基于蜘蛛丝蛋白、丝素蛋白和丝胶蛋白的乳膏在体内皮肤修复性再生中的应用
- 作者: Sorochanu I.1, Blitzine K.S.1, Daudi D.I.2,3, Zhemkov N.I.1, Pechenina A.A.1, Dmitrieva M.A.2,3, Grin N.A.3,4, Asatryan T.T.1, Tatarkin V.V.1, Trunin E.M.1, Deev R.V.5
-
隶属关系:
- North-Western State Medical University named after I.I. Mechnikov
- Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics
- Silkins LLC
- Stavropol State Medical University
- Petrovsky National Research Centre Of Surgery
- 期: 卷 162, 编号 4 (2024)
- 页面: 402-414
- 栏目: Original Study Articles
- ##submission.dateSubmitted##: 04.06.2024
- ##submission.dateAccepted##: 23.12.2024
- ##submission.datePublished##: 28.12.2024
- URL: https://j-morphology.com/1026-3543/article/view/633205
- DOI: https://doi.org/10.17816/morph.633205
- ID: 633205
如何引用文章
详细
论证修复性再生过程的障碍会导致细胞外基质形成不足,从而引发慢性创面,这类伤口通常需要个体化的治疗策略。 在现代再生医学中,丝蛋白等生物高分子因其独特性质被广泛用于敷料基材及药物递送系统。蜘蛛丝蛋白(spidroin)、丝素蛋白(fibroin)和丝胶蛋白(sericin)具有良好的生物相容性,能够调节细胞内信号通路,并具有抗菌活性,因此被视为潜在的创面愈合治疗材料。
目的。评估含有spidroin、fibroin和sericin混合丝蛋白溶液的乳膏对大鼠皮肤再生的影响。
材料与方法。以30只雄性大鼠为研究对象,在其背部制备直径为20mm的全层皮肤切除缺损,并将其随机分为实验组和两个对照组。实验组每日外敷所研制的丝蛋白乳膏;第一对照组每日使用5%右泛醇(dexpanthenol);第二对照组则不进行任何处理,自然愈合。通过创面面积测量、组织形态计量分析以及临床血液学检查,评估皮肤的修复过程及机体的反应性变化。
结果。与自然愈合组相比,实验组使用丝蛋白乳膏可显著加快创面愈合速度,大鼠皮肤于第14天实现完全再生。炎症活动评估显示,血液学分析中未见明显异常(仅出现轻度粒细胞增多和急性失血性贫血表现),且免疫细胞浸润程度低于对照组。
结论。蜘蛛丝蛋白(spidroin)与昆虫丝蛋白(fibroin和sericin)的组合可增强细胞的迁移、增殖与分化,促进细胞外基质的形成,并具有抗炎作用,同时不具有免疫原性。上述特性表明,该蛋白组合有望作为治疗病理性创面愈合障碍的药物,并具备临床应用潜力。
全文:

作者简介
Irina Sorochanu
North-Western State Medical University named after I.I. Mechnikov
编辑信件的主要联系方式.
Email: opeairina@gmail.com
ORCID iD: 0000-0002-6909-8937
SPIN 代码: 4072-3845
俄罗斯联邦, 41 Kirochnaja st, 191015, Saint Petersburg
Kristina S. Blitzine
North-Western State Medical University named after I.I. Mechnikov
Email: kristina.blitsyn@gmail.com
ORCID iD: 0000-0002-2347-0123
SPIN 代码: 8210-8836
俄罗斯联邦, 41 Kirochnaja st, 191015, Saint Petersburg
Dauddin I. Daudi
Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics; Silkins LLC
Email: d.daudi@patentcore.ru
ORCID iD: 0000-0003-2413-3695
SPIN 代码: 2765-0230
俄罗斯联邦, Saint Petersburg; Moscow
Nikita I. Zhemkov
North-Western State Medical University named after I.I. Mechnikov
Email: zhemkovni@gmail.com
ORCID iD: 0009-0003-2423-6544
SPIN 代码: 3779-4360
俄罗斯联邦, 41 Kirochnaja st, 191015, Saint Petersburg
Alina A. Pechenina
North-Western State Medical University named after I.I. Mechnikov
Email: alina.kyzminap@gmail.com
ORCID iD: 0009-0003-7964-1256
SPIN 代码: 8920-9532
俄罗斯联邦, 41 Kirochnaja st, 191015, Saint Petersburg
Maria A. Dmitrieva
Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics; Silkins LLC
Email: m_dmitrieva@scamt-itmo.ru
ORCID iD: 0009-0006-1596-3899
俄罗斯联邦, Saint Petersburg; Moscow
Nikita A. Grin
Silkins LLC; Stavropol State Medical University
Email: nikita.grin.2014@mail.ru
ORCID iD: 0009-0000-4145-7160
SPIN 代码: 5964-9291
俄罗斯联邦, Moscow; Stavropol
Tatevik T. Asatryan
North-Western State Medical University named after I.I. Mechnikov
Email: Tatevik.asatryan@szgmu.ru
ORCID iD: 0000-0002-9146-3080
SPIN 代码: 5587-1360
MD, Cand. Sci. (Medicine), Assistant Professor
俄罗斯联邦, 41 Kirochnaja st, 191015, Saint PetersburgVladislav V. Tatarkin
North-Western State Medical University named after I.I. Mechnikov
Email: vladislav.tatarkin@szgmu.ru
ORCID iD: 0000-0002-9599-3935
SPIN 代码: 5008-4677
MD, Cand. Sci. (Medicine), Assistant Professor
俄罗斯联邦, 41 Kirochnaja st, 191015, Saint PetersburgEvgeniy M. Trunin
North-Western State Medical University named after I.I. Mechnikov
Email: evgeniy.trunin@szgmu.ru
ORCID iD: 0000-0002-2452-0321
SPIN 代码: 5903-0288
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, 41 Kirochnaja st, 191015, Saint PetersburgRoman V. Deev
Petrovsky National Research Centre Of Surgery
Email: romdey@gmail.com
ORCID iD: 0000-0001-8389-3841
SPIN 代码: 2957-1687
MD, Cand. Sci. (Medicine), Assistant Professor
俄罗斯联邦, Moscow参考
- Sen CK. Human Wound and Its Burden: Updated 2022 Compendium of Estimates. Advances in Wound Care. 2023;12(12):657–670. doi: 10.1089/wound.2023.0150
- Tolstykh PI, Tamrazova OB, Pavlenko VV, et al. Long-term non-healing wounds and ulcers (pathogenesis, clinical picture, treatment). Moscow: Deepak, 2009. (In Russ.) EDN: QLUIIV
- Obolenskiy VN. Modern treatment of the chronic wounds. Medical council. 2016;10:148–154. EDN: XUYAIT doi: 10.21518/2079-701X-2016-10-148-154
- Gain J, Gerasimenko M, Shakhrai S, et al. Innovative principles of complex treatment of chronic wounds. Innovative Technologies in Medicine. 2017;4:223–242. EDN: ZWJFZD
- Shi C, Wang C, Liu H, et al. Selection of Appropriate Wound Dressing for Various Wounds. Frontiers in Bioengineering and Biotechnology. 2020;8:182. doi: 10.3389/fbioe.2020.00182
- Gholipourmalekabadi M, Sapru S, Samadikuchaksaraei A, et al. Silk fibroin for skin injury repair: Where do things stand? Adv Drug Deliv Rev. 2020;153:28–53. doi: 10.1016/j.addr.2019.09.003
- Mazurek Ł, Szudzik M, Rybka M, et al. Silk Fibroin Biomaterials and Their Beneficial Role in Skin Wound Healing. Biomolecules. 2022;12:1852. doi: 10.3390/biom12121852
- Liu Y, Huang W, Meng M, et al. Progress in the application of spider silk protein in medicine. J Biomater Appl. 2021;36(5):859–871. doi: 10.1177/08853282211003850
- Shitole M, Dugam S, Tade R, et al. Pharmaceutical applications of silk sericin. Ann Pharm Fr. 2020;78(6):469–486. doi: 10.1016/j.pharma.2020.06.005
- Patent RUS № 2825392/ 26.08.2024. Byul. № 24. Daudi DI, Grin NA, Pechyonykin EV, et al. Method for preparing a regenerative solution containing spider silk proteins spidroin, fibroin, sericin. Available from: https://www1.fips.ru/ofpstorage/Doc/IZPM/RUNWC1/000/000/002/825/392/%D0%98%D0%97-02825392-00001/document.pdf (In Russ.) EDN: PAGTMU
- Cifuentes A, Gómez-Gil V, Ortega MA, et al. Chitosan hydrogels functionalized with either unfractionated heparin or bemiparin improve diabetic wound healing. Biomedicine & Pharmacotherapy. 2020;129:110498. doi: 10.1016/j.biopha.2020.110498
- Park SA, Teixeira LBC, Raghunathan VK, et al. Full-thickness splinted skin wound healing models in db/db and heterozygous mice: implications for wound healing impairment. Wound Repair Regen. 2014;22:368–380. doi: 10.1111/wrr.12172
- Römer L, Scheibel T. The elaborate structure of spider silk: structure and function of a natural high performance fiber. Prion. 2008;2(4):154–161. doi: 10.4161/pri.2.4.7490
- Humenik M, Scheibel T, Smith A. Spider silk: understanding the structure-function relationship of a natural fiber. Prog Mol Biol Transl Sci. 2011;103:131–185. doi: 10.1016/B978-0-12-415906-8.00007-8
- Schäfer-Nolte F, Hennecke K, Reimers K, et al. Biomechanics and biocompatibility of woven spider silk meshes during remodeling in a rodent fascia replacement model. Ann Surg. 2014;259(4):781–792. doi: 10.1097/SLA.0b013e3182917677
- Guo C, Zhang J, Jordan JS, et al. Structural Comparison of Various Silkworm Silks: An Insight into the Structure-Property Relationship. Biomacromolecules. 2018;19(3):906–917. doi: 10.1021/acs.biomac.7b01687
- Jao D, Mou X, Hu X. Tissue Regeneration: A Silk Road. J Funct Biomater. 2016;7(3):22. doi: 10.3390/jfb7030022
- Aramwit P, Kanokpanont S, Nakpheng T, et al. The Effect of Sericin from Various Extraction Methods on Cell Viability and Collagen Production. Int J Mol Sci. 2010;11:2200–2211. doi: 10.3390/ijms11052200
- Liebsch C, Bucan V, Menger B, et al. Preliminary investigations of spider silk in wounds in vivo — Implications for an innovative wound dressing. Burns. 2018;44(7):1829–1838. doi: 10.1016/j.burns.2018.03.016
- Martínez-Mora C, Mrowiec A, García-Vizcaíno EM, et al. Fibroin and Sericin from Bombyx mori Silk Stimulate Cell Migration through Upregulation and Phosphorylation of c-Jun. PLOS ONE. 2012;7(7):e42271. doi: 10.1371/journal.pone.0042271
- Park YR, Tipu S, Park HJ, et al. NF-κB signaling is key in the wound healing processes of silk fibroin. Acta Biomaterialia. 2018;67:183–195. doi: 10.1016/j.actbio.2017.12.006
- Chun HJ, Park K, Kim CH, et al. Silk Fibroin in Wound Healing Process. Advances in Experimental Medicine and Biology. 2018;1077:115–126. doi: 10.1007/978-981-13-0947-2_7
- Aykac A, Karanlık B, Sehirli AO. Protective effect of silk fibroin in burn injury in rat model. Gene. 2017;30(641):287–291. doi: 10.1016/j.gene.2017.10.036
- Aramwit P, Towiwat P, Srichana T. Anti-inflammatory potential of silk sericin. Nat Prod Commun. 2013;8(4):501–504. doi: 10.1177/1934578X1300800424
- Wright S, Goodacre SL. Evidence for antimicrobial activity associated with common house spider silk. BMC Res Notes. 2012;5:326. doi: 10.1186/1756-0500-5-326
- Abd El-Aziz FEZA, Hetta HF, Abdelhamid BN, Abd Ellah NH. Antibacterial and wound-healing potential of PLGA/spidroin nanoparticles: a study on earthworms as a human skin model. Nanomedicine (Lond). 2022;17(6):353–365. doi: 10.2217/nnm-2021-0325
- Rajendran R, Balakumar C, Sivakumar R, et al. Extraction and application of natural silk protein sericin from Bombyx mori as antimicrobial finish for cotton fabrics. J Text Inst. 2012;103:458–462. doi: 10.1080/00405000.2011.586151
- Kunz RI, Brancalhão RMC, Ribeiro LDFC, Natali MRM. Silkworm Sericin: Properties and Biomedical Applications. Biomed Res Int. 2016;2016:8175701. doi: 10.1155/2016/8175701
补充文件
