Методологические аспекты применения искусственного интеллекта для морфологической диагностики фиброза, дистрофии и воспалительных поражений печени

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Неопухолевые заболевания печени широко распространены и остаются сложными для диагностики. По современным данным распространённость неалкогольной жировой болезни печени среди взрослых в России составляет около 25%. Морфологическая верификация фиброза, жировой и баллонной дистрофии, воспалительной инфильтрации и некроза ткани печени, зависит от субъективного мнения специалиста, что затрудняет стандартизацию. По этим причинам разработка объективных и автоматизированных методов анализа морфологических изменений в печени может значительно повысить воспроизводимость диагностики. В данном обзоре проведён анализ современных подходов к применению методов искусственного интеллекта в морфологической диагностике неопухолевых поражений печени, а также рассмотрены основные направления использования нейросетевых алгоритмов, включая классификацию и сегментацию гистологических изображений. Кроме того, проведена оценка эффективности разработанных моделей при выявлении основных морфологических паттернов: фиброза, баллонной и жировой дистрофии, воспалительной инфильтрации.

Для обзора были использованы публикации, найденные в базах данных Google Академия и PubMed. Поиск охватывал период с 2020 по 2025 год, в окончательный анализ включены 22 публикации.

Установлено, что модели искусственного интеллекта демонстрируют высокую точность, которая, однако, зависит от объёма выборки, учёта межлабораторной вариабельности, морфологического паттерна, выбора увеличения микроскопа и метода окрашивания микропрепаратов. Для дальнейшего развития данного направления требуется увеличение объёма открытых данных и стандартизация подходов. Тем не менее, модели разрабатываются даже на небольших объёмах данных, что делает методику доступной для широкой исследовательской аудитории.

Полный текст

Доступ закрыт

Об авторах

Татьяна Олеговна Новикова

ООО «Лаборатуар Де Жени»

Автор, ответственный за переписку.
Email: tn.path1910@yandex.ru
ORCID iD: 0000-0002-1686-5629
SPIN-код: 9993-9645
Россия, Москва

Ашот Арсенович Меликбекян

МИРЭА-Российский технологический университет

Email: melikbekyan.ashot@yandex.ru
ORCID iD: 0009-0003-6470-4891
SPIN-код: 8683-6870
Россия, Москва

Артём Михайлович Борбат

MVZ Pathologie Spandau

Email: aborbat@yandex.ru
ORCID iD: 0000-0002-9699-8375
SPIN-код: 8948-9169
Германия, Берлин

Список литературы

  1. Qu H, Minacapelli CD, Tait C, et al. Training of computational algorithms to predict NAFLD activity score and fibrosis stage from liver histopathology slides. Comput Methods Programs Biomed. 2021;207:106153. doi: 10.1016/j.cmpb.2021.106153 EDN: VZIOAF
  2. Puri M. Automated machine learning diagnostic support system as a computational biomarker for detecting drug-induced liver injury patterns in whole slide liver pathology images. Assay Drug Dev Technol. 2020;18(1):1–10. doi: 10.1089/adt.2019.919 EDN: PZAYLW
  3. Allaume P, Rabilloud N, Turlin B, et al. Artificial intelligence-based opportunities in liver pathology-A systematic review. Diagnostics (Basel). 2023;13(10):1799. doi: 10.3390/diagnostics13101799 EDN: CEMHRQ
  4. Maev IV, Andreev DN, Kucheryavyy YuA. Prevalence of non-alcoholic fat disease liver in russian federation: meta-analysis. Consilium Medicum. 2023;25(5):313–319. doi: 10.26442/20751753.2023.5.202155 EDN: BNGAZT
  5. Nam D, Chapiro J, Paradis V, et al. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep. 2022;4(4):100443. doi: 10.1016/j.jhepr.2022.100443 EDN: WARMHY
  6. Taylor-Weiner A, Pokkalla H, Han L, et al. A machine learning approach enables quantitative measurement of liver histology and disease monitoring in NASH. Hepatology. 2021;74(1):133–147. doi: 10.1002/hep.31750 EDN: JQEBBT
  7. Naglah A, Khalifa F, El-Baz A, Gondim D. Conditional GANs based system for fibrosis detection and quantification in hematoxylin and eosin whole slide images. Med Image Anal. 2022;81:102537. doi: 10.1016/j.media.2022.102537 EDN: FTOHBE
  8. Bosch J, Chung C, Carrasco-Zevallos OM, et al. A machine learning approach to liver histological evaluation predicts clinically significant portal hypertension in NASH cirrhosis. Hepatology. 2021;74(6):3146–3160. doi: 10.1002/hep.32087 EDN: TBAWLW
  9. Ercan C, Kordy K, Knuuttila A, et al. A deep-learning-based model for assessment of autoimmune hepatitis from histology: AI(H). Virchows Arch. 2024;485(6):1095–1105. doi: 10.1007/s00428-024-03841-5 EDN: TLAMKC
  10. Arjmand A, Angelis CT, Christou V, et al. Training of deep convolutional neural networks to identify critical liver alterations in histopathology image samples. Applied Sciences. 2020;10(1):42. doi: 10.3390/app10010042
  11. Roy M, Wang F, Vo H, et al. Deep-learning-based accurate hepatic steatosis quantification for histological assessment of liver biopsies. Lab Invest. 2020;100(10):1367–1383. doi: 10.1038/s41374-020-0463-y EDN: JRLXIF
  12. Sjöblom N, Boyd S, Manninen A, et al. Automated image analysis of keratin 7 staining can predict disease outcome in primary sclerosing cholangitis. Hepatol Res. 2023;53(4):322–333. doi: 10.1111/hepr.13867 EDN: YBGSRL
  13. Sulyok M, Luibrand J, Strohäker J, et al. Implementing deep learning models for the classification of Echinococcus multilocularis infection in human liver tissue. Parasit Vectors. 2023;16(1):29. doi: 10.1186/s13071-022-05640-w EDN: SUNVTS
  14. Baek EB, Lee J, Hwang JH, et al. Application of multiple-finding segmentation utilizing Mask R-CNN-based deep learning in a rat model of drug-induced liver injury. Sci Rep. 2023;13(1):17555. doi: 10.1038/s41598-023-44897-8 EDN: OBHXFO
  15. Ramot Y, Deshpande A, Morello V, et al. Microscope-based automated quantification of liver fibrosis in mice using a deep learning algorithm. Toxicol Pathol. 2021;49(5):1126–1133. doi: 10.1177/01926233211003866 EDN: ORWPSE
  16. Hwang JH, Lim M, Han G, et al. Preparing pathological data to develop an artificial intelligence model in the nonclinical study. Sci Rep. 2023;13(1):3896. doi: 10.1038/s41598-023-30944-x EDN: TACKEA
  17. Hwang JH, Kim HJ, Park H, et al. Implementation and practice of deep learning-based instance segmentation algorithm for quantification of hepatic fibrosis at whole slide level in Sprague-Dawley rats. Toxicol Pathol. 2022;50(2):186–196. doi: 10.1177/01926233211057128 EDN: UVMNUH
  18. Hwang JH, Lim M, Han G, et al. Segmentation algorithm can be used for detecting hepatic fibrosis in SD rat. Lab Anim Res. 2023;39(1):16. doi: 10.1186/s42826-023-00167-2 EDN: GZLDOM
  19. Baek EB, Hwang JH, Park H, et al. Artificial intelligence-assisted image analysis of Acetaminophen-induced acute hepatic injury in Sprague-Dawley rats. Diagnostics (Basel). 2022;12(6):1478. doi: 10.3390/diagnostics12061478 EDN: NVUYFC
  20. Sjöblom N, Boyd S, Manninen A, et al. Chronic cholestasis detection by a novel tool: automated analysis of cytokeratin 7-stained liver specimens. Diagn Pathol. 2021;16(1):41. doi: 10.1186/s13000-021-01102-6 EDN: YGONZK
  21. Ashour AS, Hawas AR, Guo Y. Comparative study of multiclass classification methods on light microscopic images for hepatic schistosomiasis fibrosis diagnosis. Health Inf Sci Syst. 2018;6(1):7. doi: 10.1007/s13755-018-0047-z EDN: AUEQQI
  22. Jana A, Qu H, Rattan P, et al. Deep learning based NAS score and fibrosis stage prediction from CT and pathology data. arXiv. 2020;arXiv:2009.10687. doi: 10.48550/arXiv.2009.10687
  23. Heinemann F, Gross P, Zeveleva S, et al. Deep learning-based quantification of NAFLD/NASH progression in human liver biopsies. Sci Rep. 2022;12(1):19236. doi: 10.1038/s41598-022-23905-3 EDN: MRKSDP
  24. Preechathammawong N, Charoenpitakchai M, Wongsason N, et al. Development of a diagnostic support system for the fibrosis of nonalcoholic fatty liver disease using artificial intelligence and deep learning. Kaohsiung J Med Sci. 2024;40(8):757–765. doi: 10.1002/kjm2.12850 EDN: LXBSFF
  25. Heinemann F, Birk G, Stierstorfer B. Deep learning enables pathologist-like scoring of NASH models. Sci Rep. 2019;9(1):18454. doi: 10.1038/s41598-019-54904-6 EDN: EDWDDY
  26. Noureddin M, Goodman Z, Tai D, et al. Machine learning liver histology scores correlate with portal hypertension assessments in nonalcoholic steatohepatitis cirrhosis. Aliment Pharmacol Ther. 2023;57(4):409–417. doi: 10.1111/apt.17363 EDN: DLEHME
  27. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–1321. doi: 10.1002/hep.20701

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2025

Ссылка на описание лицензии: https://eco-vector.com/for_authors.php#07

Периодический печатный журнал зарегистрирован как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): 0110212 от 08.02.1993.
Сетевое издание зарегистрировано как СМИ Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор): ЭЛ № ФС 77 - 84733 от 10.02.2023.