Transformation of aromatic hydrocarbons in the process of hydrogenation of a concentrated mixture to produce clean fuels

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The process of hydrogenation of a modeling mixture of aromatic hydrocarbons was studied in order to develop regulated approaches for producing environmentally friendly fuels. The process was carried out on a trimetallic PdNiCr catalyst deposited on aluminum oxide. The optimal conditions for carrying out the reaction were determined. The influence of the structure of substituted substrates on the formation of by-products of the ring-opening reaction has been established.

Texto integral

Acesso é fechado

Sobre autores

А. Каlenchuk

Lomonosov Moscow State University; N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: lmkustov@mail.ru

Department of Chemistry

Rússia, 119991, Moscow; 119991, Moscow

N. Tolkachev

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences; Joint Institute for High Temperatures, Russian Academy of Sciences

Email: lmkustov@mail.ru
Rússia, 119991, Moscow; 125412, Moscow

I. Lischiner

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: lmkustov@mail.ru
Rússia, 125412, Moscow

O. Malova

Joint Institute for High Temperatures, Russian Academy of Sciences

Email: lmkustov@mail.ru
Rússia, 125412, Moscow

L. Kustov

Lomonosov Moscow State University; N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: lmkustov@mail.ru

Department of Chemistry

Rússia, 119991, Moscow; 119991, Moscow

Bibliografia

  1. Rana M.S., Samano V., Ancheyta J., Diaz J.A. // Fuel. 2007. V. 86. P. 1216–1231. https://doi.org/10.1016/j.fuel.2006.08.004
  2. Makarfi Y.I., Yakimova M.S., Lermontov A.S., Erofeev V.I., Koval L.M., Tretiyakov V.F. // Chem. Eng. J. 2009. V. 154. P. 396–400. https://doi.org/10.1016/j.cej.2009.06.001
  3. Hamieh S., Canaff C., Tayeb K.B., Tarighi M., Maury S., Vezin H., Pouilloux Y., Pinard L. // Eur. Phys. J. Special Topics. 2015. V. 224. P. 1817–1830. https://doi.org/10.1140/EPJST/E2015-02501-1
  4. Zaidi H.A., Pant K.K. // Catalysis Today. 2004. V. 96. P. 155–160. https://doi.org/10.1016/J.CATTOD.2004.06.123
  5. Song С., Ma X. // Appl. Catal. B: Env. 2003. V. 41. P. 207–238. https://doi.org/10.1016/S0926-3373(02)00212-6
  6. Stanislaus A., Cooper B.H. // Catal. Rev.-Sci. Eng. 1994. V. 36. P. 75–123. https://doi.org/10.1080/01614949408013921
  7. Shukla A.A., Gosavi P.V., Pande J.V., Kumar V.P., Chary K.V.R., Biniwale R.B. // Int. J. Hydrogen Energy. 2010. V. 35. P. 4020–4026. https://doi.org/10.1016/j.ijhydene.2010.02.014
  8. Lazaro M.P., Bordeje E.G., Sebastian D., Lazaro M.J., Moliner R. // Catal. Today. 2006. V. 138. P. 203–209. https://doi.org/10.1016/j.cattod.2008.05.011
  9. Maria G., Marin A., Wyss C., Muller S., Newson E. // Chem. Eng. Sci. 1996. V. 51. P. 2891–2896. https://doi.org/10.1016/0009-2509(96)00170-4
  10. Biniwale R.B., Rayalu S., Devotta S., Ichikawa M. // Int. J. Hydrogen Energy. 2008. V. 33. P. 360–365. https://doi.org/10.1016/j.ijhydene.2007.07.028
  11. Bourane A., Elanany M., Pham T.V., Katikaneni S.P. // Int. J. Hydrogen Energy. 2016. V. 41. P. 23075–23091. https://doi.org/10.1016/j.ijhydene.2016.07.167
  12. Pawelec B., Mariscal R., Navarro R.M., Bokhorst S., Rojasa S., Fierro J.L.G. // Appl. Catal. A: Gen. 2002. V. 225. P. 223–237. https://doi.org/10.1016/S0926-860X(01)00868-7
  13. Abu-Reziq R., Avnir D., Miloslavski I., Schumann H., Blum J. // J.Mol. Catal. A: Chem. 2002. V. 185. P. 179–185. https://doi.org/10.1016/s1381-1169(02)00012-2
  14. Park I.S., Kwon M.S., Kang K.Y., Lee J.S., Park J. // Adv. Synth. Catal. 2007. V. 349. P. 2039–2047. https://doi.org/10.1002/adsc.200600651
  15. Jorchik H., Preuster P., Bosmann A., Wasserscheid P. // Sustainable Energy & Fuels. 2021. V. 5. P. 1311–1346. https://doi.org/10.1039/D0SE01369B
  16. Cooper B.H., Donnis B.B.L. // Appl. Catal. A. 1996. V. 137. P. 203–223. https://doi.org/10.1016/0926-860X(95)00258-8
  17. Nishimura S. Handbook of heterogeneous catalytic hydrogenation for organic synthesis. N.Y.: Johnwilley & Sons, Inc., 2001. pp. 477–478. ISBN 0-471-39698-2
  18. Kaufmann T., Kaldor A., Stuntz G., Kerby M., Ansell L. // Catal. Today. 2000. V. 62. P. 77–90. https://doi.org/10.1016/S0920-5861(00)00410-7
  19. Santana R., Do P., Santikunaporn M., Alvarez W., Taylor J., Sughrue E., Resasco D. // Fuel. 2006. V. 85. P. 643−656. http://dx.doi.org/10.1016/j.fuel.2005.08.028
  20. Kustov L.M., Kustov A.L. // Rus. J. Phys. Chem. A. 2020. Vl. 94. P. 317−322. https://doi.org/10.1007/s10562-018-2325-4
  21. McVicker G., Daage M., Touvelle,M., Hudson C., Klein D., Baird W., Cook B., Chen J.G., Hantzer S.S., Vaughan D., Ellis E.S., Feeley O.C. // J. Catal. 2002. V. 210. P. 137–148. https://doi.org/10.1006/JCAT.2002.3685
  22. Sachtler W.M.H., Stakheev A.Yu. // Catal. Today. 1992. V. 12. P. 332–283. https://doi.org/10.1016/0920-5861(92)85046-O
  23. Kustov L.M., Kalenchuk A.N. // Metals. 2022. V. 12. P. 2002–2019. https://doi.org/10.3390/met12122002
  24. Kustov L.M., Kalenchuk A.N. // Catalysts. 2022. V. 12. P. 1506–1514. https://doi.org/10.3390/catal12121506
  25. Звонкова З.В. // Усп. химии. 1977. Т. 46. С. 907–927. https://doi.org/10.1070/RC1977v046n05ABEH002148
  26. Клар Э. Полициклические углеводороды. Т. 2. Москва: Химия, 1971. 456 с. ISSN: 2949-2076
  27. Rogers D.W., McLafferty, F.J. // J. Org. Chem. 2001. V. 66. P. 1157–1162. https://doi.org/10.1021/jo001242k
  28. Finashina E.D., Avaev V.I., Tkachenko O.P., Greish A.A., Davshan N.A., Kuperman A., Caro J., Kustov L.M. // Ind. & Eng. Chem. Res. 2021. V. 60. P. 7802–7815. https://doi.org/10.1021/acs.iecr.1c00538
  29. Stakheev A.Yu., Kustov L.M. // Appl. Catal. A: Gen. 1999. V. 188. P. 3–35. https://doi.org/10.1016/S0926-860X(99)00232-X
  30. Rodriguez J.A., Goodman D.W. // Science. 1992. V. 257.P. 897–903. https://doi.org/10.1126/science.257.5072.897
  31. Kubicka H., Okal J. // Catal. Lett. 1994. V. 25. P. 157–161. https://doi.org/10.1007/bf00815425
  32. Kubička H., Kumar N., Venalainen T., Kahru H., Kubickova I., Osterholm H., Murzin D. // J. Phys. Chem. B. 2006. V. 110. P. 4937–4942. https://doi.org/10.1021/jp055754k
  33. Kubička H., Kumar N., Maki-Arvela P., Venalainen T., Tiitta M., Salmi T., Murzin D. // Stud. Surf. Sci. Catal. 2005. V. 158. P. 1669–1675. https://doi.org/10.1016/S0167-2991(05)80524-5
  34. Davydov A.A. // Molecular Spectroscopy of Oxide Catalyst Surfaces. Wiley Interscience Publ. 2003. 90 p. ISBN: 978-0-471-98731-4
  35. Kustov L.M., Tarasov A.L., Tkachenko O.P. // Catal. Lett. 2018. V. 148. P. 1472–1477. https://doi.org/10.1007/s10562-018-2325-4
  36. Sotoodeh F., Zhao L., Smith K.J. // Appl. Catal. A: Gen. 2009. V. 362. P. 155–162. https://doi.org/10.1016/j.apcata.2009.04.039

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The change in the relative content of typical components of the hydrogenated mixture from the reaction time.

Baixar (174KB)
3. Fig. 2. Changes in selectivity for the main reaction products under different reaction conditions (Table 3).

Baixar (76KB)
4. Table 2-1

Baixar (3KB)
5. Table 2-2

Baixar (5KB)
6. Table 2-3

Baixar (4KB)
7. Table 2-4

Baixar (4KB)
8. Table 2-5

Baixar (5KB)
9. Table 2-6

Baixar (6KB)
10. Table 2-7

Baixar (6KB)
11. Table 2-8

Baixar (7KB)
12. Table 2-9

Baixar (7KB)
13. Table 2-10

Baixar (8KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024