Current Updates on the Role of MicroRNA in the Diagnosis and Treatment of Neurodegenerative Diseases

  • Authors: Saleem A.1, Javed M.1, Furqan Akhtar M.2, Sharif A.3, Akhtar B.4, Naveed M.5, Saleem U.1, Ashraf Baig M.M.6, Zubair H.M.7, Bin Emran T.8, Saleem M.9, Ashraf G.M.10
  • Affiliations:
    1. Department of Pharmacology, Faculty of Pharmaceutical Sciences,, Government College University
    2. Riphah Institute of Pharmaceutical Sciences, Riphah International University
    3. Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University
    4. Department of Pharmacy, University of Agriculture Faisalabad
    5. Department of Physiology and Pharmacology, College of Medicine, The University of Toledo,
    6. Department of Chemistry,, The Hong Kong University of Science and Technology,
    7. Post Graduate Medical College, Faculty of Medicine and Allied Health Sciences,, The Islamia University of Bahawalpur,
    8. Department of Pharmacy,, BGC Trust University Bangladesh
    9. Department of Pharmacology,, University of the Punjab
    10. Department of Medical Laboratory Sciences, University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences
  • Issue: Vol 24, No 2 (2024)
  • Pages: 122-134
  • Section: Life Sciences
  • URL: https://j-morphology.com/1566-5232/article/view/643957
  • DOI: https://doi.org/10.2174/0115665232261931231006103234
  • ID: 643957

Cite item

Full Text

Abstract

Background:MicroRNAs (miRNA) are small noncoding RNAs that play a significant role in the regulation of gene expression. The literature has explored the key involvement of miRNAs in the diagnosis, prognosis, and treatment of various neurodegenerative diseases (NDD), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). The miRNA regulates various signalling pathways; its dysregulation is involved in the pathogenesis of NDD.

Objective:The present review is focused on the involvement of miRNAs in the pathogenesis of NDD and their role in the treatment or management of NDD. The literature provides comprehensive and cutting-edge knowledge for students studying neurology, researchers, clinical psychologists, practitioners, pathologists, and drug development agencies to comprehend the role of miRNAs in the NDD’s pathogenesis, regulation of various genes/signalling pathways, such as α-synuclein, P53, amyloid-β, high mobility group protein (HMGB1), and IL-1β, NMDA receptor signalling, cholinergic signalling, etc.

Methods:The issues associated with using anti-miRNA therapy are also summarized in this review. The data for this literature were extracted and summarized using various search engines, such as Google Scholar, Pubmed, Scopus, and NCBI using different terms, such as NDD, PD, AD, HD, nanoformulations of mRNA, and role of miRNA in diagnosis and treatment.

Results:The miRNAs control various biological actions, such as neuronal differentiation, synaptic plasticity, cytoprotection, neuroinflammation, oxidative stress, apoptosis and chaperone-mediated autophagy, and neurite growth in the central nervous system and diagnosis. Various miRNAs are involved in the regulation of protein aggregation in PD and modulating β-secretase activity in AD. In HD, mutation in the huntingtin (Htt) protein interferes with Ago1 and Ago2, thus affecting the miRNA biogenesis. Currently, many anti-sense technologies are in the research phase for either inhibiting or promoting the activity of miRNA.

Conclusion:This review provides new therapeutic approaches and novel biomarkers for the diagnosis and prognosis of NDDs by using miRNA.

About the authors

Ammara Saleem

Department of Pharmacology, Faculty of Pharmaceutical Sciences,, Government College University

Author for correspondence.
Email: info@benthamscience.net

Maira Javed

Department of Pharmacology, Faculty of Pharmaceutical Sciences,, Government College University

Email: info@benthamscience.net

Muhammad Furqan Akhtar

Riphah Institute of Pharmaceutical Sciences, Riphah International University

Author for correspondence.
Email: info@benthamscience.net

Ali Sharif

Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University

Email: info@benthamscience.net

Bushra Akhtar

Department of Pharmacy, University of Agriculture Faisalabad

Email: info@benthamscience.net

Muhammad Naveed

Department of Physiology and Pharmacology, College of Medicine, The University of Toledo,

Email: info@benthamscience.net

Uzma Saleem

Department of Pharmacology, Faculty of Pharmaceutical Sciences,, Government College University

Email: info@benthamscience.net

Mirza Muhammad Faran Ashraf Baig

Department of Chemistry,, The Hong Kong University of Science and Technology,

Email: info@benthamscience.net

Hafiz Muhammad Zubair

Post Graduate Medical College, Faculty of Medicine and Allied Health Sciences,, The Islamia University of Bahawalpur,

Email: info@benthamscience.net

Talha Bin Emran

Department of Pharmacy,, BGC Trust University Bangladesh

Email: info@benthamscience.net

Mohammad Saleem

Department of Pharmacology,, University of the Punjab

Email: info@benthamscience.net

Ghulam Md Ashraf

Department of Medical Laboratory Sciences, University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Wahid F, Shehzad A, Khan T, Kim YY. MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta Mol Cell Res 2010; 1803(11): 1231-43. doi: 10.1016/j.bbamcr.2010.06.013 PMID: 20619301
  2. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 2018; 9: 402. doi: 10.3389/fendo.2018.00402 PMID: 30123182
  3. Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 2019; 20(1): 5-20. doi: 10.1038/s41580-018-0059-1 PMID: 30228348
  4. Miyoshi K, Miyoshi T, Siomi H. Many ways to generate microRNA-like small RNAs: Non-canonical pathways for microRNA production. Mol Genet Genomics 2010; 284(2): 95-103. doi: 10.1007/s00438-010-0556-1 PMID: 20596726
  5. Chen X, Xie D, Zhao Q, You ZH. MicroRNAs and complex diseases: From experimental results to computational models. Brief Bioinform 2019; 20(2): 515-39. doi: 10.1093/bib/bbx130 PMID: 29045685
  6. Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: Taxonomy, trends and challenges of computational models. Brief Bioinform 2022; 23(5): bbac358. doi: 10.1093/bib/bbac358 PMID: 36056743
  7. Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: Towards systematic evaluation of computational models. Brief Bioinform 2022; 23(6): bbac407. doi: 10.1093/bib/bbac407 PMID: 36151749
  8. Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: Experimental results, databases, webservers and data fusion. Brief Bioinform 2022; 23(6): bbac397. doi: 10.1093/bib/bbac397 PMID: 36094095
  9. Tan L, Yu JT, Tan L. Causes and consequences of MicroRNA dysregulation in neurodegenerative diseases. Mol Neurobiol 2015; 51(3): 1249-62. doi: 10.1007/s12035-014-8803-9 PMID: 24973986
  10. Viswambharan V, Thanseem I, Vasu MM, Poovathinal SA, Anitha A. miRNAs as biomarkers of neurodegenerative disorders. Biomarkers Med 2017; 11(2): 151-67. doi: 10.2217/bmm-2016-0242 PMID: 28125293
  11. Roy B, Lee E, Li T, Rampersaud M. Role of miRNAs in neurodegeneration: From disease cause to tools of biomarker discovery and therapeutics. Genes 2022; 13(3): 425. doi: 10.3390/genes13030425 PMID: 35327979
  12. Jiang Q, Hao Y, Wang G, et al. Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst Biol 2010; 4(S1): S2. doi: 10.1186/1752-0509-4-S1-S2 PMID: 20522252
  13. Mørk S, Pletscher-Frankild S, Palleja Caro A, Gorodkin J, Jensen LJ. Protein-driven inference of miRNA–disease associations. Bioinformatics 2014; 30(3): 392-7. doi: 10.1093/bioinformatics/btt677 PMID: 24273243
  14. Chen X, Yan CC, Zhang X, et al. WBSMDA: Within and between score for MiRNA-disease association prediction. Sci Rep 2016; 6(1): 21106. doi: 10.1038/srep21106 PMID: 26880032
  15. Shi H, Xu J, Zhang G, et al. Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes. BMC Syst Biol 2013; 7(1): 101. doi: 10.1186/1752-0509-7-101 PMID: 24103777
  16. Chen X, Yan CC, Zhang X, You ZH, Huang YA, Yan GY. HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction. Oncotarget 2016; 7(40): 65257-69. doi: 10.18632/oncotarget.11251 PMID: 27533456
  17. Chen X, Yin J, Qu J, Huang L. MDHGI: Matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction. PLOS Comput Biol 2018; 14(8): e1006418. doi: 10.1371/journal.pcbi.1006418 PMID: 30142158
  18. Chen X, Wang L, Qu J, Guan NN, Li JQ. Predicting miRNA–disease association based on inductive matrix completion. Bioinformatics 2018; 34(24): 4256-65. doi: 10.1093/bioinformatics/bty503 PMID: 29939227
  19. Chen X, Sun LG, Zhao Y. NCMCMDA: miRNA–disease association prediction through neighborhood constraint matrix completion. Brief Bioinform 2021; 22(1): 485-96. doi: 10.1093/bib/bbz159 PMID: 31927572
  20. Chen X, Li TH, Zhao Y, Wang CC, Zhu CC. Deep-belief network for predicting potential miRNA-disease associations. Brief Bioinform 2021; 22(3): bbaa186. doi: 10.1093/bib/bbaa186 PMID: 34020550
  21. Condrat CE, Thompson DC, Barbu MG, et al. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020; 9(2): 276. doi: 10.3390/cells9020276 PMID: 31979244
  22. Abe M, Bonini NM. MicroRNAs and neurodegeneration: Role and impact. Trends Cell Biol 2013; 23(1): 30-6. doi: 10.1016/j.tcb.2012.08.013 PMID: 23026030
  23. Jaber VR, Zhao Y, Sharfman NM, Li W, Lukiw WJ. Addressing Alzheimer’s disease (AD) neuropathology using anti-microRNA (AM) strategies. Mol Neurobiol 2019; 56(12): 8101-8. doi: 10.1007/s12035-019-1632-0 PMID: 31183807
  24. Ardashirova NS, Fedotova EY, Illarioshkin SN. The role of MicroRNA in the pathogenesis and diagnostics of Parkinson’s Disease. Neurochem J 2020; 14(2): 127-32. doi: 10.1134/S1819712420020026
  25. Arshad AR, Sulaiman SA, Saperi AA, Jamal R, Mohamed IN, Abdul Murad NA. MicroRNAs and target genes as biomarkers for the diagnosis of early onset of parkinson disease. Front Mol Neurosci 2017; 10: 352. doi: 10.3389/fnmol.2017.00352 PMID: 29163029
  26. Maciotta S, Meregalli M, Torrente Y. The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci 2013; 7: 265. doi: 10.3389/fncel.2013.00265 PMID: 24391543
  27. Elangovan A, Venkatesan D, Selvaraj P, et al. miRNA in Parkinson’s disease: From pathogenesis to theranostic approaches. J Cell Physiol 2023; 238(2): 329-54. doi: 10.1002/jcp.30932 PMID: 36502506
  28. Kabaria S, Choi DC, Chaudhuri AD, Mouradian MM, Junn E. Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinson’s disease. FEBS Lett 2015; 589(3): 319-25. doi: 10.1016/j.febslet.2014.12.014 PMID: 25541488
  29. Miñones-Moyano E, Porta S, Escaramís G, et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 2011; 20(15): 3067-78. doi: 10.1093/hmg/ddr210 PMID: 21558425
  30. Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet 2007; 8(3): 173-84. doi: 10.1038/nrg2006 PMID: 17304245
  31. McMillan KJ, Murray TK, Bengoa-Vergniory N, et al. Loss of microRNA-7 regulation leads to α-synuclein accumulation and dopaminergic neuronal loss in vivo. Mol Ther 2017; 25(10): 2404-14. doi: 10.1016/j.ymthe.2017.08.017 PMID: 28927576
  32. Titze-de-Almeida SS, Soto-Sánchez C, Eduardo F. The promise and challenges of developing miRNA-based therapeutics for Parkinson's Disease. Cells 2020; 9(4): 841. doi: 10.3390/cells9040841
  33. Oh SE, Park HJ, He L, Skibiel C, Junn E, Mouradian MM. The Parkinson’s disease gene product DJ-1 modulates miR-221 to promote neuronal survival against oxidative stress. Redox Biol 2018; 19: 62-73. doi: 10.1016/j.redox.2018.07.021 PMID: 30107296
  34. Yang Z, Li T, Li S, et al. Altered expression levels of microRNA-132 and Nurr1 in peripheral blood of Parkinson’s disease: potential disease biomarkers. ACS Chem Neurosci 2019; 10(5): 2243-9. doi: 10.1021/acschemneuro.8b00460 PMID: 30817108
  35. Yao L, Ye Y, Mao H, et al. MicroRNA-124 regulates the expression of MEKK3 in the inflammatory pathogenesis of Parkinson’s disease. J Neuroinflammation 2018; 15(1): 13. doi: 10.1186/s12974-018-1053-4 PMID: 29329581
  36. Doxakis E. Post-transcriptional regulation of α-synuclein expression by mir-7 and mir-153. J Biol Chem 2010; 285(17): 12726-34. doi: 10.1074/jbc.M109.086827 PMID: 20106983
  37. Harraz MM, Dawson TM, Dawson VL. MicroRNAs in Parkinson’s disease. J Chem Neuroanat 2011; 42(2): 127-30. doi: 10.1016/j.jchemneu.2011.01.005 PMID: 21295133
  38. Khan D, Sharif A, Zafar M, Akhtar B, Akhtar MF, Awan S. Delonix regia a folklore remedy for diabetes; attenuates oxidative stress and modulates type II diabetes mellitus. Curr Pharm Biotechnol 2020; 21(11): 1059-69. doi: 10.2174/1389201021666200217112244 PMID: 32065099
  39. Li L, Xu J, Wu M, Hu JM. Protective role of microRNA-221 in Parkinson’s disease. Bratisl Med J 2018; 119(1): 22-7. doi: 10.4149/BLL_2018_005 PMID: 29405726
  40. Ozdilek B, Demircan B. Serum microRNA expression levels in Turkish patients with Parkinson’s disease. Int J Neurosci 2021; 131(12): 1181-9. doi: 10.1080/00207454.2020.1784165 PMID: 32546033
  41. Grossi I, Radeghieri A, Paolini L, et al. MicroRNA-34a-5p expression in the plasma and in its extracellular vesicle fractions in subjects with Parkinson’s disease: An exploratory study. Int J Mol Med 2020; 47(2): 533-46. doi: 10.3892/ijmm.2020.4806 PMID: 33416118
  42. Lv Q, Zhong Z, Hu B, et al. MicroRNA-3473b regulates the expression of TREM2/ULK1 and inhibits autophagy in inflammatory pathogenesis of Parkinson disease. J Neurochem 2021; 157(3): 599-610. doi: 10.1111/jnc.15299 PMID: 33448372
  43. Lungu G, Stoica G, Ambrus A. MicroRNA profiling and the role of microRNA-132 in neurodegeneration using a rat model. Neurosci Lett 2013; 553: 153-8. doi: 10.1016/j.neulet.2013.08.001 PMID: 23973300
  44. Ding H, Huang Z, Chen M, et al. Identification of a panel of five serum miRNAs as a biomarker for Parkinson’s disease. Parkinsonism Relat Disord 2016; 22: 68-73. doi: 10.1016/j.parkreldis.2015.11.014 PMID: 26631952
  45. Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V. Anti-inflammatory MicroRNAs and their potential for inflammatory diseases treatment. Front Immunol 2018; 9: 1377. doi: 10.3389/fimmu.2018.01377 PMID: 29988529
  46. Zhao Y, Jaber V, Alexandrov PN, et al. microRNA-based biomarkers in Alzheimer’s disease (AD). Front Neurosci 2020; 14: 585432. doi: 10.3389/fnins.2020.585432 PMID: 33192270
  47. Wang WX, Rajeev BW, Stromberg AJ, et al. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of β-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 2008; 28(5): 1213-23. doi: 10.1523/JNEUROSCI.5065-07.2008 PMID: 18234899
  48. Boissonneault V, Plante I, Rivest S, Provost P. MicroRNA-298 and microRNA-328 regulate expression of mouse β-amyloid precursor protein-converting enzyme 1. J Biol Chem 2009; 284(4): 1971-81. doi: 10.1074/jbc.M807530200 PMID: 18986979
  49. Zhang M, Han W, Xu Y, Li D, Xue Q. Serum miR-128 serves as a potential diagnostic biomarker for Alzheimer’s Disease. Neuropsychiatr Dis Treat 2021; 17: 269-75. doi: 10.2147/NDT.S290925 PMID: 33542630
  50. Schonrock N, Humphreys DT, Preiss T, Götz J. Target gene repression mediated by miRNAs miR-181c and miR-9 both of which are down-regulated by amyloid-β. J Mol Neurosci 2012; 46(2): 324-35. doi: 10.1007/s12031-011-9587-2 PMID: 21720722
  51. Femminella GD, Ferrara N, Rengo GJFip. The emerging role of microRNAs in Alzheimer's disease. Front Physiol 2015; 6: 40. doi: 10.3389/fphys.2015.00040
  52. Nelson PT, Wang W-XJJoAsD. MiR-107 is reduced in Alzheimer's disease brain neocortex: Validation study. J Alzheimers Dis 2010; 21(1): 75-9. doi: 10.3233/JAD-2010-091603
  53. Lei X, Lei L, Zhang Z, Zhang Z, Cheng Y. Downregulated miR-29c correlates with increased BACE1 expression in sporadic Alzheimer’s disease. Int J Clin Exp Pathol 2015; 8(2): 1565-74. PMID: 25973041
  54. Silvestro S, Bramanti P, Mazzon E. Role of miRNAs in Alzheimer's Disease and possible fields of application. Int J Mol Sci 2019; 20(16): 3979. doi: 10.3390/ijms20163979
  55. Wang LL. The potential role of microRNA-146 in Alzheimer's disease: Biomarker or therapeutic target?. Med Hypotheses 2012; 78(3): 398-401. doi: 10.1016/j.mehy.2011.11.019
  56. Sun H, Liu X, Long SR, et al. Antidiabetic effects of pterostilbene through PI3K/Akt signal pathway in high fat diet and STZ-induced diabetic rats. Eur J Pharmacol 2019; 859: 172526. doi: 10.1016/j.ejphar.2019.172526 PMID: 31283935
  57. Yu J, Chen J, Yang H, Chen S, Wang Z. Overexpression of miR-200a-3p promoted inflammation in sepsis-induced brain injury through ROS-induced NLRP3. Int J Mol Med 2019; 44(5): 1811-23. doi: 10.3892/ijmm.2019.4326 PMID: 31485604
  58. Kumar S, Reddy PH. MicroRNA-455-3p as a potential biomarker for Alzheimer’s disease: An update. Front Aging Neurosci 2018; 10: 41. doi: 10.3389/fnagi.2018.00041 PMID: 29527164
  59. Bañez-Coronel M, Porta S, Kagerbauer B, et al. A pathogenic mechanism in Huntington’s disease involves small CAG-repeated RNAs with neurotoxic activity. PLoS Genet 2012; 8(2): e1002481. doi: 10.1371/journal.pgen.1002481 PMID: 22383888
  60. Hoss AG. Study of plasma-derived miRNAs mimic differences in Huntington's disease brain. Mov Disord 2015; 30(14): 1961-4. doi: 10.1002/mds.26457
  61. Johnson R, Chiara Z, Nikolai DB, et al. A microRNA-based gene dysregulation pathway in Huntington's disease. Neurobiol Dis 2008; 29(3): 438-45. doi: 10.1016/j.nbd.2007.11.001
  62. Lee ST, Chu K, Im WS, et al. Altered microRNA regulation in Huntington’s disease models. Exp Neurol 2011; 227(1): 172-9. doi: 10.1016/j.expneurol.2010.10.012 PMID: 21035445
  63. Hoss AG, Labadorf A, Latourelle JC, et al. miR-10b-5p expression in Huntington’s disease brain relates to age of onset and the extent of striatal involvement. BMC Med Genomics 2015; 8(1): 10. doi: 10.1186/s12920-015-0083-3 PMID: 25889241
  64. Reed ER, Latourelle JC, Bockholt JH, et al. MicroRNAs in CSF as prodromal biomarkers for Huntington disease in the PREDICT-HD study. Neurology 2018; 90(4): e264-72. doi: 10.1212/WNL.0000000000004844 PMID: 29282329
  65. Ban JJ, Chung JY, Lee M, Im W, Kim M. MicroRNA-27a reduces mutant hutingtin aggregation in an in vitro model of Huntington’s disease. Biochem Biophys Res Commun 2017; 488(2): 316-21. doi: 10.1016/j.bbrc.2017.05.040 PMID: 28495533
  66. Chung TKH, Lau TS, Cheung TH, et al. Dysregulation of microRNA-204 mediates migration and invasion of endometrial cancer by regulating FOXC1. Int J Cancer 2012; 130(5): 1036-45. doi: 10.1002/ijc.26060 PMID: 21400511
  67. Ferraldeschi M, Romano S, Giglio S, et al. Circulating hsa-miR-323b-3p in Huntington’s Disease: A Pilot Study. Front Neurol 2021; 12: 657973. doi: 10.3389/fneur.2021.657973 PMID: 34025560
  68. Johnson R, Zuccato C, Belyaev ND, Guest DJ, Cattaneo E, Buckley NJ. A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol Dis 2008; 29(3): 438-45. doi: 10.1016/j.nbd.2007.11.001 PMID: 18082412
  69. Kocerha J, Xu Y, Prucha MS, Zhao D, Chan AWS. microRNA-128a dysregulation in transgenic Huntington’s disease monkeys. Mol Brain 2014; 7(1): 46. doi: 10.1186/1756-6606-7-46 PMID: 24929669
  70. Tiribuzi R, Crispoltoni L, Porcellati S, et al. miR128 up-regulation correlates with impaired amyloid β(1-42) degradation in monocytes from patients with sporadic Alzheimer’s disease. Neurobiol Aging 2014; 35(2): 345-56. doi: 10.1016/j.neurobiolaging.2013.08.003 PMID: 24064186
  71. Geng L, Zhang T, Liu W, Chen Y. Inhibition of miR-128 abates Aβ-mediated cytotoxicity by targeting PPAR-γ via NF-κB inactivation in primary mouse cortical neurons and Neuro2a cells. Yonsei Med J 2018; 59(9): 1096-106. doi: 10.3349/ymj.2018.59.9.1096 PMID: 30328325
  72. Samadian M, Gholipour M, Hajiesmaeili M, Taheri M, Ghafouri- Fard S. The eminent role of microRNAs in the pathogenesis of Alzheimer’s Disease. Front Aging Neurosci 2021; 13: 641080. doi: 10.3389/fnagi.2021.641080 PMID: 33790780
  73. Sinha M, Mukhopadhyay S, Bhattacharyya NP. Mechanism(s) of alteration of micro RNA expressions in Huntington’s disease and their possible contributions to the observed cellular and molecular dysfunctions in the disease. Neuromol Med 2012; 14(4): 221-43. doi: 10.1007/s12017-012-8183-0 PMID: 22581158
  74. Martins M, Rosa A, Guedes LC, et al. Convergence of miRNA expression profiling, α-synuclein interacton and GWAS in Parkinson’s disease. PLoS One 2011; 6(10): e25443. doi: 10.1371/journal.pone.0025443 PMID: 22003392
  75. Kim W, Lee Y, McKenna ND, et al. miR-126 contributes to Parkinson’s disease by dysregulating the insulin-like growth factor/phosphoinositide 3-kinase signaling. Neurobiol Aging 2014; 35(7): 1712-21. doi: 10.1016/j.neurobiolaging.2014.01.021 PMID: 24559646
  76. Kim W, Noh H, Lee Y, et al. MiR-126 regulates growth factor activities and vulnerability to toxic insult in neurons. Mol Neurobiol 2016; 53(1): 95-108. doi: 10.1007/s12035-014-8989-x PMID: 25407931
  77. Shioya M, Obayashi S, Tabunoki H, et al. Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol Appl Neurobiol 2010; 36(4): 320-30. doi: 10.1111/j.1365-2990.2010.01076.x PMID: 20202123
  78. Cao XY, Lu JM, Zhao ZQ, et al. MicroRNA biomarkers of Parkinson’s disease in serum exosome-like microvesicles. Neurosci Lett 2017; 644: 94-9. doi: 10.1016/j.neulet.2017.02.045 PMID: 28223160
  79. Maldonado-Lasuncion I, Atienza M, Sanchez-Espinosa MP, Cantero JL. Aging-related changes in cognition and cortical integrity are associated with serum expression of candidate MicroRNAs for Alzheimer Disease. Cereb Cortex 2019; 29(10): 4426-37. doi: 10.1093/cercor/bhy323 PMID: 30590432
  80. Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y, Lukiw WJ. microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol 2012; 3(4): 365-73. PMID: 23301201
  81. Rostamian Delavar M, Baghi M, Safaeinejad Z, Kiani-Esfahani A, Ghaedi K, Nasr-Esfahani MH. Differential expression of miR-34a, miR-141, and miR-9 in MPP+-treated differentiated PC12 cells as a model of Parkinson’s disease. Gene 2018; 662: 54-65. doi: 10.1016/j.gene.2018.04.010 PMID: 29631008
  82. Huang M, Dan L, Xiuli C, et al. Micro RNA alteration after paraquat induced PC12 cells damage and regulatory mechanism of bcl-2. Chinese journal of industrial hygiene and occupational diseases 2014; 32(1): 32-7.
  83. Kinoshita C, Aoyama K, Nakaki T. microRNA as a new agent for regulating neuronal glutathione synthesis and metabolism. AIMS Mol Sci 2015; 2(2): 124-43. doi: 10.3934/molsci.2015.2.124
  84. Olmo IG, Olmo RP, Gonçalves ANA, Pires RGW, Marques JT, Ribeiro FM. High-throughput sequencing of BACHD mice reveals upregulation of neuroprotective miRNAs at the pre-symptomatic stage of huntington’s disease. ASN Neuro 2021; 13: 17590914211009857. doi: 10.1177/17590914211009857 PMID: 33906482
  85. Curtaz CJ, Schmitt C, Blecharz-Lang KG, Roewer N, Wöckel A, Burek M. Circulating MicroRNAs and blood-brain-barrier function in breast cancer metastasis. Curr Pharm Des 2020; 26(13): 1417-27. doi: 10.2174/1381612826666200316151720 PMID: 32175838
  86. Tominaga N, Kosaka N, Ono M, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood–brain barrier. Nat Commun 2015; 6(1): 6716. doi: 10.1038/ncomms7716 PMID: 25828099
  87. Lee SWL, Paoletti C, Campisi M, et al. MicroRNA delivery through nanoparticles. J Control Release 2019; 313: 80-95. doi: 10.1016/j.jconrel.2019.10.007 PMID: 31622695
  88. Wang L, Zhao C, Wu S, et al. Hydrogen gas treatment improves the neurological outcome after traumatic brain injury via increasing miR-21 expression. Shock 2018; 50(3): 308-15. doi: 10.1097/SHK.0000000000001018 PMID: 29028768
  89. Song J, Li N, Xia Y, et al. Arctigenin confers neuroprotection against mechanical trauma injury in human neuroblastoma SH-SY5Y cells by regulating miRNA-16 and miRNA-199a expression to alleviate inflammation. J Mol Neurosci 2016; 60(1): 115-29. doi: 10.1007/s12031-016-0784-x PMID: 27389368
  90. Li Z, Wang S, Li W, Yuan H. Ferulic acid improves functional recovery after acute spinal cord injury in rats by inducing hypoxia to inhibit microrna-590 and elevate vascular endothelial growth factor expressions. Front Mol Neurosci 2017; 10: 183. doi: 10.3389/fnmol.2017.00183 PMID: 28642684
  91. Yang Q, Yang K, Li AY. Trimetazidine protects against hypoxia-reperfusion-induced cardiomyocyte apoptosis by increasing microRNA-21 expression. Int J Clin Exp Pathol 2015; 8(4): 3735-41. PMID: 26097555
  92. Wen Y, Zhang X, Dong L, Zhao J, Zhang C, Zhu C. Acetylbritannilactone modulates microRNA-155-mediated inflammatory response in ischemic cerebral tissues. Mol Med 2015; 21(1): 197-209. doi: 10.2119/molmed.2014.00199 PMID: 25811992
  93. Li L, Jiang H, Li Y, Guo Y. Hydrogen sulfide protects spinal cord and induces autophagy via miR-30c in a rat model of spinal cord ischemia-reperfusion injury. J Biomed Sci 2015; 22(1): 50. doi: 10.1186/s12929-015-0135-1 PMID: 26149869
  94. Dong YF, Chen ZZ, Zhao Z, et al. Potential role of microRNA-7 in the anti-neuroinflammation effects of nicorandil in astrocytes induced by oxygen-glucose deprivation. J Neuroinflammation 2016; 13(1): 60. doi: 10.1186/s12974-016-0527-5 PMID: 26961366
  95. Saraiva C, Paiva J, Santos T, Ferreira L, Bernardino L. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson’s disease. J Control Release 2016; 235: 291-305. doi: 10.1016/j.jconrel.2016.06.005 PMID: 27269730
  96. Liu DY, Zhang L. MicroRNA-132 promotes neurons cell apoptosis and activates Tau phosphorylation by targeting GTDC-1 in Alzheimer’s disease. Eur Rev Med Pharmacol Sci 2019; 23(19): 8523-32. PMID: 31646584
  97. Her LS, Mao SH, Chang CY, et al. miR-196a enhances neuronal morphology through suppressing RANBP10 to provide Neuroprotection in Huntington’s disease. Theranostics 2017; 7(9): 2452-62. doi: 10.7150/thno.18813 PMID: 28744327

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers