Designing a Multi-epitope Vaccine against the SARS-CoV-2 Variant based on an Immunoinformatics Approach

  • Authors: Farhani I.1, Yamchi A.2, Madanchi H.3, Khazaei V.1, Behrouzikhah M.4, Abbasi H.1, Salehi M.5, Moradi N.6, Sanami S.7
  • Affiliations:
    1. Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences
    2. Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Science and Natural Resources
    3. Drug Design and Bioinformatics Unit, Department of Medical Biotechnology,, Biotechnology Research Center, Pasteur Institute of Iran
    4. Department of Medical Microbiology, School of Medicine, Golestan University of Medical Sciences
    5. Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences
    6. Department of Medical Biotechnology, School of Advanced Technologies in Medicine,, Golestan University of Medical Sciences
    7. Department of Plant Breeding and Biotechnology, Shahrekord University of Medical Sciences
  • Issue: Vol 20, No 3 (2024)
  • Pages: 274-290
  • Section: Chemistry
  • URL: https://j-morphology.com/1573-4099/article/view/643990
  • DOI: https://doi.org/10.2174/1573409919666230612125440
  • ID: 643990

Cite item

Full Text

Abstract

Background:SARS-CoV-2 is a life-threatening virus in the world. Scientific evidence indicates that this pathogen will emerge again in the future. Although the current vaccines have a pivotal role in the control of this pathogen, the emergence of new variants has a negative impact on their effectiveness.

Objective:Therefore, it is urgent to consider the protective and safe vaccine against all subcoronavirus species and variants based on the conserved region of the virus. Multi-epitope peptide vaccine (MEV), comprised of immune-dominant epitopes, is designed by immunoinformatic tools and it is a promising strategy against infectious diseases.

Methods:Spike glycoprotein and nucleocapsid proteins from all coronavirus species and variants were aligned and the conserved region was selected. Antigenicity, toxicity, and allergenicity of epitopes were checked by a proper server. To robust the immunity of the multi-epitope vaccine, cholera toxin b (CTB) and three HTL epitopes of tetanus toxin fragment C (TTFrC) were linked at the N-terminal and C-terminal of the construct, respectively. Selected epitopes with MHC molecules and the designed vaccines with Toll-like receptors (TLR-2 and TLR-4) were docked and analyzed. The immunological and physicochemical properties of the designed vaccine were evaluated. The immune responses to the designed vaccine were simulated. Furthermore, molecular dynamic simulations were performed to study the stability and interaction of the MEV-TLRs complexes during simulation time by NAMD (Nanoscale molecular dynamic) software. Finally, the codon of the designed vaccine was optimized according to Saccharomyces boulardii.

Results:The conserved regions of spike glycoprotein and nucleocapsid protein were gathered. Then, safe and antigenic epitopes were selected. The population coverage of the designed vaccine was 74.83%. The instability index indicated that the designed multi-epitope was stable (38.61). The binding affinity of the designed vaccine to TLR2 and TLR4 was -11.4 and -11.1, respectively. The designed vaccine could induce humoral and cellular immunity.

Conclusion:In silico analysis showed that the designed vaccine is a protective multi-epitope vaccine against SARS-CoV-2 variants.

About the authors

Ibrahim Farhani

Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences

Email: info@benthamscience.net

Ahad Yamchi

Department of Plant Breeding and Biotechnology, Gorgan University of Agricultural Science and Natural Resources

Author for correspondence.
Email: info@benthamscience.net

Hamid Madanchi

Drug Design and Bioinformatics Unit, Department of Medical Biotechnology,, Biotechnology Research Center, Pasteur Institute of Iran

Email: info@benthamscience.net

Vahid Khazaei

Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences

Email: info@benthamscience.net

Mehdi Behrouzikhah

Department of Medical Microbiology, School of Medicine, Golestan University of Medical Sciences

Email: info@benthamscience.net

Hamidreza Abbasi

Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences

Email: info@benthamscience.net

Mohammad Salehi

Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences

Email: info@benthamscience.net

Nilufar Moradi

Department of Medical Biotechnology, School of Advanced Technologies in Medicine,, Golestan University of Medical Sciences

Email: info@benthamscience.net

Samira Sanami

Department of Plant Breeding and Biotechnology, Shahrekord University of Medical Sciences

Email: info@benthamscience.net

References

  1. Samad, A.; Ahammad, F.; Nain, Z.; Alam, R.; Imon, R.R.; Hasan, M.; Rahman, M.S. Designing a multi-epitope vaccine against SARS-CoV-2: An immunoinformatics approach. J. Biomol. Struct. Dyn., 2022, 40(1), 14-30. doi: 10.1080/07391102.2020.1792347 PMID: 32677533
  2. Vashishtha, V.M.; Kumar, P. Responding to new challenges: Is there a need to relook and revise our COVID-19 vaccination strategy? Expert Rev. Vaccines, 2022, 21(8), 1015-1018.
  3. van Doremalen, N.; Lambe, T.; Spencer, A.; Belij-Rammerstorfer, S.; Purushotham, J.N.; Port, J.R.; Avanzato, V.A.; Bushmaker, T.; Flaxman, A.; Ulaszewska, M.; Feldmann, F.; Allen, E.R.; Sharpe, H.; Schulz, J.; Holbrook, M.; Okumura, A.; Meade-White, K.; Pérez-Pérez, L.; Edwards, N.J.; Wright, D.; Bissett, C.; Gilbride, C.; Williamson, B.N.; Rosenke, R.; Long, D.; Ishwarbhai, A.; Kailath, R.; Rose, L.; Morris, S.; Powers, C.; Lovaglio, J.; Hanley, P.W.; Scott, D.; Saturday, G.; de Wit, E.; Gilbert, S.C.; Munster, V.J. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature, 2020, 586(7830), 578-582. doi: 10.1038/s41586-020-2608-y PMID: 32731258
  4. Thomas, S.J. Moreira, E.D., Jr; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Polack, F.P.; Zerbini, C.; Bailey, R.; Swanson, K.A.; Xu, X.; Roychoudhury, S.; Koury, K.; Bouguermouh, S.; Kalina, W.V.; Cooper, D.; Frenck, R.W., Jr; Hammitt, L.L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Yang, Q.; Liberator, P.; Tresnan, D.B.; Mather, S.; Dormitzer, P.R.; Şahin, U.; Gruber, W.C.; Jansen, K.U. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N. Engl. J. Med., 2021, 385(19), 1761-1773. doi: 10.1056/NEJMoa2110345 PMID: 34525277
  5. Baum, U.; Poukka, E.; Leino, T.; Kilpi, T.; Nohynek, H.; Palmu, A.A. High vaccine effectiveness against severe Covid-19 in the elderly in Finland before and after the emergence of Omicron. MedRxiv, 2022.
  6. Choi, A.; Koch, M.; Wu, K.; Chu, L.; Ma, L.; Hill, A.; Nunna, N.; Huang, W.; Oestreicher, J.; Colpitts, T.; Bennett, H.; Legault, H.; Paila, Y.; Nestorova, B.; Ding, B.; Montefiori, D.; Pajon, R.; Miller, J.M.; Leav, B.; Carfi, A.; McPhee, R.; Edwards, D.K. Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: An interim analysis. Nat. Med., 2021, 27(11), 2025-2031. doi: 10.1038/s41591-021-01527-y PMID: 34526698
  7. Mengesha, B.; Asenov, A.G.; Hirsh-Raccah, B.; Amir, O.; Pappo, O.; Asleh, R. Severe acute myocarditis after the third (booster) dose of mRNA COVID-19 vaccination. Vaccines, 2022, 10(4), 575. doi: 10.3390/vaccines10040575 PMID: 35455324
  8. Morens, D.M.; Taubenberger, J.K.; Fauci, A.S. Universal coronavirus vaccines-an urgent need. N. Engl. J. Med., 2022, 386(4), 297-299. doi: 10.1056/NEJMp2118468 PMID: 34910863
  9. Ranjbar, M.M.; Ebrahimi, M.M.; Shahsavandi, S.; Farhadi, T.; Mirjalili, A.; Tebianian, M.; Motedayen, M.H. Novel applications of immuno-bioinformatics in vaccine and bio-product developments at research institutes. Arch. Razi Inst., 2019, 74(3), 219-233. PMID: 31592587
  10. Goumari, M.M.; Farhani, I.; Nezafat, N.; Mahmoodi, S. Multi-Epitope Vaccines (MEVs), as a Novel Strategy Against Infectious Diseases. Curr. Proteomics, 2020, 17(5), 354-364. doi: 10.2174/1570164617666190919120140
  11. Sette, A.; Livingston, B.; McKinney, D.; Appella, E.; Fikes, J.; Sidney, J.; Newman, M.; Chesnut, R. The development of multi-epitope vaccines: epitope identification, vaccine design and clinical evaluation. Biologicals, 2001, 29(3-4), 271-276. doi: 10.1006/biol.2001.0297 PMID: 11851327
  12. Farhani, I.; Nezafat, N.; Mahmoodi, S. Designing a novel multi-epitope peptide vaccine against pathogenic Shigella spp. based immunoinformatics approaches. Int. J. Pept. Res. Ther., 2019, 25(2), 541-553. doi: 10.1007/s10989-018-9698-5
  13. Coffman, R.L.; Sher, A.; Seder, R.A. Vaccine adjuvants: putting innate immunity to work. Immunity, 2010, 33(4), 492-503. doi: 10.1016/j.immuni.2010.10.002 PMID: 21029960
  14. Stratmann, T. Cholera toxin subunit B as adjuvant––an accelerator in protective immunity and a break in autoimmunity. Vaccines, 2015, 3(3), 579-596. doi: 10.3390/vaccines3030579 PMID: 26350596
  15. Lee, J.J.; Sinha, K.A.; Harrison, J.A.; de Hormaeche, R.D.; Riveau, G.; Pierce, R.J.; Capron, A.; Wilson, R.A.; Khan, C.M.A. Tetanus toxin fragment C expressed in live Salmonella vaccines enhances antibody responses to its fusion partner Schistosoma haematobium glutathione S-transferase. Infect. Immun., 2000, 68(5), 2503-2512. doi: 10.1128/IAI.68.5.2503-2512.2000 PMID: 10768937
  16. Lim, Y.T. Vaccine adjuvant materials for cancer immunotherapy and control of infectious disease. Clin. Exp. Vaccine Res., 2015, 4(1), 54-58. doi: 10.7774/cevr.2015.4.1.54 PMID: 25648865
  17. Kumar, N.; Sood, D.; Chandra, R. Design and optimization of a subunit vaccine targeting COVID-19 molecular shreds using an immunoinformatics framework. RSC Advances, 2020, 10(59), 35856-35872. doi: 10.1039/D0RA06849G PMID: 35517103
  18. Roos, T.B.; Avila, L.F.C.; Sturbelle, R.T.; Leite, F.L.L.; Fischer, G.; Leite, F.P.L. Saccharomyces boulardii modulates and improves the immune response to Bovine Herpesvirus type 5 Vaccine. Arq. Bras. Med. Vet. Zootec., 2018, 70(2), 375-381. doi: 10.1590/1678-4162-9167
  19. McFarland, L.V. Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World J. Gastroenterol., 2010, 16(18), 2202-2222. doi: 10.3748/wjg.v16.i18.2202 PMID: 20458757
  20. Hudson, L.E.; Fasken, M.B.; McDermott, C.D.; McBride, S.M.; Kuiper, E.G.; Guiliano, D.B.; Corbett, A.H.; Lamb, T.J. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii. PLoS One, 2014, 9(11), e112660. doi: 10.1371/journal.pone.0112660 PMID: 25391025
  21. Papadopoulos, J.S.; Agarwala, R. COBALT: Constraint-based alignment tool for multiple protein sequences. Bioinformatics, 2007, 23(9), 1073-1079. doi: 10.1093/bioinformatics/btm076 PMID: 17332019
  22. Bui, H.H.; Sidney, J.; Dinh, K.; Southwood, S.; Newman, M.J.; Sette, A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 2006, 7(1), 153. doi: 10.1186/1471-2105-7-153 PMID: 16545123
  23. Vita, R.; Overton, J.A.; Greenbaum, J.A.; Ponomarenko, J.; Clark, J.D.; Cantrell, J.R.; Wheeler, D.K.; Gabbard, J.L.; Hix, D.; Sette, A.; Peters, B. The immune epitope database (IEDB) 3.0. Nucleic Acids Res., 2015, 43(D1), D405-D412. doi: 10.1093/nar/gku938 PMID: 25300482
  24. Jurtz, V.; Paul, S.; Andreatta, M.; Marcatili, P.; Peters, B.; Nielsen, M. NetMHCpan-4.0: Improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J. Immunol., 2017, 199(9), 3360-3368. doi: 10.4049/jimmunol.1700893 PMID: 28978689
  25. Dhanda, S.K.; Gupta, S.; Vir, P.; Raghava, G. Prediction of IL4 inducing peptides. Clin. Dev. Immunol., 2013, 2013, 263952. doi: 10.1155/2013/263952
  26. Kolaskar, A.S.; Tongaonkar, P.C. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett., 1990, 276(1-2), 172-174. doi: 10.1016/0014-5793(90)80535-Q PMID: 1702393
  27. Ponomarenko, J.; Bui, H.H.; Li, W.; Fusseder, N.; Bourne, P.E.; Sette, A.; Peters, B. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 2008, 9(1), 514. doi: 10.1186/1471-2105-9-514 PMID: 19055730
  28. Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 2007, 8(1), 4. doi: 10.1186/1471-2105-8-4 PMID: 17207271
  29. Dimitrov, I.; Bangov, I.; Flower, D.R.; Doytchinova, I. AllerTOP v.2—a server for in silico prediction of allergens. J. Mol. Model., 2014, 20(6), 2278. doi: 10.1007/s00894-014-2278-5 PMID: 24878803
  30. Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P.S.; Raghava, G.P. In silico approach for predicting toxicity of peptides and proteins. PLoS One, 2013, 8(9), e73957. doi: 10.1371/journal.pone.0073957 PMID: 24058508
  31. Chen, X.; Zaro, J.L.; Shen, W.C. Fusion protein linkers: Property, design and functionality. Adv. Drug Deliv. Rev., 2013, 65(10), 1357-1369. doi: 10.1016/j.addr.2012.09.039 PMID: 23026637
  32. Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M. R.; Appel, R. D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook, 2005, 571-607.
  33. Jones, D.T. Protein secondary structure prediction based on position- specific scoring matrices 1 1Edited by G. Von Heijne. J. Mol. Biol., 1999, 292(2), 195-202. doi: 10.1006/jmbi.1999.3091 PMID: 10493868
  34. Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: protein structure and function prediction. Nat. Methods, 2015, 12(1), 7-8. doi: 10.1038/nmeth.3213 PMID: 25549265
  35. Shin, W-H.; Lee, G.R.; Heo, L.; Lee, H.; Seok, C. Prediction of protein structure and interaction by GALAXY protein modeling programs. Bio Design, 2014, 2(1), 1-11.
  36. Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci., 1993, 2(9), 1511-1519. doi: 10.1002/pro.5560020916 PMID: 8401235
  37. Kringelum, J.V.; Lundegaard, C.; Lund, O.; Nielsen, M. Reliable B cell epitope predictions: Impacts of method development and improved benchmarking. PLOS Comput. Biol., 2012, 8(12), e1002829. doi: 10.1371/journal.pcbi.1002829 PMID: 23300419
  38. Yan, Y.; Tao, H.; He, J.; Huang, S.Y. The HDOCK server for integrated protein–protein docking. Nat. Protoc., 2020, 15(5), 1829-1852. doi: 10.1038/s41596-020-0312-x PMID: 32269383
  39. Xue, L.C.; Rodrigues, J.P.; Kastritis, P.L.; Bonvin, A.M.; Vangone, A. PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics, 2016, 32(23), 3676-3678. doi: 10.1093/bioinformatics/btw514 PMID: 27503228
  40. Babendure, J.R.; Babendure, J.L.; Ding, J.H.; Tsien, R.Y. Control of mammalian translation by mRNA structure near caps. RNA, 2006, 12(5), 851-861. doi: 10.1261/rna.2309906 PMID: 16540693
  41. Rapin, N.; Lund, O.; Bernaschi, M.; Castiglione, F. Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS One, 2010, 5(4), e9862. doi: 10.1371/journal.pone.0009862 PMID: 20419125
  42. Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005, 26(16), 1781-1802. doi: 10.1002/jcc.20289 PMID: 16222654
  43. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38, 27-28. doi: 10.1016/0263-7855(96)00018-5 PMID: 8744570
  44. Kaur, S.P.; Gupta, V. COVID-19 Vaccine: A comprehensive status report. Virus Res., 2020, 288, 198114. doi: 10.1016/j.virusres.2020.198114 PMID: 32800805
  45. Valencia, D.N. Brief review on COVID-19: The 2020 pandemic caused by SARS-CoV-2. Cureus, 2020, 12(3), e7386. doi: 10.7759/cureus.7386 PMID: 32337113
  46. De Brito, R.C.F.; Cardoso, J.M.D.O.; Reis, L.E.S.; Vieira, J.F.; Mathias, F.A.S.; Roatt, B.M.; Aguiar-Soares, R.D.D.O.; Ruiz, J.C.; Resende, D.M.; Reis, A.B. Peptide vaccines for leishmaniasis. Front. Immunol., 2018, 9, 1043. doi: 10.3389/fimmu.2018.01043 PMID: 29868006
  47. Mahendran, R.; Jeyabaskar, S.; Michael, D.; Vincent Paul, A.; Sitharaman, G. Computer-aided vaccine designing approach against fish pathogens Edwardsiella tarda and Flavobacterium columnare using bioinformatics softwares. Drug Des. Devel. Ther., 2016, 10, 1703-1714. doi: 10.2147/DDDT.S95691 PMID: 27284239
  48. Nagy, A.; Alhatlani, B. An overview of current COVID-19 vaccine platforms. Comput. Struct. Biotechnol. J., 2021, 19, 2508-2517. doi: 10.1016/j.csbj.2021.04.061 PMID: 33936564
  49. Yurina, V. Coronavirus epitope prediction from highly conserved region of spike protein. Clin. Exp. Vaccine Res., 2020, 9(2), 169-173. doi: 10.7774/cevr.2020.9.2.169 PMID: 32864374
  50. Masmouei, B.; Harorani, M.; Bazrafshan, M-R.; Karimi, Z. COVID-19: hyperinflammatory syndrome and hemoadsorption with CytoSorb. Blood Purif., 2020, 1. PMID: 33326959
  51. Saadi, M.; Karkhah, A.; Nouri, H.R. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infect. Genet. Evol., 2017, 51, 227-234. doi: 10.1016/j.meegid.2017.04.009 PMID: 28411163
  52. Ayyagari, V.S. T C, V.; K, A.P.; Srirama, K. Design of a multi-epitope-based vaccine targeting M-protein of SARS-CoV2: An immunoinformatics approach. J. Biomol. Struct. Dyn., 2022, 40(7), 2963-2977. doi: 10.1080/07391102.2020.1850357 PMID: 33252008
  53. Gurung, A.B.; Bhattacharjee, A.; Ali, M.A. Exploring the physicochemical profile and the binding patterns of selected novel anticancer Himalayan plant derived active compounds with macromolecular targets. Informatics in Medicine Unlocked, 2016, 5, 1-14. doi: 10.1016/j.imu.2016.09.004
  54. Merchant, H.A. Why COVID vaccines for young children (5–11 years) are not essential at this moment in time? J. Pharm. Policy Pract., 2022, 15(1), 25. doi: 10.1186/s40545-022-00424-0 PMID: 35346387
  55. Feng, Y.; Qiu, M.; Zou, S.; Li, Y.; Luo, K.; Chen, R.; Sun, Y.; Wang, K.; Zhuang, X.; Zhang, S. Multi-epitope vaccine design using an immunoinformatics approach for 2019 novel coronavirus in China (SARS-CoV-2). bioRxiv, 2020.
  56. Merchant, H. Myocarditis followed by CoViD-19 vaccines: A cause for concern or a reversible minor effect. BMJ, 2021, 373(1244)
  57. Baker, P.J. Advantages of an oral vaccine to control the COVID-19 pandemic. Am. J. Med., 2022, 135(2), 133-134. doi: 10.1016/j.amjmed.2021.08.037 PMID: 34562412
  58. Bagherpour, G.; Ghasemi, H.; Zand, B.; Zarei, N.; Roohvand, F.; Ardakani, E.M.; Azizi, M.; Khalaj, V. Oral administration of recombinant Saccharomyces boulardii expressing ovalbumin-CPE fusion protein induces antibody response in mice. Front. Microbiol., 2018, 9, 723. doi: 10.3389/fmicb.2018.00723 PMID: 29706942
  59. Wang, S.; Liu, H.; Zhang, X.; Qian, F. Intranasal and oral vaccination with protein-based antigens: Advantages, challenges and formulation strategies. Protein Cell, 2015, 6(7), 480-503. doi: 10.1007/s13238-015-0164-2 PMID: 25944045
  60. Gloudemans, A.K.; Plantinga, M.; Guilliams, M.; Willart, M.A.; Ozir-Fazalalikhan, A.; van der Ham, A.; Boon, L.; Harris, N.L.; Hammad, H.; Hoogsteden, H.C.; Yazdanbakhsh, M.; Hendriks, R.W.; Lambrecht, B.N.; Smits, H.H. The mucosal adjuvant cholera toxin B instructs non-mucosal dendritic cells to promote IgA production via retinoic acid and TGF-β. PLoS One, 2013, 8(3), e59822. doi: 10.1371/journal.pone.0059822 PMID: 23527272
  61. Di Natale, C.; La Manna, S.; De Benedictis, I.; Brandi, P.; Marasco, D. Perspectives in peptide-based vaccination strategies for syndrome coronavirus 2 pandemic. Front. Pharmacol., 2020, 11, 578382. doi: 10.3389/fphar.2020.578382 PMID: 33343349
  62. Hewitt, J.S.; Karuppannan, A.K.; Tan, S.; Gauger, P.; Halbur, P.G.; Gerber, P.F.; De Groot, A.S.; Moise, L.; Opriessnig, T. A prime-boost concept using a T-cell epitope-driven DNA vaccine followed by a whole virus vaccine effectively protected pigs in the pandemic H1N1 pig challenge model. Vaccine, 2019, 37(31), 4302-4309. doi: 10.1016/j.vaccine.2019.06.044 PMID: 31248687
  63. Liu, M.A. DNA vaccines: A review. J. Intern. Med., 2003, 253(4), 402-410. doi: 10.1046/j.1365-2796.2003.01140.x PMID: 12653868
  64. Li, W.; Joshi, M.; Singhania, S.; Ramsey, K.; Murthy, A. Peptide vaccine: Progress and challenges. Vaccines, 2014, 2(3), 515-536. doi: 10.3390/vaccines2030515 PMID: 26344743

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers