Catechin Protects against Lipopolysaccharide-induced Depressive-like Behaviour in Mice by Regulating Neuronal and Inflammatory Genes


Cite item

Full Text

Abstract

Background:Many studies have suggested that tea has antidepressant effects; however, the underlying mechanism is not fully studied. As the main anti-inflammatory polyphenol in tea, catechin may contribute to the protective role of tea against depression.

background:Many studies have suggested that tea has antidepressant effects; however, the underlying mechanism is not fully studied. As the main anti-inflammatory polyphenol in tea, catechin may contribute to the protective role of tea against depression.

Objective:The objective of this study is to prove that catechin can protect against lipopolysaccharide (LPS)-induced depressive-like behaviours in mice, and then explore the underlying molecular mechanisms.

objective:The objective of this study is to prove that catechin can protect against lipopolysaccharide (LPS)-induced depressive-like behaviours in mice, and then explore the underlying molecular mechanisms.

Method:Thirty-one C57BL/6J mice were categorized into the normal saline (NS) group, LPS group, catechin group, and amitriptyline group according to their treatments. Elevated Plus Maze (EPM), Tail Suspension Test (TST), and Open Field Test (OFT) were employed to assess depressive- like behaviours in mice. RNA sequencing (RNA-seq) and subsequent Bioinformatics analyses, such as differential gene analysis and functional enrichment, were performed on the four mouse groups.

method:Thirty-one C57BL/6J mice were categorized into normal saline (NS) group, LPS group, catechin group, and amitriptyline group according to their treatments. Elevated Plus Maze (EPM), Tail Suspension Test (TST), and Open Field Test (OFT) were employed to assess depressive-like behaviours in mice. RNA sequencing (RNA-seq) and subsequent Bioinformatics analyses, such as differential gene analysis and functional enrichment, were performed on the four mouse groups.

Results:In TST, the mice in the LPS group exhibited significantly longer immobility time than those in the other three groups, while the immobility times for the other three groups were not significantly different. Similarly in EPM, LPS-treated mice exhibited a significantly lower percentage in the time/path of entering open arms than the mice in the other three groups, while the percentages of the mice in the other three groups were not significantly different. In OFT, LPS-treated mice exhibited significantly lower percentages in the time/path of entering the centre area than those in the other three groups. The results suggested that the LPS-induced depression models were established successfully and catechin can reverse (LPS)-induced depressive-like behaviours in mice. Finally, RNA-seq analyses revealed 57 differential expressed genes (DEGs) between LPS and NS with 19 up-regulated and 38 down-regulated. Among them, 13 genes were overlapped with the DEGs between LPS and cetechin (in opposite directions), with an overlapping p-valup < 0.001. The 13 genes included Rnu7, Lcn2, C4b, Saa3, Pglyrp1, Gpx3, Lyz2, S100a8, S100a9, Tmem254b, Gm14288, Hbb-bt, and Tmem254c, which might play key roles in the protection of catechin against LPS-induced depressive-like behaviours in mice. The 13 genes were significantly enriched in defense response and inflammatory response, indicating that catechin might work through counteracting changes in the immune system induced by LPS.

Conclusion:Catechin can protect mice from LPS-induced depressive-like behaviours through affecting inflammatory pathways and neuron-associated gene ontologies.

About the authors

Yanfang Su

Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Ping Qiu

Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Li Cheng

Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Lijing Zhang

Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Wenpeng Peng

Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology

Author for correspondence.
Email: info@benthamscience.net

Xianfang Meng

Department of Neurobiology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bisgaard TH, Allin KH, Keefer L, Ananthakrishnan AN, Jess T. Depression and anxiety in inflammatory bowel disease: epidemiology, mechanisms and treatment. Nat Rev Gastroenterol Hepatol 2022; 19(11): 717-26. doi: 10.1038/s41575-022-00634-6 PMID: 35732730
  2. Yu H, Chen L, Lei H, et al. Infralimbic medial prefrontal cortex signalling to calbindin 1 positive neurons in posterior basolateral amygdala suppresses anxiety- and depression-like behaviours. Nat Commun 2022; 13(1): 5462. doi: 10.1038/s41467-022-33139-6 PMID: 36115848
  3. Moncrieff J, Cooper RE, Stockmann T, et al. The serotonin theory of depression: A systematic umbrella review of the evidence. Mol Psychiatry 2023; 28(8): 3243-56. PMID: 35854107
  4. Gururajan A, Reif A, Cryan JF, Slattery DA. The future of rodent models in depression research. Nat Rev Neurosci 2019; 20(11): 686-701. doi: 10.1038/s41583-019-0221-6 PMID: 31578460
  5. Qi C, Cai Y, Qian K, et al. gutMDisorder v2.0: A comprehensive database for dysbiosis of gut microbiota in phenotypes and interventions. Nucleic Acids Res 2023; 51(D1): D717-22. PMID: 36215029
  6. Senthilkumar S, Maiya K, Jain NK, et al. Reversal of neuropsychiatric comorbidities in animal model of temporal lobe epilepsy following systemic administration of dental pulp stem cells and bone marrow mesenchymal stem cells. Curr Gene Ther 2023; 23(3): 198-214. PMID: 36305152
  7. Chan EC, Tie PP, Soh EY, Law Y. Antioxidant and antibacterial properties of green, black, and herbal teas of Camellia sinensis. Pharmacognosy Res 2011; 3(4): 266-72. doi: 10.4103/0974-8490.89748 PMID: 22224051
  8. Park HJ, Lee JY, Chung MY, et al. Green tea extract suppresses NFκB activation and inflammatory responses in diet-induced obese rats with nonalcoholic steatohepatitis. J Nutr 2012; 142(1): 57-63. doi: 10.3945/jn.111.148544 PMID: 22157544
  9. Renaud-Charest O, Lui LMW, Eskander S, et al. Onset and frequency of depression in post-COVID-19 syndrome: A systematic review. J Psychiatr Res 2021; 144: 129-37. doi: 10.1016/j.jpsychires.2021.09.054 PMID: 34619491
  10. Tomfohr-Madsen LM, Racine N, Giesbrecht GF, Lebel C, Madigan S. Depression and anxiety in pregnancy during COVID-19: A rapid review and meta-analysis. Psychiatry Res 2021; 300: 113912. doi: 10.1016/j.psychres.2021.113912 PMID: 33836471
  11. Titze-de-Almeida R, Titze-de-Almeida SS. miR-7 replacement therapy in Parkinson’s disease. Curr Gene Ther 2018; 18(3): 143-53. doi: 10.2174/1566523218666180430121323 PMID: 29714132
  12. Cheng L, Han X, Zhu Z, Qi C, Wang P, Zhang X. Functional alterations caused by mutations reflect evolutionary trends of SARS- CoV-2. Brief Bioinform 2021; 22(2): 1442-50. doi: 10.1093/bib/bbab042 PMID: 33580783
  13. Chen W, Li X, Xiang L, Lin Y, Tang Q, Meng F. Computational analysis illustrates the mechanism of qingfei paidu decoction in blocking the transition of COVID-19 patients from mild to severe stage. Curr Gene Ther 2022; 22(3): 277-89. doi: 10.2174/1566523221666210907162005 PMID: 34493195
  14. Burke MJ, Romanella SM, Mencarelli L, et al. Placebo effects and neuromodulation for depression: A meta-analysis and evaluation of shared mechanisms. Mol Psychiatry 2022; 27(3): 1658-66. doi: 10.1038/s41380-021-01397-3 PMID: 34903861
  15. Bangasser DA, Cuarenta A. Sex differences in anxiety and depression: Circuits and mechanisms. Nat Rev Neurosci 2021; 22(11): 674-84. doi: 10.1038/s41583-021-00513-0 PMID: 34545241
  16. Fu Z, Zhen W, Yuskavage J, Liu D. Epigallocatechin gallate delays the onset of type 1 diabetes in spontaneous non-obese diabetic mice. Br J Nutr 2011; 105(8): 1218-25. doi: 10.1017/S0007114510004824 PMID: 21144096
  17. Potenza MA, Marasciulo FL, Tarquinio M, et al. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am J Physiol Endocrinol Metab 2007; 292(5): E1378-87. doi: 10.1152/ajpendo.00698.2006 PMID: 17227956
  18. Mereles D, Hunstein W. Epigallocatechin-3-gallate (EGCG) for clinical trials: More pitfalls than promises? Int J Mol Sci 2011; 12(9): 5592-603. doi: 10.3390/ijms12095592 PMID: 22016611
  19. Chu AL, Hickman M, Steel N, Jones PB, Smith G, Khandaker GM. Inflammation and depression: A public health perspective. Brain Behav Immun 2021; 95: 1-3. doi: 10.1016/j.bbi.2021.04.015 PMID: 33882327
  20. Cheng L, Qi C, Yang H, et al. gutMGene: A comprehensive database for target genes of gut microbes and microbial metabolites. Nucleic Acids Res 2022; 50(D1): D795-800. doi: 10.1093/nar/gkab786 PMID: 34500458
  21. Wu X, Huang Y, Liu S, et al. AAV9-coGLB1 improves lysosomal storage and rescues central nervous system inflammation in a mutant mouse model of gm1 gangliosidosis. Curr Gene Ther 2022; 22(4): 352-65. doi: 10.2174/1566523222666220304092732 PMID: 35249485
  22. Porat Y, Abramowitz A, Gazit E. Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 2006; 67(1): 27-37. doi: 10.1111/j.1747-0285.2005.00318.x PMID: 16492146
  23. Stevenson DE, Hurst RD. Polyphenolic phytochemicals – just antioxidants or much more? Cell Mol Life Sci 2007; 64(22): 2900-16. doi: 10.1007/s00018-007-7237-1 PMID: 17726576
  24. Behl T, Rana T, Alotaibi GH, et al. Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression. Biomed Pharmacother 2022; 146: 112545. doi: 10.1016/j.biopha.2021.112545 PMID: 34922112
  25. Rietveld A, Wiseman S. Antioxidant effects of tea: Evidence from human clinical trials. J Nutr 2003; 133(10): 3285S-92S. doi: 10.1093/jn/133.10.3285S PMID: 14519827
  26. Zhang B, Wang B, Cao S, Wang Y. Epigallocatechin-3-Gallate (EGCG) attenuates traumatic brain injury by inhibition of edema formation and oxidative stress. Korean J Physiol Pharmacol 2015; 19(6): 491-7. doi: 10.4196/kjpp.2015.19.6.491 PMID: 26557015
  27. Allen J, Caruncho HJ, Kalynchuk LE. Severe life stress, mitochondrial dysfunction, and depressive behavior: A pathophysiological and therapeutic perspective. Mitochondrion 2021; 56: 111-7. doi: 10.1016/j.mito.2020.11.010 PMID: 33220501
  28. Ahmed NA, Radwan NM, Aboul Ezz HS, Salama NA. The antioxidant effect of Green Tea Mega EGCG against electromagnetic radiation-induced oxidative stress in the hippocampus and striatum of rats. Electromagn Biol Med 2017; 36(1): 63-73. PMID: 27400086
  29. Bromet E, Andrade LH, Hwang I, et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med 2011; 9(1): 90. doi: 10.1186/1741-7015-9-90 PMID: 21791035
  30. Furukawa TA, Suganuma A, Ostinelli EG, et al. Dismantling, optimising, and personalising internet cognitive behavioural therapy for depression: A systematic review and component network meta-analysis using individual participant data. Lancet Psychiatry 2021; 8(6): 500-11. doi: 10.1016/S2215-0366(21)00077-8 PMID: 33957075
  31. Furukawa TA, Karyotaki E, Suganuma A, et al. Dismantling, personalising and optimising internet cognitive–behavioural therapy for depression: A study protocol for individual participant data component network meta-analysis. BMJ Open 2018; 8(11): e026137. doi: 10.1136/bmjopen-2018-026137 PMID: 30798295
  32. Lundstrom K. Gene therapy cargos based on viral vector delivery. Curr Gene Ther 2023; 23(2): 111-34.
  33. Vázquez GH, Bahji A, Undurraga J, Tondo L, Baldessarini RJ. Efficacy and tolerability of combination treatments for major depression: Antidepressants plus second-generation antipsychotics vs. esketamine vs. lithium. J Psychopharmacol 2021; 35(8): 890-900. doi: 10.1177/02698811211013579 PMID: 34238049
  34. Henssler J, Alexander D, Schwarzer G, Bschor T, Baethge C. Combining antidepressants vs antidepressant monotherapy for treatment of patients with acute depression. JAMA Psychiatry 2022; 79(4): 300-12. doi: 10.1001/jamapsychiatry.2021.4313 PMID: 35171215
  35. Wang H, Bian S, Yang CS. Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1. Carcinogenesis 2011; 32(12): 1881-9. doi: 10.1093/carcin/bgr218 PMID: 21965273
  36. Read J, Williams J. Adverse effects of antidepressants reported by a large international cohort: Emotional blunting, suicidality, and withdrawal effects. Curr Drug Saf 2018; 13(3): 176-86. doi: 10.2174/1574886313666180605095130 PMID: 29866014
  37. Edinoff AN, Akuly HA, Hanna TA, et al. Selective serotonin reuptake inhibitors and adverse effects: A narrative review. Neurol Int 2021; 13(3): 387-401. doi: 10.3390/neurolint13030038 PMID: 34449705
  38. Scapagnini G, Davinelli S, Drago F, De Lorenzo A, Oriani G. Antioxidants as antidepressants. CNS Drugs 2012; 26(6): 477-90. doi: 10.2165/11633190-000000000-00000 PMID: 22668245
  39. Ferrari AJ, Charlson FJ, Norman RE, et al. Burden of depressive disorders by country, sex, age, and year: Findings from the global burden of disease study 2010. PLoS Med 2013; 10(11): e1001547. doi: 10.1371/journal.pmed.1001547 PMID: 24223526
  40. Vos T, Barber RM, Bell B, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 386(9995): 743-800. doi: 10.1016/S0140-6736(15)60692-4 PMID: 26063472
  41. Choi DK, Koppula S, Suk K. Inhibitors of microglial neurotoxicity: Focus on natural products. Molecules 2011; 16(2): 1021-43. doi: 10.3390/molecules16021021 PMID: 21350391
  42. Khalatbary AR, Khademi E. The green tea polyphenolic catechin epigallocatechin gallate and neuroprotection. Nutr Neurosci 2020; 23(4): 281-94. doi: 10.1080/1028415X.2018.1500124 PMID: 30043683
  43. Li T, Li F, Liu X, Liu J, Li D. Synergistic anti-inflammatory effects of quercetin and catechin via inhibiting activation of TLR4–MyD88-mediated NF-κB and MAPK signaling pathways. Phytother Res 2019; 33(3): 756-67. doi: 10.1002/ptr.6268 PMID: 30637814
  44. Özduran G, Becer E, Vatansever HS, Yücecan S. Neuroprotective effects of catechins in an experimental Parkinson’s disease model and SK-N-AS cells: Evaluation of cell viability, anti-inflammatory and anti-apoptotic effects. Neurol Res 2022; 44(6): 511-23. doi: 10.1080/01616412.2021.2024715 PMID: 35000557
  45. Carrera I, Cacabelos R. Current drugs and potential future neuroprotective compounds for parkinson’s disease. Curr Neuropharmacol 2019; 17(3): 295-306. doi: 10.2174/1570159X17666181127125704 PMID: 30479218
  46. Manikandan R, Beulaja M, Arulvasu C, et al. Synergistic anticancer activity of curcumin and catechin: An in vitro study using human cancer cell lines. Microsc Res Tech 2012; 75(2): 112-6. doi: 10.1002/jemt.21032 PMID: 21780253
  47. Kuban-Jankowska A, Kostrzewa T, Musial C, et al. Green tea catechins induce inhibition of ptp1b phosphatase in breast cancer cells with potent anti-cancer properties: In vitro assay, molecular docking, and dynamics studies. Antioxidants 2020; 9(12): 1208. doi: 10.3390/antiox9121208 PMID: 33266280
  48. Ohgitani E, Shin-Ya M, Ichitani M, et al. Significant inactivation of SARS-CoV-2 in vitro by a green tea catechin, a catechin-derivative, and black tea galloylated theaflavins. Molecules 2021; 26(12): 3572. doi: 10.3390/molecules26123572 PMID: 34208050
  49. You HL, Huang CC, Chen CJ, Chang CC, Liao PL, Huang ST. Anti-pandemic influenza A (H1N1) virus potential of catechin and gallic acid. J Chin Med Assoc 2018; 81(5): 458-68. doi: 10.1016/j.jcma.2017.11.007 PMID: 29287704
  50. Carr GV, Lucki I. The role of serotonin receptor subtypes in treating depression: A review of animal studies. Psychopharmacology 2011; 213(2-3): 265-87. doi: 10.1007/s00213-010-2097-z PMID: 21107537
  51. Owens MJ. Selectivity of antidepressants: From the monoamine hypothesis of depression to the SSRI revolution and beyond. J Clin Psychiatry 2004; 65(4): 5-10. PMID: 15046536
  52. Maletic V, Robinson M, Oakes T, Iyengar S, Ball SG, Russell J. Neurobiology of depression: An integrated view of key findings. Int J Clin Pract 2007; 61(12): 2030-40. doi: 10.1111/j.1742-1241.2007.01602.x PMID: 17944926
  53. Matthes S, Mosienko V, Bashammakh S, Alenina N, Bader M. Tryptophan hydroxylase as novel target for the treatment of depressive disorders. Pharmacology 2010; 85(2): 95-109. doi: 10.1159/000279322 PMID: 20130443
  54. Motivala SJ, Sarfatti A, Olmos L, Irwin MR. Inflammatory markers and sleep disturbance in major depression. Psychosom Med 2005; 67(2): 187-94. doi: 10.1097/01.psy.0000149259.72488.09 PMID: 15784782
  55. Lee BH, Kim YK. The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig 2010; 7(4): 231-5. doi: 10.4306/pi.2010.7.4.231 PMID: 21253405
  56. Eyre H, Baune BT. Neuroplastic changes in depression: A role for the immune system. Psychoneuroendocrinology 2012; 37(9): 1397-416. doi: 10.1016/j.psyneuen.2012.03.019 PMID: 22525700
  57. Anacker C, Zunszain PA, Cattaneo A, et al. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol Psychiatry 2011; 16(7): 738-50. doi: 10.1038/mp.2011.26 PMID: 21483429
  58. Gardner A, Boles RG. Beyond the serotonin hypothesis: Mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(3): 730-43. doi: 10.1016/j.pnpbp.2010.07.030 PMID: 20691744
  59. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E. Lower whole blood glutathione peroxidase (GPX) activity in depression, but not in myalgic encephalomyelitis/chronic fatigue syndrome: another pathway that may be associated with coronary artery disease and neuroprogression in depression. Neuroendocrinol Lett 2011; 32(2): 133-40. PMID: 21552194
  60. Liu L, Dong Y, Shan X, Li L, Xia B, Wang H. Anti-depressive effectiveness of baicalin in vitro and in vivo. Molecules 2019; 24(2): 326. doi: 10.3390/molecules24020326 PMID: 30658416
  61. Peng G, Yang L, Wu CY, et al. Whole body vibration training improves depression-like behaviors in a rat chronic restraint stress model. Neurochem Int 2021; 142: 104926. doi: 10.1016/j.neuint.2020.104926 PMID: 33276022
  62. Kraeuter AK, Guest PC, Sarnyai Z. The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol Biol 2019; 1916: 99-103. doi: 10.1007/978-1-4939-8994-2_9 PMID: 30535687
  63. Yeoh BS, Olvera R, Singh V, et al. Epigallocatechin-3- Gallate inhibition of myeloperoxidase and its counter-regulation by dietary iron and lipocalin 2 in murine model of gut inflammation. Am J Pathol 2016; 186(4): 912-26. doi: 10.1016/j.ajpath.2015.12.004 PMID: 26968114
  64. Ferreira N, Cardoso I, Domingues MR, et al. Binding of epigallocatechin-3-gallate to transthyretin modulates its amyloidogenicity. FEBS Lett 2009; 583(22): 3569-76. doi: 10.1016/j.febslet.2009.10.062 PMID: 19861125
  65. Uggenti C, Lepelley A, Depp M, et al. cGAS-mediated induction of type I interferon due to inborn errors of histone pre-mRNA processing. Nat Genet 2020; 52(12): 1364-72. doi: 10.1038/s41588-020-00737-3 PMID: 33230297
  66. Xing C, Wang X, Cheng C, et al. Neuronal production of lipocalin-2 as a help-me signal for glial activation. Stroke 2014; 45(7): 2085-92. doi: 10.1161/STROKEAHA.114.005733 PMID: 24916903
  67. Liu J, Wang D, Li SQ, Yu Y, Ye RD. Suppression of LPS-induced tau hyperphosphorylation by serum amyloid A. J Neuroinflammation 2016; 13(1): 28. doi: 10.1186/s12974-016-0493-y PMID: 26838764
  68. Ha JS, Choi HR, Kim IS, Kim EA, Cho SW, Yang SJ. Hypoxia-Induced S100A8 expression activates microglial inflammation and promotes neuronal apoptosis. Int J Mol Sci 2021; 22(3): 1205. doi: 10.3390/ijms22031205 PMID: 33530496
  69. Richter F, Meurers BH, Zhu C, Medvedeva VP, Chesselet MF. Neurons express hemoglobin α- and β-chains in rat and human brains. J Comp Neurol 2009; 515(5): 538-47. doi: 10.1002/cne.22062 PMID: 19479992
  70. DeVilliers P, Liu H, Suggs C, et al. Calretinin expression in the differential diagnosis of human ameloblastoma and keratocystic odontogenic tumor. Am J Surg Pathol 2008; 32(2): 256-60. doi: 10.1097/PAS.0b013e3181452176 PMID: 18223328
  71. Crouse JJ, Carpenter JS, Song YJC, et al. Circadian rhythm sleep–wake disturbances and depression in young people: Implications for prevention and early intervention. Lancet Psychiatry 2021; 8(9): 813-23. doi: 10.1016/S2215-0366(21)00034-1 PMID: 34419186
  72. Germain A, Kupfer DJ. Circadian rhythm disturbances in depression. Hum Psychopharmacol 2008; 23(7): 571-85. doi: 10.1002/hup.964 PMID: 18680211
  73. Jadhakhan F, Lindner OC, Blakemore A, Guthrie E. Prevalence of common mental health disorders in adults who are high or costly users of healthcare services: Protocol for a systematic review and meta-analysis. BMJ Open 2019; 9(9): e028295. doi: 10.1136/bmjopen-2018-028295 PMID: 31488474
  74. McAllister-Williams RH, Arango C, Blier P, et al. The identification, assessment and management of difficult-to-treat depression: An international consensus statement. J Affect Disord 2020; 267: 264-82. doi: 10.1016/j.jad.2020.02.023 PMID: 32217227
  75. Taniguti EH, Ferreira YS, Stupp IJV, et al. Atorvastatin prevents lipopolysaccharide-induced depressive-like behaviour in mice. Brain Res Bull 2019; 146: 279-86. doi: 10.1016/j.brainresbull.2019.01.018 PMID: 30690060
  76. Samarghandian S, Farkhondeh T, Pourbagher-Shahri AM, et al. Green tea catechins inhibit microglial activation which prevents the development of neurological disorders. Neural Regen Res 2020; 15(10): 1792-8. doi: 10.4103/1673-5374.280300 PMID: 32246619
  77. Sebastiani G, Almeida-Toledano L, Serra-Delgado M, et al. Therapeutic effects of catechins in less common neurological and neurodegenerative disorders. Nutrients 2021; 13(7): 2232. doi: 10.3390/nu13072232 PMID: 34209677
  78. Zhan H, Zhang Z, Xin YM, Li T, Wei SH. Changes of cardiac catecholamines in rats after repeated +Gz exposures and protective effects of low-G preconditioning and tea polyphenols. Space Med Med Eng 2003; 16(4): 239-42. PMID: 14594027
  79. Liu Y, Jia G, Gou L, et al. Antidepressant-like effects of tea polyphenols on mouse model of chronic unpredictable mild stress. Pharmacol Biochem Behav 2013; 104: 27-32. doi: 10.1016/j.pbb.2012.12.024 PMID: 23290936
  80. Zhu WL, Shi HS, Wei YM, et al. Green tea polyphenols produce antidepressant-like effects in adult mice. Pharmacol Res 2012; 65(1): 74-80. doi: 10.1016/j.phrs.2011.09.007 PMID: 21964320
  81. Baranwal A, Aggarwal P, Rai A, Kumar N. Pharmacological actions and underlying mechanisms of catechin: A review. Mini Rev Med Chem 2022; 22(5): 821-33. doi: 10.2174/1389557521666210902162120 PMID: 34477517
  82. Ahmed S, Rahman A, Hasnain A, Lalonde M, Goldberg VM, Haqqi TM. Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1β-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes. Free Radic Biol Med 2002; 33(8): 1097-105. doi: 10.1016/S0891-5849(02)01004-3 PMID: 12374621
  83. Gorham LS, Jernigan T, Hudziak J, Barch DM. Involvement in sports, hippocampal volume, and depressive symptoms in children. Biol Psychiatry Cogn Neurosci Neuroimaging 2019; 4(5): 484-92. doi: 10.1016/j.bpsc.2019.01.011 PMID: 30905689
  84. Singal A, Tirkey N, Chopra K. Reversal of LPS-induced immobility in mice by green tea polyphenols: possible COX-2 mechanism. Phytother Res 2004; 18(9): 723-8. doi: 10.1002/ptr.1520 PMID: 15478205
  85. Deng Q, Xu J, Yu B, et al. Effect of dietary tea polyphenols on growth performance and cell-mediated immune response of post-weaning piglets under oxidative stress. Arch Anim Nutr 2010; 64(1): 12-21. doi: 10.1080/17450390903169138 PMID: 20496858
  86. Onyango IG. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Neurochem Res 2008; 33(3): 589-97. doi: 10.1007/s11064-007-9482-y PMID: 17940895
  87. Al-Naqeb G, Rousová J, Kubátová A, Picklo MJ Sr. Pulicaria jaubertii E. Gamal-Eldin reduces triacylglyceride content and modifies cellular antioxidant pathways in 3T3-L1 adipocytes. Chem Biol Interact 2016; 253: 48-59. doi: 10.1016/j.cbi.2016.05.013 PMID: 27163856
  88. Luo M, Huang P, Pan Y, et al. Weighted gene coexpression network and experimental analyses identify lncRNA SPRR2C as a regulator of the IL-22-stimulated HaCaT cell phenotype through the miR-330/STAT1/S100A7 axis. Cell Death Dis 2021; 12(1): 86. doi: 10.1038/s41419-020-03305-z PMID: 33452236
  89. Shabani F, Farasat A, Mahdavi M, Gheibi N. Calprotectin (S100A8/S100A9): A key protein between inflammation and cancer. Inflamm Res 2018; 67(10): 801-12. doi: 10.1007/s00011-018-1173-4 PMID: 30083975
  90. Gebhardt C, Németh J, Angel P, Hess J. S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 2006; 72(11): 1622-31. doi: 10.1016/j.bcp.2006.05.017 PMID: 16846592
  91. den Hartigh LJ, Wang S, Goodspeed L, et al. Deletion of serum amyloid A3 improves high fat high sucrose diet-induced adipose tissue inflammation and hyperlipidemia in female mice. PLoS One 2014; 9(9): e108564. doi: 10.1371/journal.pone.0108564 PMID: 25251243

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers