Energy spectra of atoms sputtered by low-energy ions: computer simulation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The energy spectra and average energies of sputtered atoms were calculated for a number of amorphous targets (Si, Ti, Ni, V and Nb) bombarded with 1 keV Ar ions. The calculations were carried out using the computer simulation programs OKSANA and SRIM-2013. It is shown that for targets whose atoms are heavier than incident ions, SRIM can greatly overestimate the contribution of fast sputtered atoms. This is especially noticeable in calculations with the surface binding energy found by adjusting the calculated sputtering yields to the experimental ones. The simulation results are compared with analytical estimates of the average energy of ejected atoms based on the linear theory of sputtering. It is shown that in all the cases considered, these estimates are also greatly overestimated, since they do not take into account the degradation of collision cascades at low bombarding energies. A good agreement of the OKSANA, TRIM.SP and ACAT simulations is noted.

Full Text

Restricted Access

About the authors

V. I. Shulga

D.V. Skobeltsin Institute of Nuclear Physics, Lomonosov Moscow State University

Author for correspondence.
Email: vish008@yandex.ru
Russian Federation, Moscow

References

  1. Распыление под действием бомбардировки частицами. III. Характеристики распыленных частиц, применения в технике. / Ред. Бериш Р., Виттмак. К. М.: Мир. 1998. 551 с.
  2. Sputtering by Particle Bombardment. Experiments and Computer Calculations from Threshold to MeV Energies. / Ed. Behrisch R., Eckstein W. Springer, Berlin, 2007. 459 р.
  3. Ziegler J.F., Ziegler M.D., Biersack J.P. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. P. 1818. https://www.doi.org/10.1016/j.nimb.2010.02.091.
  4. Hofsäss H., Zhang K., Mutzke A. // Appl. Surf. Sci. 2014. V. 310. P. 134. https://www.doi.org/10.1016/j.apsusc.2014.03.152
  5. Shulga V.I. // Appl. Surf. Sci. 2018. V. 439. P. 456. https://www.doi.org/10.1016/j.apsusc.2018.01.039
  6. Mahne N., Čekada M., Panjan M. // Coatings. 2022. V. 12. P. 1541. https://www.doi.org/10.3390/coatings12101541
  7. Mahne N., Čekada M., Panjan M. // Coatings. 2023. V. 13. P. 1448. https://www.doi.org/10.3390/coatings13081448
  8. Экштайн В. Компьютерное моделирование взаимодействия частиц с поверхностью твердого тела. М.: Мир. 1995. 319 с.
  9. Shulga V.I., Eckstein W. // Nucl. Instrum. Methods Phys. Res. B. 1998. V. 145. P. 492. https://www.doi.org/10.1016/S0168-583X(98)00626-0
  10. Ziegler J.F., Biersack J.P., Littmark U. The Stopping and Range of Ions in Solids, Vol. I. Pergamon, New York, 1985.
  11. Oen O.S., Robinson M.T. // Nucl. Instrum. Methods. 1976. V. 132. P. 647. https://www.doi.org/10.1016/0029-554X(76)90806-5
  12. Lindhard J., Scharff M. // Phys. Rev. 1961. V. 124. P. 128. https://www.doi.org/10.1103/PhysRev.194.128
  13. Шульга В.И. // ЖТФ. 2023. Т. 93. С. 1401. https://www.doi.org/10.21883/JTF.2023.10.56276.147-23
  14. Sigmund P. Sputtering by ion bombardment: theoretical concepts. // Sputtering by Particle Bombardment I. Physical Sputtering of Single-Element Solids. / Ed. Behrisch R. Springer, Berlin. 1981. P. 9.
  15. Thompson M.W. // Philos. Mag. 1968. V. 18. P. 377. https://www.doi.org/10.1080/14786436808227358
  16. Held J., Hecimovic A., von Keudell A., Schulz-von der Gathen V. // Plasma Sources Sci. Technol. 2018. V. 27. P. 105012. https://www.doi.org/10.1088/1361-6595/aae236
  17. Eckstein W. // Nucl. Instrum. Methods Phys. Res. B. 1986. V. 18. P. 344. https://www.doi.org/10.1016/S0168-583X(86)80056-8
  18. Dembowski J., Oechsner H., Yamamura Y., Urbassek M. // Nucl. Instrum. Methods Phys. Res. B. 1986. V. 18. P. 464. https://www.doi.org/10.1016/S0168-583X(86)80072-6
  19. Lindsey S., Hobler G. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 303. P. 142. https://www.doi.org/10.1016/j.nimb.2012.12.087
  20. Brizzolara R.A., Cooper C.B., Olson T.K. // Nucl. Instrum. Methods Phys. Res. B. 1988. V. 35. P. 36. https://www.doi.org/10.1016/0168-583X(88)90095-x
  21. Mousel T., Eckstein W., Gnaser H. // Nucl. Instrum. Methods Phys. Res. B. 1999. V. 152. P. 36. https://www.doi.org/10.1016/s0168-583X(98)00976-8
  22. Shulga V.I. // Vacuum. 2024. V. 230. P. 113644. https//www.doi.org/10.1016/j.vacuum.2024.113644

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Energy spectra of sputtered atoms during bombardment of Si (a) and Ti (b) targets by 1 keV Ar ions at normal incidence, calculated using OKSANA (1); SRIM at ES = U0 (2); according to formula (1) at ES = U0 and m = 0 (3).

Download (138KB)
3. Fig. 2. Average energy of sputtered atoms as a function of emission angle J for Si (a) and Ti (b) targets bombarded with 1 keV Ar ions at normal incidence, calculated using OKSANA (1); SRIM at ES = U0 (2); according to formula (2) at ES = U0 (3).

Download (132KB)
4. Fig. 3. Energy spectra of sputtered atoms during bombardment of Ni (a) and V (b) targets by 1 keV Ar ions at normal incidence, calculated using OKSANA (1); SRIM at ES = U0 (2); according to formula (1) at ES = U0 and m = 0 (3). Spectra 4 - calculation using the TRIM.SP program (a) and experiment [18] (b).

Download (157KB)
5. Fig. 4. Average energy of sputtered atoms as a function of emission angle J for a Nb target bombarded with 1 keV Ar ions at normal incidence, calculated using OKSANA (1); SRIM at ES = U0 (2); according to formula (2) at ES = U0 (3); using OKSANA (4) and SRIM (5) at ES proposed in [6]; using the ACAT program [18] (6).

Download (88KB)

Copyright (c) 2025 Russian Academy of Sciences