Potential Therapeutic Approach using Aromatic l-amino Acid Decarboxylase and Glial-derived Neurotrophic Factor Therapy Targeting Putamen in Parkinson's Disease


Cite item

Full Text

Abstract

:Parkinson's disease (PD) is a neurodegenerative illness characterized by specific loss of dopaminergic neurons, resulting in impaired motor movement. Its prevalence is twice as compared to the previous 25 years and affects more than 10 million individuals. Lack of treatment still uses levodopa and other options as disease management measures. Treatment shifts to gene therapy (GT), which utilizes direct delivery of specific genes at the targeted area. Therefore, the use of aromatic L-amino acid decarboxylase (AADC) and glial-derived neurotrophic factor (GDNF) therapy achieves an effective control to treat PD. Patients diagnosed with PD may experience improved therapeutic outcomes by reducing the frequency of drug administration while utilizing provasin and AADC as dopaminergic protective therapy. Enhancing the enzymatic activity of tyrosine hydroxylase (TH), glucocorticoid hormone (GCH), and AADC in the striatum would be useful for external L-DOPA to restore the dopamine (DA) level. Increased expression of glutamic acid decarboxylase (GAD) in the subthalamic nucleus (STN) may also be beneficial in PD. Targeting GDNF therapy specifically to the putaminal region is clinically sound and beneficial in protecting the dopaminergic neurons. Furthermore, preclinical and clinical studies supported the role of GDNF in exhibiting its neuroprotective effect in neurological disorders. Another Ret receptor, which belongs to the tyrosine kinase family, is expressed in dopaminergic neurons and sounds to play a vital role in inhibiting the advancement of PD. GDNF binding on those receptors results in the formation of a receptor-ligand complex. On the other hand, venous delivery of recombinant GDNF by liposome-based and encapsulated cellular approaches enables the secure and effective distribution of neurotrophic factors into the putamen and parenchyma. The current review emphasized the rate of GT target GDNF and AADC therapy, along with the corresponding empirical evidence.

About the authors

Raman Tripathi

Department of Pharmacy Practice, ISF College of Pharmacy

Email: info@benthamscience.net

Lav Goyal

Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmac

Email: info@benthamscience.net

Shamsher Singh

Neuropharmacology Division, Department of Pharmacolog, ISF College of Pharmacy

Author for correspondence.
Email: info@benthamscience.net

References

  1. Napoli M, Shah IM, Stewart DA. Molecular pathways and genetic aspects of Parkinson’s disease: From bench to bedside. Expert Rev Neurother 2007; 7(12): 1693-729. doi: 10.1586/14737175.7.12.1693 PMID: 18052765
  2. Kumar S, Goyal L, Singh S. Tremor and rigidity in patients with Parkinson’s disease: Emphasis on epidemiology, pathophysiology and contributing factors. CNS Neurol Disord Drug Targets 2022; 21(7): 596-609. doi: 10.2174/1871527320666211006142100
  3. Beitz JM. Parkinson s disease a review. Front Biosci 2014; S6(1): 65-74. doi: 10.2741/S415 PMID: 24389262
  4. Jankovic J. Parkinson’s disease: Clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008; 79(4): 368-76. doi: 10.1136/jnnp.2007.131045 PMID: 18344392
  5. Vingerhoets FJG, Schulzer M, Calne DB, Snow BJ. Which clinical sign of Parkinson’s disease best reflects the nigrostriatal lesion? Ann Neurol 1997; 41(1): 58-64. doi: 10.1002/ana.410410111 PMID: 9005866
  6. Zhang Q, Aldridge GM, Narayanan NS, Anderson SW, Uc EY. Approach to cognitive impairment in Parkinson’s disease. Neurotherapeutics 2020; 17(4): 1495-510. doi: 10.1007/s13311-020-00963-x PMID: 33205381
  7. Rabinstein AA, Shulman LM. Management of behavioral and psychiatric problems in Parkinson’s disease. Parkinsonism Relat Disord 2000; 7(1): 41-50. doi: 10.1016/S1353-8020(00)00039-0 PMID: 11008195
  8. Pastor P, Ezquerra M, Muñoz E, et al. Significant association between the tau gene A0/A0 genotype and Parkinson’s disease. Ann Neurol 2000; 47(2): 242-5. doi: 10.1002/1531-8249(200002)47:23.0.CO;2-L PMID: 10665497
  9. Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: Risk factors and prevention. Lancet Neurol 2016; 15(12): 1257-72. doi: 10.1016/S1474-4422(16)30230-7 PMID: 27751556
  10. Vrieze SI, Iacono WG, McGue M. Confluence of genes, environment, development, and behavior in a post-GWAS world. Dev Psychopathol 2012; 24(4): 1195-214. doi: 10.1017/S0954579412000648
  11. Postuma RB, Lang AE, Munhoz RP, et al. Caffeine for treatment of Parkinson disease: A randomized controlled trial. Neurology 2012; 79(7): 651-8. doi: 10.1212/WNL.0b013e318263570d PMID: 22855866
  12. Ma C, Liu Y, Neumann S, Gao X. Nicotine from cigarette smoking and diet and Parkinson disease: A review. Transl Neurodegener 2017; 6(1): 18. doi: 10.1186/s40035-017-0090-8 PMID: 28680589
  13. Baumann CR. Epidemiology, diagnosis and differential diagnosis in Parkinson’s disease tremor. Parkinsonism Relat Disord 2012; 18(S1): S90-2. doi: 10.1016/S1353-8020(11)70029-3 PMID: 22166466
  14. Schildknecht S, Pape R, Meiser J, et al. Preferential extracellular generation of the active parkinsonian toxin MPP+ by transporter-independent export of the intermediate MPDP+. Antioxid Redox Signal 2015; 23(13): 1001-16. doi: 10.1089/ars.2015.6297 PMID: 26413876
  15. Kopin IJ. MPTP: An industrial chemical and contaminant of illicit narcotics stimulates a new era in research on Parkinson’s disease. Environ Health Perspect 1987; 75: 45-51. doi: 10.1289/ehp.877545 PMID: 3319563
  16. Kouli A, Torsney KM, Kuan WL. Parkinson’s disease: etiology, neuropathology, and pathogenesis. Exon Publications 2018; pp. 3-26.
  17. Chagraoui A, Boulain M, Juvin L, Anouar Y, Barrière G, Deurwaerdère P. L-DOPA in parkinson’s disease: Looking at the "false" neurotransmitters and their meaning. Int J Mol Sci 2019; 21(1): 294. doi: 10.3390/ijms21010294 PMID: 31906250
  18. Davis MD, Kaufman S. Products of the tyrosine-dependent oxidation of tetrahydrobiopterin by rat liver phenylalanine hydroxylase. Arch Biochem Biophys 1993; 304(1): 9-16. doi: 10.1006/abbi.1993.1315 PMID: 8323303
  19. Girault JA, Greengard P. The neurobiology of dopamine signaling. Arch Neurol 2004; 61(5): 641-4. doi: 10.1001/archneur.61.5.641 PMID: 15148138
  20. Nagatsu T. The catecholamine system in health and disease -Relation to tyrosine 3-monooxygenase and other catecholamine-synthesizing enzymes. Proc Jpn Acad, Ser B, Phys Biol Sci 2006; 82(10): 388-415. doi: 10.2183/pjab.82.388 PMID: 25792770
  21. Baik JH. Dopamine signaling in reward-related behaviors. Front Neural Circuits 2013; 7: 152. doi: 10.3389/fncir.2013.00152 PMID: 24130517
  22. Narayanan NS, Rodnitzky RL, Uc EY. Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease. Rev Neurosci 2013; 24(3): 267-78. doi: 10.1515/revneuro-2013-0004 PMID: 23729617
  23. Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: Functions, signaling, and association with neurological diseases. Cell Mol Neurobiol 2019; 39(1): 31-59. doi: 10.1007/s10571-018-0632-3 PMID: 30446950
  24. Miller GM. The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J Neurochem 2011; 116(2): 164-76. doi: 10.1111/j.1471-4159.2010.07109.x PMID: 21073468
  25. Zolin A, Cohn R, Pang R, Siliciano AF, Fairhall AL, Ruta V. Context-dependent representations of movement in Drosophila dopaminergic reinforcement pathways. Nat Neurosci 2021; 24(11): 1555-66. doi: 10.1038/s41593-021-00929-y PMID: 34697455
  26. Graves SM, Xie Z, Stout KA, et al. Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain. Nat Neurosci 2020; 23(1): 15-20. doi: 10.1038/s41593-019-0556-3 PMID: 31844313
  27. Mosley LL, Mosley JFFJ II. Vesicular monoamine transporter type 2 (VMAT2) inhibitors in the management of tardive dyskinesia. Clin Med Rev Case Rep 2017; 4: 198. doi: 10.23937/2378-3656/1410198
  28. Hegarty SV, Sullivan AM, O’Keeffe GW. Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development. Dev Biol 2013; 379(2): 123-38. doi: 10.1016/j.ydbio.2013.04.014 PMID: 23603197
  29. Chinta SJ, Andersen JK. Dopaminergic neurons. Int J Biochem Cell Biol 2005; 37(5): 942-6. doi: 10.1016/j.biocel.2004.09.009 PMID: 15743669
  30. Kordower JH, Olanow CW, Dodiya HB, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 2013; 136(8): 2419-31. doi: 10.1093/brain/awt192 PMID: 23884810
  31. Mamelak M. Parkinson’s disease, the dopaminergic neuron and gammahydroxybutyrate. Neurol Ther 2018; 7(1): 5-11. doi: 10.1007/s40120-018-0091-2 PMID: 29368093
  32. Matt SM, Gaskill PJ. Where is dopamine and how do immune cells see it?: Dopamine-mediated immune cell function in health and disease. J Neuroimmune Pharmacol 2020; 15(1): 114-64. doi: 10.1007/s11481-019-09851-4 PMID: 31077015
  33. Sebastianutto I, Goyet E, Andreoli L, et al. D1-mGlu5 heteromers mediate noncanonical dopamine signaling in Parkinson’s disease. J Clin Invest 2020; 130(3): 1168-84. doi: 10.1172/JCI126361 PMID: 32039920
  34. Messanvi F, Eggens-Meijer E, Roozendaal B, van der Want JJ. A discrete dopaminergic projection from the incertohypothalamic A13 cell group to the dorsolateral periaqueductal gray in rat. Front Neuroanat 2013; 7: 41. doi: 10.3389/fnana.2013.00041 PMID: 24367297
  35. Bartus RT, Weinberg MS, Samulski RJ. Parkinson’s disease gene therapy: Success by design meets failure by efficacy. Mol Ther 2014; 22(3): 487-97. doi: 10.1038/mt.2013.281 PMID: 24356252
  36. Dahariya S, Nagarjuna V. Biomaterials in tissue engineering and regenerative medicine: In vitro disease models and advances in gene-based therapies. In: Biomaterials in Tissue Engineering and Regenerative Medicine. 2021; pp. 485-504. doi: 10.1007/978-981-16-0002-9_14
  37. Melsheimer R, Geldhof A, Apaolaza I, Schaible T. Remicade® (infliximab): 20 years of contributions to science and medicine. Biologics 2019; 13: 139-78. PMID: 31440029
  38. Marks L. The birth pangs of monoclonal antibody therapeutics: the failure and legacy of Centoxin. InMAbs 2012; 4(3): 403-12. doi: 10.4161/mabs.19909
  39. Cheng S. Pharmacologically controlled neurotrophic factor gene therapy for Parkinson's disease Doctoral dissertation, Niedersächsische Staats-und Universitätsbibliothek Göttingen 2021. doi: 10.1016/j.omtm.2021.07.007
  40. Manno CS, Pierce GF, Arruda VR, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12(3): 342-7. doi: 10.1038/nm1358 PMID: 16474400
  41. Mount JD, Herzog RW, Tillson DM, et al. Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy. Blood 2002; 99(8): 2670-6. doi: 10.1182/blood.V99.8.2670 PMID: 11929752
  42. Wang L, Nichols TC, Read MS, Bellinger DA, Verma IM. Sustained expression of therapeutic level of factor IX in hemophilia B dogs by AAV-mediated gene therapy in liver. Mol Ther 2000; 1(2): 154-8. doi: 10.1006/mthe.2000.0031 PMID: 10933925
  43. Raj D, Davidoff AM, Nathwani AC. Self-complementary adeno-associated viral vectors for gene therapy of hemophilia B: Progress and challenges. Expert Rev Hematol 2011; 4(5): 539-49. doi: 10.1586/ehm.11.48 PMID: 21939421
  44. McCarty DM. Self-complementary AAV vectors; advances and applications. Mol Ther 2008; 16(10): 1648-56. doi: 10.1038/mt.2008.171 PMID: 18682697
  45. Ricobaraza A, Gonzalez-Aparicio M, Mora-Jimenez L, Lumbreras S, Hernandez-Alcoceba R. High-capacity adenoviral vectors: Expanding the scope of gene therapy. Int J Mol Sci 2020; 21(10): 3643. doi: 10.3390/ijms21103643 PMID: 32455640
  46. Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene 2013; 525(2): 162-9. doi: 10.1016/j.gene.2013.03.137 PMID: 23618815
  47. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science 2018; 359(6372): eaan4672. doi: 10.1126/science.aan4672 PMID: 29326244
  48. Sharma D, Arora S, Singh J, Layek B. A review of the tortuous path of nonviral gene delivery and recent progress. Int J Biol Macromol 2021; 183: 2055-73. doi: 10.1016/j.ijbiomac.2021.05.192 PMID: 34087309
  49. Majláth Z, Török N, Toldi J, Vécsei L. Promising therapeutic agents for the treatment of Parkinson’s disease. Expert Opin Biol Ther 2016; 16(6): 787-99. doi: 10.1517/14712598.2016.1164687 PMID: 26961515
  50. Kirik D, Cederfjäll E, Halliday G, Petersén Å. Gene therapy for Parkinson’s disease: Disease modification by GDNF family of ligands. Neurobiol Dis 2017; 97(Pt B): 179-88. doi: 10.1016/j.nbd.2016.09.008 PMID: 27616425
  51. Valles F, Fiandaca MS, Eberling JL, et al. Qualitative imaging of adeno-associated virus serotype 2-human aromatic L-amino acid decarboxylase gene therapy in a phase I study for the treatment of Parkinson disease. Neurosurgery 2010; 67(5): 1377-85. doi: 10.1227/NEU.0b013e3181f53a5c PMID: 20871425
  52. Martinez-Fong D, Bannon MJ, Trudeau LE, et al. NTS-Polyplex: A potential nanocarrier for neurotrophic therapy of Parkinson’s disease. Nanomedicine 2012; 8(7): 1052-69. doi: 10.1016/j.nano.2012.02.009 PMID: 22406187
  53. Hernandez-Chan NG, Bannon MJ, Orozco-Barrios CE, et al. Neurotensin-polyplex-mediated brain-derived neurotrophic factor gene delivery into nigral dopamine neurons prevents nigrostriatal degeneration in a rat model of early Parkinson’s disease. J Biomed Sci 2015; 22(1): 59. doi: 10.1186/s12929-015-0166-7 PMID: 26198255
  54. Lapchak PA, Beck KD, Araujo DM, Irwin I, Langston JW, Hefti F. Chronic intranigral administration of brain-derived neurotrophic factor produces striatal dopaminergic hypofunction in unlesioned adult rats and fails to attenuate the decline of striatal dopaminergic function following medial forebrain bundle transection. Neuroscience 1993; 53(3): 639-50. doi: 10.1016/0306-4522(93)90612-J PMID: 8098137
  55. Wold W, Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther 2014; 13(6): 421-33. doi: 10.2174/1566523213666131125095046 PMID: 24279313
  56. Doerfler W. Adenoviral vector DNA-and SARS-CoV-2 mRNA-based COVID-19 vaccines: possible integration into the human genome-are adenoviral genes expressed in vector-based vaccines? Virus Res 2021; 302: 198466. doi: 10.1016/j.virusres.2021.198466 PMID: 34087261
  57. Shieh WJ. Human adenovirus infections in pediatric population-an update on clinico–pathologic correlation. Biomed J 2022; 45(1): 38-49. doi: 10.1016/j.bj.2021.08.009
  58. Nemerow GR, Stewart PL, Reddy VS. Structure of human adenovirus. Curr Opin Virol 2012; 2(2): 115-21. doi: 10.1016/j.coviro.2011.12.008 PMID: 22482707
  59. Vorburger SA, Hunt KK. Adenoviral gene therapy. Oncologist 2002; 7(1): 46-59. doi: 10.1634/theoncologist.7-1-46 PMID: 11854546
  60. Maginnis MS. Virus–receptor interactions: The key to cellular invasion. J Mol Biol 2018; 430(17): 2590-611. doi: 10.1016/j.jmb.2018.06.024 PMID: 29924965
  61. Somvanshi P, Khisty S. Peptide-based DNA delivery system. Med Nov Technol Devices 2021; 11: 100091. doi: 10.1016/j.medntd.2021.100091
  62. Lopez-Gomollon S, Baulcombe DC. Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems. Nat Rev Mol Cell Biol 2022; 23(10): 645-62. doi: 10.1038/s41580-022-00496-5 PMID: 35710830
  63. Yan Z, McCray PB Jr, Engelhardt JF. Advances in gene therapy for cystic fibrosis lung disease. Hum Mol Genet 2019; 28(R1): R88-94. doi: 10.1093/hmg/ddz139 PMID: 31332440
  64. Shirley JL, de Jong YP, Terhorst C, Herzog RW. Immune responses to viral gene therapy vectors. Mol Ther 2020; 28(3): 709-22. doi: 10.1016/j.ymthe.2020.01.001 PMID: 31968213
  65. Bjorklund A, Cenci-Nilsson A. Recent advances in Parkinson's disease: Basic research. Preface. Prog Brain Res 183: 9-10. doi: 10.1016/S0079-6123(10)83018-3
  66. Hitti FL, Yang AI, Gonzalez-Alegre P, Baltuch GH. Human gene therapy approaches for the treatment of Parkinson’s disease: An overview of current and completed clinical trials. Parkinsonism Relat Disord 2019; 66: 16-24. doi: 10.1016/j.parkreldis.2019.07.018 PMID: 31324556
  67. Axelsen TM, Woldbye DPD. Gene therapy for Parkinson’s disease, an update. J Parkinsons Dis 2018; 8(2): 195-215. doi: 10.3233/JPD-181331 PMID: 29710735
  68. Burton EA, Glorioso JC, Fink DJ. Gene therapy progress and prospects: Parkinson’s disease. Gene Ther 2003; 10(20): 1721-7. doi: 10.1038/sj.gt.3302116 PMID: 12939638
  69. Manfredsson F, Okun M, Mandel R. Gene therapy for neurological disorders: Challenges and future prospects for the use of growth factors for the treatment of Parkinson’s disease. Curr Gene Ther 2009; 9(5): 375-88. doi: 10.2174/156652309789753400 PMID: 19860652
  70. Lee HJ, Jung DH, Jung YJ, Shin HK, Choi BT. Transcranial alternating current stimulation rescues motor deficits in a mouse model of Parkinson’s disease via the production of glial cell line-derived neurotrophic factor. Brain Stimul 2022; 15(3): 645-53. doi: 10.1016/j.brs.2022.04.002 PMID: 35429660
  71. Behl T, Kaur I, Kumar A, Mehta V, Zengin G, Arora S. Gene therapy in the management of Parkinson’s disease: Potential of gdnf as a promising therapeutic strategy. Curr Gene Ther 2020; 20(3): 207-22. doi: 10.2174/1566523220999200817164051 PMID: 32811394
  72. Fiandaca MS, Bankiewicz KS, Federoff HJ. Gene therapy for the treatment of Parkinson’s disease: The nature of the biologics expands the future indications. Pharmaceuticals 2012; 5(6): 553-90. doi: 10.3390/ph5060553 PMID: 24281662
  73. Arango D, Bittar A, Esmeral NP, et al. Understanding the potential of genome editing in parkinson’s disease. Int J Mol Sci 2021; 22(17): 9241. doi: 10.3390/ijms22179241 PMID: 34502143
  74. Parambi DGT, Alharbi KS, Kumar R, et al. Gene therapy approach with an emphasis on growth factors: theoretical and clinical outcomes in neurodegenerative diseases. Mol Neurobiol 2022; 59(1): 191-233. doi: 10.1007/s12035-021-02555-y PMID: 34655056
  75. Mahato AK, Sidorova YA. RET receptor tyrosine kinase: Role in neurodegeneration, obesity, and cancer. Int J Mol Sci 2020; 21(19): 7108. doi: 10.3390/ijms21197108 PMID: 32993133
  76. Barker RA, Björklund A, Gash DM, et al. GDNF and Parkinson’s disease: Where next? A summary from a recent workshop. J Parkinsons Dis 2020; 10(3): 875-91. doi: 10.3233/JPD-202004 PMID: 32508331
  77. Kirkeby A, Barker RA. Parkinson disease and growth factors — is GDNF good enough? Nat Rev Neurol 2019; 15(6): 312-4. doi: 10.1038/s41582-019-0180-6 PMID: 30948845
  78. Spuch C, Navarro C. Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer's Disease and Parkinson's Disease). J Drug Deliv 2011; 2011: 469679. doi: 10.1155/2011/469679
  79. Fajardo-Serrano A, Rico AJ, Roda E, et al. Adeno-associated viral vectors as versatile tools for Parkinson’s research, both for disease modeling purposes and for therapeutic uses. Int J Mol Sci 2021; 22(12): 6389. doi: 10.3390/ijms22126389 PMID: 34203739
  80. Weissmiller AM, Wu C. Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl Neurodegener 2012; 1(1): 14. doi: 10.1186/2047-9158-1-14 PMID: 23210531
  81. Blesch A. Neurotrophic factors in neurodegeneration. Brain Pathol 2006; 16(4): 295-303. doi: 10.1111/j.1750-3639.2006.00036.x PMID: 17107599
  82. El Ouaamari Y, Van den Bos J, Willekens B, Cools N, Wens I. Neurotrophic factors as regenerative therapy for neurodegenerative diseases: Current status, challenges and future perspectives. Int J Mol Sci 2023; 24(4): 3866. doi: 10.3390/ijms24043866 PMID: 36835277
  83. Huntington TE, Srinivasan R. Adeno-associated virus expression of α-synuclein as a tool to model Parkinson’s Disease: Current understanding and knowledge gaps. Aging Dis 2021; 12(4): 1120-37. doi: 10.14336/AD.2021.0517 PMID: 34221553
  84. Muramatsu S. The current status of gene therapy for Parkinson’s disease. Ann Neurosci 2010; 17(2): 92-5. doi: 10.5214/ans.0972-7531.1017209 PMID: 25205879
  85. Björklund T, Davidsson M. Next-generation gene therapy for parkinson’s disease using engineered viral vectors. J Parkinsons Dis 2021; 11(s2): S209-17. doi: 10.3233/JPD-212674 PMID: 34366370
  86. Zhu D, Schieferecke AJ, Lopez PA, Schaffer DV. Adeno-associated virus vector for central nervous system gene therapy. Trends Mol Med 2021; 27(6): 524-37. doi: 10.1016/j.molmed.2021.03.010 PMID: 33895085
  87. Rocco MT, Akhter AS, Ehrlich DJ, et al. Long-term safety of MRI-guided administration of AAV2-GDNF and gadoteridol in the putamen of individuals with Parkinson’s disease. Mol Ther 2022; 30(12): 3632-8. doi: 10.1016/j.ymthe.2022.08.003 PMID: 35957524
  88. Pandey SK, Singh RK. Recent developments in nucleic acid-based therapies for Parkinson’s disease: Current status, clinical potential, and future strategies. Front Pharmacol 2022; 13: 986668. doi: 10.3389/fphar.2022.986668 PMID: 36339626
  89. Hwu PWL, Kiening K, Anselm I, et al. Gene therapy in the putamen for curing AADC deficiency and Parkinson’s disease. EMBO Mol Med 2021; 13(9): e14712. doi: 10.15252/emmm.202114712 PMID: 34423905
  90. Elkouzi A, Vedam-Mai V, Eisinger RS, Okun MS. Emerging therapies in Parkinson disease — repurposed drugs and new approaches. Nat Rev Neurol 2019; 15(4): 204-23. doi: 10.1038/s41582-019-0155-7 PMID: 30867588
  91. Christine CW, Richardson RM, Laar AD, et al. Safety of AADC gene therapy for moderately advanced Parkinson disease: three-year outcomes from the PD-1101 trial. Neurology 2022; 98(1): e40-50. doi: 10.1212/WNL.0000000000012952 PMID: 34649873
  92. Jamebozorgi K, Taghizadeh E, Rostami D, et al. Cellular and molecular aspects of Parkinson treatment: Future therapeutic perspectives. Mol Neurobiol 2019; 56(7): 4799-811. doi: 10.1007/s12035-018-1419-8 PMID: 30397850
  93. Wood H. Gene therapy boosts response to levodopa in patients with Parkinson disease. Nat Rev Neurol 2020; 16(5): 242. doi: 10.1038/s41582-020-0351-5 PMID: 32235927
  94. Buttery PC, Barker RA. Gene and cell-based therapies for Parkinson’s disease: Where are we? Neurotherapeutics 2020; 17(4): 1539-62. doi: 10.1007/s13311-020-00940-4 PMID: 33128174
  95. Robinson R. Successful gene therapy for AADC deficiency opens therapeutic options for other neurologic diseases. Neurol Today 2021; 21(17): 10-2. doi: 10.1097/01.NT.0000792808.17023.2e
  96. Merola A, Kobayashi N, Romagnolo A, et al. Gene therapy in movement disorders: A systematic review of ongoing and completed clinical trials. Front Neurol 2021; 12: 648532. doi: 10.3389/fneur.2021.648532 PMID: 33889127
  97. Lohr KM, Bernstein AI, Stout KA, et al. Increased vesicular monoamine transporter enhances dopamine release and opposes Parkinson disease-related neurodegeneration in vivo. Proc Natl Acad Sci 2014; 111(27): 9977-82. doi: 10.1073/pnas.1402134111 PMID: 24979780
  98. German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the dopamine and vesicular monoamine transporters: pharmacological targets and implications for disease. Pharmacol Rev 2015; 67(4): 1005-24. doi: 10.1124/pr.114.010397 PMID: 26408528
  99. Sun M, Kong L, Wang X, et al. Coexpression of tyrosine hydroxylase, GTP cyclohydrolase I, aromatic amino acid decarboxylase, and vesicular monoamine transporter 2 from a helper virus-free herpes simplex virus type 1 vector supports high-level, long-term biochemical and behavioral correction of a rat model of Parkinson’s disease. Hum Gene Ther 2004; 15(12): 1177-96. doi: 10.1089/hum.2004.15.1177 PMID: 15684695
  100. Palfi S, Ralph RS, Mitrophanous K. C1-7 ProSavin®: A lentiviral vector approach for the treatment of Parkinson’s disease. In: The CliniBook. EDP Sciences 2022; pp. 486-92.
  101. Albert K, Voutilainen M, Domanskyi A, Airavaara M. AAV vector-mediated gene delivery to substantia nigra dopamine neurons: Implications for gene therapy and disease models. Genes 2017; 8(2): 63. doi: 10.3390/genes8020063 PMID: 28208742
  102. Grames MS, Dayton RD, Jackson KL, Richard AD, Lu X, Klein RL. Cre-dependent AAV vectors for highly targeted expression of disease-related proteins and neurodegeneration in the substantia nigra. FASEB J 2018; 32(8): 4420-7. doi: 10.1096/fj.201701529RR PMID: 29513569
  103. Voutilainen MH, De Lorenzo F, Stepanova P, et al. Evidence for an additive neurorestorative effect of simultaneously administered CDNF and GDNF in hemiparkinsonian rats: implications for different mechanism of action. eNeuro 2017; 4(1): ENEURO.0117-16.2017. doi: 10.1523/ENEURO.0117-16.2017 PMID: 28303260
  104. Chmielarz P, Saarma M. Neurotrophic factors for disease-modifying treatments of Parkinson’s disease: Gaps between basic science and clinical studies. Pharmacol Rep 2020; 72(5): 1195-217. doi: 10.1007/s43440-020-00120-3 PMID: 32700249
  105. Oh SM, Chang MY, Song JJ, et al. Combined Nurr1 and Foxa2 roles in the therapy of Parkinson’s disease. EMBO Mol Med 2015; 7(5): 510-25. doi: 10.15252/emmm.201404610 PMID: 25759364
  106. Karimian A, Gorjizadeh N, Alemi F, et al. CRISPR/Cas9 novel therapeutic road for the treatment of neurodegenerative diseases. Life Sci 2020; 259: 118165. doi: 10.1016/j.lfs.2020.118165 PMID: 32735884
  107. Muramatsu S, Fujimoto K, Kato S, et al. A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 2010; 18(9): 1731-5. doi: 10.1038/mt.2010.135 PMID: 20606642
  108. Moschovou K, Melagraki G, Mavromoustakos T, Zacharia LC, Afantitis A. Cheminformatics and virtual screening studies of COMT inhibitors as potential Parkinson’s disease therapeutics. Expert Opin Drug Discov 2020; 15(1): 53-62. doi: 10.1080/17460441.2020.1691165 PMID: 31744341
  109. Safari F, Hatam G, Behbahani AB, et al. CRISPR system: A high-throughput toolbox for research and treatment of Parkinson’s disease. Cell Mol Neurobiol 2020; 40(4): 477-93. doi: 10.1007/s10571-019-00761-w PMID: 31773362

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers