Methodological aspects of using artificial intelligence for morphological diagnosis of fibrosis, degeneration, and inflammatory lesions of the liver
- Authors: Novikova T.O.1, Melikbekyan A.A.2, Borbat A.M.3
-
Affiliations:
- LLC Laboratoires de Genie
- MIREA-Russian Technological University
- MVZ Pathologie Spandau
- Issue: Vol 163, No 4 (2025)
- Pages: 273-282
- Section: Reviews
- Submitted: 19.01.2025
- Accepted: 31.03.2025
- Published: 23.10.2025
- URL: https://j-morphology.com/1026-3543/article/view/646399
- DOI: https://doi.org/10.17816/morph.646399
- EDN: https://elibrary.ru/FENJGS
- ID: 646399
Cite item
Abstract
Non-tumor liver diseases are widespread and remain difficult to diagnose. According to current data, the prevalence of non-alcoholic fatty liver disease among adults in Russia is approximately 25%. Morphological confirmation of fibrosis, fatty and ballooning degeneration, inflammatory infiltration, and necrosis of liver tissue depends on the specialist’s subjective opinion, which complicates standardization. For these reasons, developing objective and automated methods for analyzing morphological changes in the liver can significantly improve diagnostic reproducibility. This review examines current approaches to using artificial intelligence in the morphological diagnosis of non-tumor liver diseases, as well as the key applications for neural network algorithms, including classification and segmentation of histological images. Furthermore, the review assesses the effectiveness of available models for detecting key morphological patterns: fibrosis, ballooning and fatty degeneration, and inflammatory infiltration.
The review includes publications found in the Google Scholar and PubMed databases. The search covered the period from 2020 to 2025, with 22 publications included in the final analysis.
It was found that artificial intelligence models demonstrate high accuracy; however, this depends on sample size, inter-laboratory variability, morphological patterns, microscope magnification, and staining methods. More open data and standardized procedures are needed for future advancement in this field. Nevertheless, models are being developed even with small datasets, making the methodology available to the scientific community.
Full Text
About the authors
Tatiana O. Novikova
LLC Laboratoires de Genie
Author for correspondence.
Email: tn.path1910@yandex.ru
ORCID iD: 0000-0002-1686-5629
SPIN-code: 9993-9645
Russian Federation, Moscow
Ashot A. Melikbekyan
MIREA-Russian Technological University
Email: melikbekyan.ashot@yandex.ru
ORCID iD: 0009-0003-6470-4891
SPIN-code: 8683-6870
Russian Federation, Moscow
Artyom M. Borbat
MVZ Pathologie Spandau
Email: aborbat@yandex.ru
ORCID iD: 0000-0002-9699-8375
SPIN-code: 8948-9169
Germany, Berlin
References
- Qu H, Minacapelli CD, Tait C, et al. Training of computational algorithms to predict NAFLD activity score and fibrosis stage from liver histopathology slides. Comput Methods Programs Biomed. 2021;207:106153. doi: 10.1016/j.cmpb.2021.106153 EDN: VZIOAF
- Puri M. Automated machine learning diagnostic support system as a computational biomarker for detecting drug-induced liver injury patterns in whole slide liver pathology images. Assay Drug Dev Technol. 2020;18(1):1–10. doi: 10.1089/adt.2019.919 EDN: PZAYLW
- Allaume P, Rabilloud N, Turlin B, et al. Artificial intelligence-based opportunities in liver pathology-A systematic review. Diagnostics (Basel). 2023;13(10):1799. doi: 10.3390/diagnostics13101799 EDN: CEMHRQ
- Maev IV, Andreev DN, Kucheryavyy YuA. Prevalence of non-alcoholic fat disease liver in russian federation: meta-analysis. Consilium Medicum. 2023;25(5):313–319. doi: 10.26442/20751753.2023.5.202155 EDN: BNGAZT
- Nam D, Chapiro J, Paradis V, et al. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep. 2022;4(4):100443. doi: 10.1016/j.jhepr.2022.100443 EDN: WARMHY
- Taylor-Weiner A, Pokkalla H, Han L, et al. A machine learning approach enables quantitative measurement of liver histology and disease monitoring in NASH. Hepatology. 2021;74(1):133–147. doi: 10.1002/hep.31750 EDN: JQEBBT
- Naglah A, Khalifa F, El-Baz A, Gondim D. Conditional GANs based system for fibrosis detection and quantification in hematoxylin and eosin whole slide images. Med Image Anal. 2022;81:102537. doi: 10.1016/j.media.2022.102537 EDN: FTOHBE
- Bosch J, Chung C, Carrasco-Zevallos OM, et al. A machine learning approach to liver histological evaluation predicts clinically significant portal hypertension in NASH cirrhosis. Hepatology. 2021;74(6):3146–3160. doi: 10.1002/hep.32087 EDN: TBAWLW
- Ercan C, Kordy K, Knuuttila A, et al. A deep-learning-based model for assessment of autoimmune hepatitis from histology: AI(H). Virchows Arch. 2024;485(6):1095–1105. doi: 10.1007/s00428-024-03841-5 EDN: TLAMKC
- Arjmand A, Angelis CT, Christou V, et al. Training of deep convolutional neural networks to identify critical liver alterations in histopathology image samples. Applied Sciences. 2020;10(1):42. doi: 10.3390/app10010042
- Roy M, Wang F, Vo H, et al. Deep-learning-based accurate hepatic steatosis quantification for histological assessment of liver biopsies. Lab Invest. 2020;100(10):1367–1383. doi: 10.1038/s41374-020-0463-y EDN: JRLXIF
- Sjöblom N, Boyd S, Manninen A, et al. Automated image analysis of keratin 7 staining can predict disease outcome in primary sclerosing cholangitis. Hepatol Res. 2023;53(4):322–333. doi: 10.1111/hepr.13867 EDN: YBGSRL
- Sulyok M, Luibrand J, Strohäker J, et al. Implementing deep learning models for the classification of Echinococcus multilocularis infection in human liver tissue. Parasit Vectors. 2023;16(1):29. doi: 10.1186/s13071-022-05640-w EDN: SUNVTS
- Baek EB, Lee J, Hwang JH, et al. Application of multiple-finding segmentation utilizing Mask R-CNN-based deep learning in a rat model of drug-induced liver injury. Sci Rep. 2023;13(1):17555. doi: 10.1038/s41598-023-44897-8 EDN: OBHXFO
- Ramot Y, Deshpande A, Morello V, et al. Microscope-based automated quantification of liver fibrosis in mice using a deep learning algorithm. Toxicol Pathol. 2021;49(5):1126–1133. doi: 10.1177/01926233211003866 EDN: ORWPSE
- Hwang JH, Lim M, Han G, et al. Preparing pathological data to develop an artificial intelligence model in the nonclinical study. Sci Rep. 2023;13(1):3896. doi: 10.1038/s41598-023-30944-x EDN: TACKEA
- Hwang JH, Kim HJ, Park H, et al. Implementation and practice of deep learning-based instance segmentation algorithm for quantification of hepatic fibrosis at whole slide level in Sprague-Dawley rats. Toxicol Pathol. 2022;50(2):186–196. doi: 10.1177/01926233211057128 EDN: UVMNUH
- Hwang JH, Lim M, Han G, et al. Segmentation algorithm can be used for detecting hepatic fibrosis in SD rat. Lab Anim Res. 2023;39(1):16. doi: 10.1186/s42826-023-00167-2 EDN: GZLDOM
- Baek EB, Hwang JH, Park H, et al. Artificial intelligence-assisted image analysis of Acetaminophen-induced acute hepatic injury in Sprague-Dawley rats. Diagnostics (Basel). 2022;12(6):1478. doi: 10.3390/diagnostics12061478 EDN: NVUYFC
- Sjöblom N, Boyd S, Manninen A, et al. Chronic cholestasis detection by a novel tool: automated analysis of cytokeratin 7-stained liver specimens. Diagn Pathol. 2021;16(1):41. doi: 10.1186/s13000-021-01102-6 EDN: YGONZK
- Ashour AS, Hawas AR, Guo Y. Comparative study of multiclass classification methods on light microscopic images for hepatic schistosomiasis fibrosis diagnosis. Health Inf Sci Syst. 2018;6(1):7. doi: 10.1007/s13755-018-0047-z EDN: AUEQQI
- Jana A, Qu H, Rattan P, et al. Deep learning based NAS score and fibrosis stage prediction from CT and pathology data. arXiv. 2020;arXiv:2009.10687. doi: 10.48550/arXiv.2009.10687
- Heinemann F, Gross P, Zeveleva S, et al. Deep learning-based quantification of NAFLD/NASH progression in human liver biopsies. Sci Rep. 2022;12(1):19236. doi: 10.1038/s41598-022-23905-3 EDN: MRKSDP
- Preechathammawong N, Charoenpitakchai M, Wongsason N, et al. Development of a diagnostic support system for the fibrosis of nonalcoholic fatty liver disease using artificial intelligence and deep learning. Kaohsiung J Med Sci. 2024;40(8):757–765. doi: 10.1002/kjm2.12850 EDN: LXBSFF
- Heinemann F, Birk G, Stierstorfer B. Deep learning enables pathologist-like scoring of NASH models. Sci Rep. 2019;9(1):18454. doi: 10.1038/s41598-019-54904-6 EDN: EDWDDY
- Noureddin M, Goodman Z, Tai D, et al. Machine learning liver histology scores correlate with portal hypertension assessments in nonalcoholic steatohepatitis cirrhosis. Aliment Pharmacol Ther. 2023;57(4):409–417. doi: 10.1111/apt.17363 EDN: DLEHME
- Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–1321. doi: 10.1002/hep.20701
Supplementary files


