Dissecting the Mechanisms of Intestinal Immune Homeostasis by Analyzing T-Cell Immune Response in Crohn's Disease and Colorectal Cancer


Cite item

Full Text

Abstract

Introduction:Crohn's disease (CD) and colorectal cancer (CRC) represent a group of intestinal disorders characterized by intricate pathogenic mechanisms linked to the disruption of intestinal immune homeostasis. Therefore, comprehending the immune response mechanisms in both categories of intestinal disorders is of paramount significance in the prevention and treatment of these debilitating intestinal ailments.

Method:In this study, we conducted single-cell analysis on paired samples obtained from primary colorectal tumors and individuals with Crohn's disease, which was aimed at deciphering the factors influencing the composition of the intestinal immune microenvironment. By aligning T cells across different tissues, we identified various T cell subtypes, such as γδ T cell, NK T cell, and regulatory T (Treg) cell, which maintained immune system homeostasis and were confirmed in enrichment analyses. Subsequently, we generated pseudo-time trajectories for subclusters of T cells in both syndromes to delineate their differentiation patterns and identify key driver genes.

Result:Furthermore, cellular communication and transcription factor regulatory networks are all essential components of the intricate web of mechanisms that regulate intestinal immune homeostasis. The identified complex cellular interaction suggested potential T-lineage immunotherapeutic targets against epithelial cells with high copy number variation (CNV) levels in CD and CRC.

Conclusion:Finally, the analysis of regulon networks revealed several promising candidates for cell-specific transcription factors (TFs). This study focused on the immune molecular mechanism under intestinal diseases. It contributed to the novel insight of depicting a detailed immune landscape and revealing T-cell responding mechanisms in CD and CRC.

About the authors

Tianming Jiang

Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University

Email: info@benthamscience.net

Jie Zheng

Department of Environmental Health Sciences, Yale School of Public Health, Yale University

Email: info@benthamscience.net

Nana Li

Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University

Email: info@benthamscience.net

Xiaodong Li

Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University

Email: info@benthamscience.net

Jixing He

Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University

Email: info@benthamscience.net

Junde Zhou

Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University

Email: info@benthamscience.net

Boshi Sun

Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University

Author for correspondence.
Email: info@benthamscience.net

Qiang Chi

Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. McDowell C, Farooq U, Haseeb M. Inflammatory Bowel Disease. Statpearls. Treasure Island 2023.
  2. Ellul P, Schembri J, Baldacchino A, et al. Post-inflammatory polyp burden as a prognostic marker of disease-outcome in patients with inflammatory bowel disease. J Crohn’s Colitis 2023; 17(4): 489-96. doi: 10.1093/ecco-jcc/jjac169 PMID: 36322687
  3. Dulai PS, Sandborn WJ, Gupta S. Colorectal cancer and dysplasia in inflammatory bowel disease: A review of disease epidemiology, pathophysiology, and management. Cancer Prev Res 2016; 9(12): 887-94. doi: 10.1158/1940-6207.CAPR-16-0124 PMID: 27679553
  4. Ekbom A, Helmick C, Zack M, Adami HO. Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med 1990; 323(18): 1228-33. doi: 10.1056/NEJM199011013231802 PMID: 2215606
  5. Beaugerie L, Itzkowitz SH. Cancers complicating inflammatory bowel disease. N Engl J Med 2015; 372(15): 1441-52. doi: 10.1056/NEJMra1403718 PMID: 25853748
  6. Jess T, Loftus EV Jr, Velayos FS, et al. Risk of intestinal cancer in inflammatory bowel disease: A population-based study from olmsted county, Minnesota. Gastroenterology 2006; 130(4): 1039-46. doi: 10.1053/j.gastro.2005.12.037 PMID: 16618397
  7. Weismüller TJ, Wedemeyer J, Kubicka S, Strassburg CP, Manns MP. The challenges in primary sclerosing cholangitis – Aetiopathogenesis, autoimmunity, management and malignancy. J Hepatol 2008; 48: S38-57. doi: 10.1016/j.jhep.2008.01.020 PMID: 18304683
  8. Itzkowitz SH, Yio X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: The role of inflammation. Am J Physiol Gastrointest Liver Physiol 2004; 287(1): G7-G17. doi: 10.1152/ajpgi.00079.2004 PMID: 15194558
  9. Műzes G, Molnár B, Sipos F. Regulatory T cells in inflammatory bowel diseases and colorectal cancer. World J Gastroenterol 2012; 18(40): 5688-94. doi: 10.3748/wjg.v18.i40.5688 PMID: 23155308
  10. Vaghari-Tabari M, Targhazeh N, Moein S, et al. From inflammatory bowel disease to colorectal cancer: What’s the role of miRNAs? Cancer Cell Int 2022; 22(1): 146. doi: 10.1186/s12935-022-02557-3 PMID: 35410210
  11. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature 2011; 474(7351): 307-17. doi: 10.1038/nature10209 PMID: 21677747
  12. Sakuraba A, Sato T, Kamada N, Kitazume M, Sugita A, Hibi T. Th1/Th17 immune response is induced by mesenteric lymph node dendritic cells in Crohn’s disease. Gastroenterology 2009; 137(5): 1736-45. doi: 10.1053/j.gastro.2009.07.049 PMID: 19632232
  13. Shah SC, Itzkowitz SH. Colorectal cancer in inflammatory bowel disease: Mechanisms and management. Gastroenterology 2022; 162(3): 715-730.e3. doi: 10.1053/j.gastro.2021.10.035 PMID: 34757143
  14. Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohn’s disease. Lancet 2017; 389(10080): 1741-55. doi: 10.1016/S0140-6736(16)31711-1 PMID: 27914655
  15. Ashton JJ, Boukas K, Davies J, et al. Ileal transcriptomic analysis in paediatric crohn’s disease reveals IL17- and NOD- signalling expression signatures in treatment-naïve patients and identifies epithelial cells driving differentially expressed genes. J Crohn’s Colitis 2021; 15(5): 774-86. doi: 10.1093/ecco-jcc/jjaa236 PMID: 33232439
  16. Lee HO, Hong Y, Etlioglu HE, et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat Genet 2020; 52(6): 594-603. doi: 10.1038/s41588-020-0636-z PMID: 32451460
  17. Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data. Cell 2021; 184(13): 3573-3587.e29. doi: 10.1016/j.cell.2021.04.048 PMID: 34062119
  18. Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019; 20(2): 163-72. doi: 10.1038/s41590-018-0276-y PMID: 30643263
  19. Hu C, Li T, Xu Y, et al. CellMarker 2.0: An updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res 2023; 51(D1): D870-6. doi: 10.1093/nar/gkac947 PMID: 36300619
  20. Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7. doi: 10.1089/omi.2011.0118 PMID: 22455463
  21. Otasek D, Morris JH, Bouças J, Pico AR, Demchak B. Cytoscape Automation: Empowering workflow-based network analysis. Genome Biol 2019; 20(1): 185. doi: 10.1186/s13059-019-1758-4 PMID: 31477170
  22. Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014; 344(6190): 1396-401. doi: 10.1126/science.1254257 PMID: 24925914
  23. Chen K, Wang Y, Hou Y, et al. Single cell RNA-seq reveals the CCL5/SDC1 receptor-ligand interaction between T cells and tumor cells in pancreatic cancer. Cancer Lett 2022; 545: 215834. doi: 10.1016/j.canlet.2022.215834 PMID: 35917973
  24. Trapnell C, Cacchiarelli D, Grimsby J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 2014; 32(4): 381-6. doi: 10.1038/nbt.2859 PMID: 24658644
  25. Garcia-Alonso L, Handfield LF, Roberts K, et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat Genet 2021; 53(12): 1698-711. doi: 10.1038/s41588-021-00972-2 PMID: 34857954
  26. Xu Q, Chen S, Hu Y, Huang W. Single-cell RNA transcriptome reveals the intra-tumoral heterogeneity and regulators underlying tumor progression in metastatic pancreatic ductal adenocarcinoma. Cell Death Discov 2021; 7(1): 331. doi: 10.1038/s41420-021-00663-1 PMID: 34732701
  27. Aibar S, González-Blas CB, Moerman T, et al. SCENIC: Single-cell regulatory network inference and clustering. Nat Methods 2017; 14(11): 1083-6. doi: 10.1038/nmeth.4463 PMID: 28991892
  28. Zheng Z, Yu T, Zhao X, Gao X, Zhao Y, Liu G. Intratumor heterogeneity: A new perspective on colorectal cancer research. Cancer Med 2020; 9(20): 7637-45. doi: 10.1002/cam4.3323 PMID: 32853464
  29. Buikhuisen JY, Torang A, Medema JP. Exploring and modelling colon cancer inter-tumour heterogeneity: Opportunities and challenges. Oncogenesis 2020; 9(7): 66. doi: 10.1038/s41389-020-00250-6 PMID: 32647253
  30. Lee RD, Munro SA, Knutson TP, LaRue RS, Heltemes-Harris LM, Farrar MA. Single-cell analysis identifies dynamic gene expression networks that govern B cell development and transformation. Nat Commun 2021; 12(1): 6843. doi: 10.1038/s41467-021-27232-5 PMID: 34824268
  31. Zhang C, Li D, Yu R, et al. Immune landscape of gastric carcinoma tumor microenvironment identifies a peritoneal relapse relevant immune signature. Front Immunol 2021; 12: 651033. doi: 10.3389/fimmu.2021.651033 PMID: 34054812
  32. Li G, Zhang B, Hao J, et al. Identification of novel population-specific cell subsets in chinese ulcerative colitis patients using single-cell RNA sequencing. Cell Mol Gastroenterol Hepatol 2021; 12(1): 99-117. doi: 10.1016/j.jcmgh.2021.01.020 PMID: 33545427
  33. Yi H, Li G, Long Y, et al. Integrative multi-omics analysis of a colon cancer cell line with heterogeneous Wnt activity revealed RUNX2 as an epigenetic regulator of EMT. Oncogene 2020; 39(28): 5152-64. doi: 10.1038/s41388-020-1351-z PMID: 32535615
  34. Wang H, Gong P, Chen T, et al. Colorectal cancer stem cell states uncovered by simultaneous single-cell analysis of transcriptome and telomeres. Adv Sci 2021; 8(8): 2004320. doi: 10.1002/advs.202004320 PMID: 33898197
  35. Devlin JC, Axelrad J, Hine AM, et al. Single-cell transcriptional survey of ileal-anal pouch immune cells from ulcerative colitis patients. Gastroenterology 2021; 160(5): 1679-93. doi: 10.1053/j.gastro.2020.12.030 PMID: 33359089
  36. Sathe A, Grimes SM, Lau BT, et al. Single-cell genomic characterization reveals the cellular reprogramming of the gastric tumor microenvironment. Clin Cancer Res 2020; 26(11): 2640-53. doi: 10.1158/1078-0432.CCR-19-3231 PMID: 32060101
  37. Wang R, Dang M, Harada K, et al. Single-cell dissection of intratumoral heterogeneity and lineage diversity in metastatic gastric adenocarcinoma. Nat Med 2021; 27(1): 141-51. doi: 10.1038/s41591-020-1125-8 PMID: 33398161
  38. Smillie CS, Biton M, Ordovas-Montanes J, et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 2019; 178(3): 714-730.e22. doi: 10.1016/j.cell.2019.06.029 PMID: 31348891
  39. Zhang M, Hu S, Min M, et al. Dissecting transcriptional heterogeneity in primary gastric adenocarcinoma by single cell RNA sequencing. Gut 2021; 70(3): 464-75. doi: 10.1136/gutjnl-2019-320368 PMID: 32532891
  40. Fakih M, Ouyang C, Wang C, et al. Immune overdrive signature in colorectal tumor subset predicts poor clinical outcome. J Clin Invest 2019; 129(10): 4464-76. doi: 10.1172/JCI127046 PMID: 31524634
  41. Okumura R, Takeda K. Maintenance of gut homeostasis by the mucosal immune system. Proc Jpn Acad, Ser B, Phys Biol Sci 2016; 92(9): 423-35. doi: 10.2183/pjab.92.423 PMID: 27840390
  42. Hirsch D, Wangsa D, Zhu YJ, et al. Dynamics of genome alterations in crohn’s disease–associated colorectal carcinogenesis. Clin Cancer Res 2018; 24(20): 4997-5011. doi: 10.1158/1078-0432.CCR-18-0630 PMID: 29967250
  43. Bonneville M, O’Brien RL, Born WK, Gammadelta T. γδ T cell effector functions: A blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10(7): 467-78. doi: 10.1038/nri2781 PMID: 20539306
  44. Zhang N, Bevan MJ. CD8(+) T cells: Foot soldiers of the immune system. Immunity 2011; 35(2): 161-8. doi: 10.1016/j.immuni.2011.07.010 PMID: 21867926
  45. Kim M, Min YK, Jang J, Park H, Lee S, Lee CH. Single-cell RNA sequencing reveals distinct cellular factors for response to immunotherapy targeting CD73 and PD-1 in colorectal cancer. J Immunother Cancer 2021; 9(7): e002503. doi: 10.1136/jitc-2021-002503 PMID: 34253638
  46. Maimela NR, Liu S, Zhang Y. Fates of CD8+ T cells in tumor microenvironment. Comput Struct Biotechnol J 2019; 17: 1-13. doi: 10.1016/j.csbj.2018.11.004 PMID: 30581539
  47. Reis BS, Darcy PW, Khan IZ, et al. TCR-Vγδ usage distinguishes protumor from antitumor intestinal γδ T cell subsets. Science 2022; 377(6603): 276-84. doi: 10.1126/science.abj8695 PMID: 35857588
  48. Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res 2017; 27(1): 109-18. doi: 10.1038/cr.2016.151 PMID: 27995907
  49. Zhang L, Yu X, Zheng L, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 2018; 564(7735): 268-72. doi: 10.1038/s41586-018-0694-x PMID: 30479382
  50. Roda G, Jianyu X, Park MS, et al. Characterizing CEACAM5 interaction with CD8α and CD1d in intestinal homeostasis. Mucosal Immunol 2014; 7(3): 615-24. doi: 10.1038/mi.2013.80 PMID: 24104458
  51. Saiz-Gonzalo G, Hanrahan N, Rossini V, et al. Regulation of CEACAM family members by IBD-associated triggers in intestinal epithelial cells, their correlation to inflammation and relevance to IBD pathogenesis. Front Immunol 2021; 12: 655960. doi: 10.3389/fimmu.2021.655960 PMID: 34394073
  52. Cheng D, Semmens K, McManus E, et al. The nuclear transcription factor, TAF7, is a cytoplasmic regulator of protein synthesis. Sci Adv 2021; 7(50): eabi5751. doi: 10.1126/sciadv.abi5751 PMID: 34890234
  53. Wang D, Diao H, Getzler AJ, et al. The transcription factor runx3 establishes chromatin accessibility of cis-regulatory landscapes that drive memory cytotoxic T lymphocyte formation. Immunity 2018; 48(4): 659-674.e6. doi: 10.1016/j.immuni.2018.03.028 PMID: 29669249
  54. Ha F, Khalil H. Crohn’s disease: A clinical update. Therap Adv Gastroenterol 2015; 8(6): 352-9. doi: 10.1177/1756283X15592585 PMID: 26557891
  55. Kong L, Pokatayev V, Lefkovith A, et al. The landscape of immune dysregulation in Crohn’s disease revealed through single-cell transcriptomic profiling in the ileum and colon. Immunity 2023; 56(2): 444-458.e5. doi: 10.1016/j.immuni.2023.01.002 PMID: 36720220
  56. Molinari C, Marisi G, Passardi A, Matteucci L, De Maio G, Ulivi P. Heterogeneity in colorectal cancer: A challenge for personalized medicine? Int J Mol Sci 2018; 19(12): 3733. doi: 10.3390/ijms19123733 PMID: 30477151
  57. Fanelli GN, Dal Pozzo CA, Depetris I, et al. The heterogeneous clinical and pathological landscapes of metastatic Braf-mutated colorectal cancer. Cancer Cell Int 2020; 20(1): 30. doi: 10.1186/s12935-020-1117-2 PMID: 32015690
  58. Schönefeldt S, Wais T, Herling M, et al. The diverse roles of γδ T cells in cancer: From rapid immunity to aggressive lymphoma. Cancers 2021; 13(24): 6212. doi: 10.3390/cancers13246212 PMID: 34944832
  59. Uldrich AP, Le Nours J, Pellicci DG, et al. CD1d-lipid antigen recognition by the γδ TCR. Nat Immunol 2013; 14(11): 1137-45. doi: 10.1038/ni.2713 PMID: 24076636
  60. De Rosa SC, Mitra DK, Watanabe N, Herzenberg LA, Herzenberg LA, Roederer M. Vδ1 and Vδ2 γδ T cells express distinct surface markers and might be developmentally distinct lineages. J Leukoc Biol 2001; 70(4): 518-26. doi: 10.1189/jlb.70.4.518 PMID: 11590187
  61. Colombo MP, Piconese S. Regulatory T-cell inhibition versus depletion: The right choice in cancer immunotherapy. Nat Rev Cancer 2007; 7(11): 880-7. doi: 10.1038/nrc2250 PMID: 17957190
  62. Park M, Kang KW, Kim JW. The role and application of transcriptional repressors in cancer treatment. Arch Pharm Res 2023; 46(1): 1-17. doi: 10.1007/s12272-023-01427-4 PMID: 36645575

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers