN: CDPVPG
  15. Alessi Pissulin CN, Henrique Fernandes AA, Sanchez Orellana AM, et al. Low-level laser therapy (LLLT) accelerates the sternomastoid muscle regeneration process after myonecrosis due to bupivacaine. J Photochem Photobiol B. 2017;168:30–39. doi: 10.1016/j.jphotobiol.2017.01.021 EDN: YXYQAH
  16. Galyamutdinov RV, Astakhova LV, Golovneva ES, Serysheva OYu. Influence of infrared laser radiation on some morphofunctional indices of regenerating skeletal muscle in the age aspect. Laser medicine. 2021;24(2-3):90–94. (In Russ.)
  17. Sperandio FF, Simões A, Corrêa L, et al. Low-level laser irradiation promotes the proliferation and maturation of keratinocytes during epithelial wound repair. J Biophotonics. 2015;8(10):795–803. doi: 10.1002/jbio.201400064
  18. Gu Q, Wang L, Huang F, Schwarz W. Stimulation of TRPV1 by green laser light. Evid Based Complement Alternat Med. 2012;2012:857123. doi: 10.1155/2012/857123 EDN: RNTQRH
  19. Kassák P, Sikurová L, Kvasnicka P, Bryszewska M. The response of Na+/K+-ATPase of human erythrocytes to green laser light treatment. Physiol Res. 2006;55(2):189–194. doi: 10.33549/physiolres.930711 EDN: YBFDBP
  20. Chang CJ, Hsiao YC, Hang NLT, Yang TS. Biophotonic effects of low-level laser therapy on adipose-derived stem cells for soft tissue deficiency. Ann Plast Surg. 2023;90(5S Suppl 2):S158–S164. doi: 10.1097/SAP.0000000000003376 EDN: DEBBBF
  21. Malthiery E, Chouaib B, Hernandez-Lopez AM, et al. Effects of green light photobiomodulation on Dental Pulp Stem Cells: enhanced proliferation and improved wound healing by cytoskeleton reorganization and cell softening. Lasers Med Sci. 2021;36(2):437–445. doi: 10.1007/s10103-020-03092-1 EDN: LTKZAN
  22. Gong C, Lu Y, Jia C, Xu N. Low-level green laser promotes wound healing after carbon dioxide fractional laser therapy. J Cosmet Dermatol. 2022;21(11):5696–5703. doi: 10.1111/jocd.15298 EDN: UIYGSZ
  23. Fekrazad R, Mirmoezzi A, Kalhori KA, Arany P. The effect of red, green and blue lasers on healing of oral wounds in diabetic rats. J Photochem Photobiol B. 2015;148:242–245. doi: 10.1016/j.jphotobiol.2015.04.018 EDN: VEMNYZ
  24. Snijders T, Aussieker T, Holwerda A, Parise G, van Loon LJC, Verdijk LB. The concept of skeletal muscle memory: Evidence from animal and human studies. Acta Physiol (Oxf). 2020;229(3):e13465. doi: 10.1111/apha.13465 EDN: TJKNLW
  25. Santos CP, Aguiar AF, Giometti IC, et al. High final energy of gallium arsenide laser increases MyoD gene expression during the intermediate phase of muscle regeneration after cryoinjury in rats. Lasers Med Sci. 2018;33(4):843–850. doi: 10.1007/s10103-018-2439-3
  26. da Silva Neto Trajano LA, Stumbo AC, da Silva CL, Mencalha AL, Fonseca AS. Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts. Lasers Med Sci. 2016;31(6):1161–1167. doi: 10.1007/s10103-016-1956-1 EDN: JNFQHY
  27. Ribeiro BG, Alves AN, Dos Santos LA, et al. Red and infrared low-level laser therapy prior to injury with or without administration after injury modulate oxidative stress during the muscle repair process. PLoS One. 2016;11(4):e0153618. doi: 10.1371/journal.pone.0153618 EDN: KVFKYY
  28. da Cruz Galhardo Camargo GA, de Oliveira Barbosa LM, Stumbo MB, et al. Effects of infrared light laser therapy on in vivo and in vitro periodontitis models. J Periodontol. 2022;93(2):308–319. doi: 10.1002/JPER.20-0842
  29. Kunimatsu R, Gunji H, Tsuka Y, et al. Effects of high-frequency near-infrared diode laser irradiation on the proliferation and migration of mouse calvarial osteoblasts. Lasers Med Sci. 2018;33(5):959–966. doi: 10.1007/s10103-017-2426-0 EDN: VEBWCG
  30. Fujita R, Mizuno S, Sadahiro T, et al. Generation of a MyoD knock-in reporter mouse line to study muscle stem cell dynamics and heterogeneity. iScience. 2023;26(5):106592. doi: 10.1016/j.isci.2023.106592 EDN: KQYUJJ

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Striated skeletal muscle tissue in rats from experimental Group I (incised muscle wound), intact zone: a — 1 day post-injury; b — 30 days post-injury, showing increased nuclear density. Hematoxylin and eosin staining; magnification ×200 (objective ×20, eyepiece ×10).

下载 (615KB)
3. Fig. 2. Striated skeletal muscle tissue in rats, injury zone, on day 3 post-injury: a — Group I (incised muscle wound); b — Group II (incised muscle wound with infrared laser exposure); c — Group III (incised wound with green laser exposure), a large number of MyoD-positive (marked as 1) and MyoD-negative (marked as 2) nuclei observed following laser exposure. Immunohistochemical staining with anti-MyoD antibodies and hematoxylin counterstain; magnification ×1000 (objective ×100, eyepiece ×10).

下载 (749KB)

版权所有 © Eco-Vector, 2025

许可 URL: https://eco-vector.com/for_authors.php#07

Периодический печатный журнал зарегистрирован как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): 0110212 от 08.02.1993.
Сетевое издание зарегистрировано как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): ЭЛ № ФС 77 - 84733 от 10.02.2023.