外源性褪黑激素对B16小鼠实验性黑色素瘤的形态特征的影响
- 作者: Areshidze D.A.1, Mnikhovich M.V.1, Deev R.V.1, Kozlova M.A.1, Anurkina A.I.1, Mishchenko D.V.2, Sashenkova T.Е.2, Turchin A.N.3
-
隶属关系:
- Petrovsky National Research Centre of Surgery
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
- Mechnikov North-Western State Medical University
- 期: 卷 163, 编号 1 (2025)
- 页面: 17-27
- 栏目: Original Study Articles
- ##submission.dateSubmitted##: 05.11.2024
- ##submission.dateAccepted##: 31.01.2025
- ##submission.datePublished##: 14.05.2025
- URL: https://j-morphology.com/1026-3543/article/view/641601
- DOI: https://doi.org/10.17816/morph.641601
- EDN: https://elibrary.ru/KEIGXT
- ID: 641601
如何引用文章
详细
论证。持续长时间的光照会抑制松果腺的激素合成功能,导致褪黑激素水平降低,从而加速身体老化,增加与年龄相关的疾病发生频率,包括肿瘤,同时缩短寿命。褪黑激素具有明显的抗肿瘤作用,尤其是其抗增生作用更为突出。 黑色素瘤 — 人类最恶性的肿瘤之一,源于黑色素形成的细胞。 近年来,黑色素瘤患者中老年患者的比例不断增加,因此,可以将这种疾病归类为与年龄相关的疾病。有证据表明,褪黑激素缺乏和由此导致的身体昼夜节律结构紊乱是引发黑色素瘤的因素之一。
目的 — 外源性褪黑激素对B16小鼠实验性黑色素瘤的形态特征的影响
方法。这项研究在8周龄,体重为21~22克的BDF1(n = 60)杂种小鼠雄性中进行。所有动物都进行了皮下移植B16/F10黑色素瘤悬浮液。接下来,老鼠被分为两组,即对照组和实验组。对照组中的动物从研究的第一天起,胃内注射5毫克/公斤剂量的褪黑激素(Sigma,美国)。在肿瘤转染后的第15天,切除了肿瘤本身,以及肺部和肝脏。对肿瘤进行了病理形态学检查,确定了肺部和肝脏存在的转移。在苏木精和伊红染色的肿瘤组织切片上测量坏死面积,并通过测量细胞核横截面积和细胞横截面积计算肿瘤细胞中的核质比。使用GraphPad Prism v8.41(美国)软件进行了结果的构图和统计处理。
结果。已确认,注射褪黑激素可降低黑色素瘤小鼠在研究期间的死亡率,减少肿瘤转移的频率及其大小。此外,在实验组小鼠的黑色素瘤中,可以看到以病灶的萎缩和替代性变化形式出现的肿瘤消退迹象,以及肿瘤坏死面积在统计学上的显著增加。
结论。本研究表明,外源性褪黑激素对B16小鼠实验性黑色素瘤具有明显的抗肿瘤效果。所获得的结果可以更详细的规划多学科研究,用于深入探究褪黑激素的抗肿瘤作用机制。
全文:

作者简介
David A. Areshidze
Petrovsky National Research Centre of Surgery
编辑信件的主要联系方式.
Email: labcelpat@mail.ru
ORCID iD: 0000-0003-3006-6281
SPIN 代码: 4348-6781
Cand. Sci. (Biology)
俄罗斯联邦, MoscowMaxim V. Mnikhovich
Petrovsky National Research Centre of Surgery
Email: mnichmaxim@yandex.ru
ORCID iD: 0000-0001-7147-7912
SPIN 代码: 6975-6677
Cand. Sci. (Medicine)
俄罗斯联邦, MoscowRoman V. Deev
Petrovsky National Research Centre of Surgery
Email: romdey@gmail.com
ORCID iD: 0000-0001-8389-3841
SPIN 代码: 2957-1687
Cand. Sci. (Medicine), Associate Professor
俄罗斯联邦, MoscowMaria A. Kozlova
Petrovsky National Research Centre of Surgery
Email: ma.kozlova2021@outlook.com
ORCID iD: 0000-0001-6251-2560
SPIN 代码: 5647-1372
Cand. Sci. (Biology)
俄罗斯联邦, MoscowAnna I. Anurkina
Petrovsky National Research Centre of Surgery
Email: anyaaai1925@gmail.com
ORCID iD: 0009-0003-0011-1114
SPIN 代码: 9812-3412
俄罗斯联邦, Moscow
Denis V. Mishchenko
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: mdv@icp.ac.ru
ORCID iD: 0000-0003-3779-3211
SPIN 代码: 4213-3318
Cand. Sci. (Biology)
俄罗斯联邦, ChernogolovkaTatyana Е. Sashenkova
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences
Email: tsashen52@mail.ru
ORCID iD: 0000-0002-2753-979X
俄罗斯联邦, Chernogolovka
Anton N. Turchin
Mechnikov North-Western State Medical University
Email: ktogrb@yandex.ru
ORCID iD: 0009-0008-5302-5769
俄罗斯联邦, Saint Petersburg
参考
- Anisimov VN. Light pollution, reproductive function and cancer risk. Neuro Endocrinol Lett. 2006;27(1–2):35–52.
- Straif K, Baan R, Grosse Y, et al. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 2007;8(12):1065–1066. doi: 10.1016/S1470-2045(07)70373-X
- Pauley SM. Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue. Med Hypotheses. 2004;63(4):588–596. doi: 10.1016/j.mehy.2004.03.020
- Stevens RG. Light-at-night, circadian disruption and breast cancer: assessment of existing evidence. Int J Epidemiol. 2009;38(4):963–970. doi: 10.1093/ije/dyp178
- Arushanian EB, Naumov SS. A wide range of pharmacological properties of melatonin. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(1):103–106. (In Russ.) doi: 10.17816/RCF191103-106 EDN: XKUIWB
- Sato K, Meng F, Francis H, et al. Melatonin and circadian rhythms in liver diseases: functional roles and potential therapies. J Pineal Res. 2020;68(3):e12639. doi: 10.1111/jpi.12639
- Zuev VA, Trifonov NI, Linkova NS, Kvetnaia TV. Melatonin as a molecular marker of age-related pathologies. Advances in Gerontology. 2017;30(1):62–69. (In Russ.) EDN: YHTMRF
- Anisimov VN, Vinogradova IA. Light regime, biorythms and organism aging. Aesthetic Medicine Bulletin. 2011;10(1):42–51. (In Russ.) EDN: OEVILV
- Anisimov VN. Light, aging, and cancer. Priroda. 2018;(6):19–22. (In Russ.) EDN: XQNOMP
- Kvetnaia TV, Polyakova VO, Proshaev KI, et al. Melatonin as a marker of ageing and age-associated diseases. RUDN Journal of Medicine. 2012;(S7):125–126. (In Russ.) EDN: RCADUR
- Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, et al. Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol. 2012;351(2):152–166. doi: 10.1016/j.mce.2012.01.004
- Pandi-Perumal SR, Trakht I, Srinivasan V, et al. Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways. Prog Neurobiol. 2008;85(3):335–353. doi: 10.1016/j.pneurobio.2008.04.001
- Malishevskaya NP, Sokolova AV, Demidov LV. The incidence of skin melanoma in the Russian Federation and federal districts. Medical Council. 2018;(10):161–165. (In Russ.) doi: 10.21518/2079-701X-2018-10-161-165 EDN: UUDAMY
- Garbe C, Peris K, Hauschild A, et al. Diagnosis and treatment of melanoma: European consensus-based interdisciplinary guideline. Eur J Cancer. 2010;46(2):270–283. doi: 10.1016/j.ejca.2009.10.032
- Erkenova FD, Puzin SN. Statistics of melanoma in Russia and Europe. Medical and Social Expert Evaluation and Rehabilitation. 2020;23(1):44–52. (In Russ.) doi: 10.17816/MSER34259 EDN: WIAAEF
- de Assis LVM, Moraes MN, Mendes D, et al. Loss of Melanopsin (OPN4) leads to a Faster cell cycle progression and growth in murine melanocytes. Curr Issues Mol Biol. 2021;43(3):1436-1450. doi: 10.3390/cimb43030101
- Lubov JE, Cvammen W, Kemp MG. The impact of the circadian clock on skin physiology and cancer development. Int J Mol Sci. 2021;22(11):6112. doi: 10.3390/ijms22116112
- Mubashshir M, Ahmad N, Sköld HN, Ovais M. An exclusive review of melatonin effects on mammalian melanocytes and melanoma. Exp Dermatol. 2023;32(4):324–330. doi: 10.1111/exd.14715
- Jansen R, Osterwalder U, Wang SQ, et al. Photoprotection: part II. Sunscreen: development, efficacy, and controversies. J Am Acad Dermatol. 2013;69(6):867.e1–14. doi: 10.1016/j.jaad.2013.08.022
- Slominski AT, Hardeland R, Zmijewski MA, et al. Melatonin: a cutaneous perspective on its production, metabolism, and functions. J Invest Dermatol. 2018;138(3):490–499. doi: 10.1016/j.jid.2017.10.025
- Acuña-Castroviejo D, Escames G, Venegas C, et al. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci. 2014;71(16):2997–3025. doi: 10.1007/s00018-014-1579-2
- Alvarez-Artime A, Cernuda-Cernuda R, Francisco-Artime-Naveda, et al. Melatonin-induced cytoskeleton reorganization leads to inhibition of melanoma cancer cell proliferation. Int J Mol Sci 2020;21(2):548. doi: 10.3390/ijms21020548
- Cutando A, López-Valverde A, Arias-Santiago S, et al. Role of melatonin in cancer treatment. Anticancer Res. 2012;32(7):2747–2753.
- Treshchalina EM, Zhukova OS, Gerasimova GK, et al. Methodological recommendations for the preclinical study of the antitumor activity of drugs. In: Guidelines for conducting preclinical studies of drugs. Pt. 1. Moscow: Grif i K; 2012. P:640–656. (In Russ.)
- Broeke J, Pérez JMM, Pascau J. Image Processing with ImageJ. Birmingham: Packt Publishing; 2015.
- Franco PIR, do Carmo Neto JR, Milhomem AC, et al. Antitumor effect of melatonin on breast cancer in experimental models: a systematic review. Biochim Biophys Acta Rev Cancer. 2023;1878(1):188838. doi: 10.1016/j.bbcan.2022.188838
- Fathizadeh H, Mirzaei H, Asemi Z. Melatonin: an anti-tumor agent for osteosarcoma. Cancer Cell Int. 2019;19:319. doi: 10.1186/s12935-019-1044-2
- Shen D, Ju L, Zhou F, et al. The inhibitory effect of melatonin on human prostate cancer. Cell Commun Signal. 2021;19(1):34. doi: 10.1186/s12964-021-00723-0
- Su SC, Hsieh MJ, Yang WE, et al. Cancer metastasis: mechanisms of inhibition by melatonin. J Pineal Res. 2017;62(1). doi: 10.1111/jpi.12370
- Martínez-Campa C, Álvarez-García V, Alonso-González C, et al. Melatonin and its role in the epithelial-to-mesenchymal transition (EMT) in cancer. Cancers (Basel). 2024;16(5):956. doi: 10.3390/cancers16050956
- Lu KH, Lin CW, Hsieh YH, et al. New insights into antimetastatic signaling pathways of melatonin in skeletomuscular sarcoma of childhood and adolescence. Cancer Metastasis Rev. 2020;39(1):303–320. doi: 10.1007/s10555-020-09845-2
- Wang L, Wang C, Choi WS. Use of melatonin in cancer treatment: where are we? Int J Mol Sci. 2022;23(7):3779. doi: 10.3390/ijms23073779
- Blask DE, Dauchy RT, Sauer LA, Krause JA. Melatonin uptake and growth prevention in rat hepatoma 7288CTC in response to dietary melatonin: melatonin receptor-mediated inhibition of tumor linoleic acid metabolism to the growth signaling molecule 13-hydroxyoctadecadienoic acid and the potential role of phytomelatonin. Carcinogenesis. 2004;25(6):951–960. doi: 10.1093/carcin/bgh090
- Laothong U, Pinlaor P, Hiraku Y, et al. Protective effect of melatonin against Opisthorchis viverrini-induced oxidative and nitrosative DNA damage and liver injury in hamsters. J Pineal Res. 2010;49(3):271–282. doi: 10.1111/j.1600-079X.2010.00792.x
补充文件
