Preparation of copper and nickel based nanoparticles by magnetron sputtering and their use in sulfur–sulfur bond activation reaction
- 作者: Kashin А.S.1
-
隶属关系:
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
- 期: 卷 518, 编号 1 (2024)
- 页面: 23-31
- 栏目: CHEMISTRY
- URL: https://j-morphology.com/2686-9535/article/view/680958
- DOI: https://doi.org/10.31857/S2686953524050022
- EDN: https://elibrary.ru/JHCTCU
- ID: 680958
如何引用文章
详细
The present work is devoted to a systematic study of the advantages and limitations of the magnetron sputtering method, which is a convenient and promising way to obtain nanosized particles directly from the bulk metal, when it is used to prepare nanoparticles of the first-row transition metals. In the course of the study, variation of sputtering media based on ionic liquids, eutectic solvents, low and high molecular weight organic compounds was carried out. Particles of copper, nickel, a copper-nickel alloy and a copper-zinc alloy were obtained. Using the example of the activation reaction of the sulfur–sulfur bond in diphenyl disulfide, it has been shown that up to 96% of the sputtered copper can be effectively used in catalysis, whereas in the case of nickel and zinc about three quarters of the metal can be converted to an inactive form, at the same time readily oxidizable components can act as sacrificial stabilizers for moderately active metal particles in sputtering two-component alloys.
全文:

作者简介
А. Kashin
N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: a.kashin@ioc.ac.ru
俄罗斯联邦, 119991, Moscow
参考
- Biffis A., Centomo P., Del Zotto A., Zecca M. // Chem. Rev. 2018. V. 118. № 4. P. 2249–2295. http s://doi.org/10.1021/acs.chemrev.7b00443
- Dalton T., Faber T., Glorius F. // ACS Cent. Sci. 2021. V. 7. № 2. P. 245–261. http s://doi.org/10.1021/acscentsci.0c01413
- Chan A.Y., Perry I.B., Bissonnette N.B., Buksh B.F., Edwards G.A., Frye L.I., Garry O.L., Lavagnino M.N., Li B.X., Liang Y., Mao E., Millet A., Oakley J.V., Reed N.L., Sakai H.A., Seath C.P., MacMillan D.W.C. // Chem. Rev. 2022. V. 122. № 2. P. 1485–1542. http s://doi.org/10.1021/acs.chemrev.1c00383
- Devendar P., Qu R.-Y., Kang W.-M., He B., Yang G.-F. // J. Agric. Food Chem. 2018. V. 66. № 34. P. 8914–8934. http s://doi.org/10.1021/acs.jafc.8b03792
- Hayler J.D., Leahy D.K., Simmons E.M. // Organometallics. 2019. V. 38. № 1. P. 36–46. http s://doi.org/10.1021/acs.organomet.8b00566
- Xia Y., Yang H., Campbell C.T. // Acc. Chem. Res. 2013. V. 46. № 8. P. 1671–1672. http s://doi.org/10.1021/ar400148q
- Xie C., Niu Z., Kim D., Li M., Yang P. // Chem. Rev. 2020. V. 120. № 2. P. 1184–1249. http s://doi.org/10.1021/acs.chemrev.9b00220
- Astruc D. // Chem. Rev. 2020. V. 120. № 2. P. 461–463. http s://doi.org/10.1021/acs.chemrev.8b00696
- Hong K., Sajjadi M., Suh J.M., Zhang K., Nasrollahzadeh M., Jang H.W., Varma R.S., Shokouhimehr M. // ACS Appl. Nano Mater. 2020. V. 3. № 3. P. 2070–2103. http s://doi.org/10.1021/acsanm.9b02017
- Ohtaka A. // Catalysts. 2021. V. 11. № 11. P. 1266. http s://doi.org/10.3390/catal11111266
- Cha J.-H., Park S.-M., Hong Y.K., Lee H., Kang J.W., Kim K.-S. // J. Nanosci. Nanotechnol. 2012. V. 12. № 4. P. 3641–3645. http s://doi.org/10.1166/jnn.2012.5590
- Cloud J.E., McCann K., Perera K.A.P., Yang Y. // Small. 2013. V. 9. № 15. P. 2532–2536. http s://doi.org/10.1002/smll.201202470
- Cloud J.E., Yoder T.S., Harvey N.K., Snow K., Yang Y. // Nanoscale. 2013. V. 5. № 16. P. 7368–7378. http s://doi.org/10.1039/c3nr02404k
- Sarcina L., García-Manrique P., Gutiérrez G., Ditaranto N., Cioffi N., Matos M., Blanco-López M.d.C. // Nanomaterials. 2020. V. 10. № 8. P. 1542. http s://doi.org/10.3390/nano10081542
- Zhang J., Chaker M., Ma D. // J. Colloid Interface Sci. 2017. V. 489. P. 138–149. http s://doi.org/10.1016/j.jcis.2016.07.050
- Jiang Z., Li L., Huang H., He W., Ming W. // Int. J. Mol. Sci. 2022. V. 23. № 23. P. 14658. http s://doi.org/10.3390/ijms232314658
- Balachandran A., Sreenilayam S.P., Madanan K., Thomas S., Brabazon D. // Results Eng. 2022. V. 16. P. 100646. http s://doi.org/10.1016/j.rineng.2022.100646
- Nyabadza A., Vazquez M., Brabazon D. // Crystals. 2023. V. 13. № 2. P. 253. http s://doi.org/10.3390/cryst13020253
- Wender H., Migowski P., Feil A.F., Teixeira S.R., Dupont J. // Coord. Chem. Rev. 2013. V. 257. № 17–18. P. 2468–2483. http s://doi.org/10.1016/j.ccr.2013.01.013
- Cha I.Y., Yoo S.J., Jang J.H. // J. Electrochem. Sci. Technol. 2016. V. 7. № 1. P. 13–26. http s://doi.org/10.5229/JECST.2016.7.1.19
- Qadir M.I., Kauling A., Ebeling G., Fartmann M., Grehl T., Dupont J. // Aust. J. Chem. 2019. V. 72. № 2. P. 49–54. http s://doi.org/10.1071/CH18183
- Cano I., Weilhard A., Martin C., Pinto J., Lodge R.W., Santos A.R., Rance G.A., Åhlgren E.H., Jónsson E., Yuan J., Li Z.Y., Licence P., Khlobystov A.N., Alves Fernandes J. // Nat. Commun. 2021. V. 12. P. 4965. http s://doi.org/10.1038/s41467-021-25263-6
- Nguyen M.T., Deng L., Yonezawa T. // Soft Matter. 2022. V. 18. № 1. P. 19–47. http s://doi.org/10.1039/D1SM01002F
- Hirano M., Enokida K., Okazaki K.-i., Kuwabata S., Yoshida H., Torimoto T. // Phys. Chem. Chem. Phys. 2013. V. 15. № 19. P. 7286–7294. http s://doi.org/10.1039/c3cp50816a
- Zhou Y.-Y., Liu C.-H., Liu J., Cai X.-L., Lu Y., Zhang H., Sun X.-H., Wang S.-D. // Nano-Micro Lett. 2016. V. 8. № 4. P. 371–380. http s://doi.org/10.1007/s40820-016-0096-2
- Liu C., Cai X., Wang J., Liu J., Riese A., Chen Z., Sun X., Wang S.-D. // Int. J. Hydrogen Energy. 2016. V. 41. № 31. P. 13476–13484. http s://doi.org/10.1016/j.ijhydene.2016.05.194
- Sriram P., Kumar M.K., Selvi G.T., Jha N.S., Mohanapriya N., Jha S.K. // Electrochim. Acta. 2019. V. 323. P. 134809. http s://doi.org/10.1016/j.electacta.2019.134809
- Tsuda T., Yoshii K., Torimoto T., Kuwabata S. // J. Power Sources. 2010. V. 195. № 18. P. 5980–5985. http s://doi.org/10.1016/j.jpowsour.2009.11.027
- Cha I.Y., Ahn M., Yoo S.J., Sung Y.-E. // RSC Adv. 2014. V. 4. № 73. P. 38575–38580. http s://doi.org/10.1039/C4RA05213G
- Zhu M., Nguyen M.T., Sim W.J., Yonezawa T. // Mater. Adv. 2022. V. 3. № 24. P. 8967–8976. http s://doi.org/10.1039/D2MA00688J
- Chung M.W., Cha I.Y., Ha M.G., Na Y., Hwang J., Ham H.C., Kim H.-J., Henkensmeier D., Yoo S.J., Kim J.Y., Lee S.Y., Park H.S., Jang J.H. // Appl. Catal. B: Environ. 2018. V. 237. P. 673–680. http s://doi.org/10.1016/j.apcatb.2018.06.022
- Oda Y., Hirano K., Yoshii K., Kuwabata S., Torimoto T., Miura M. // Chem. Lett. 2010. V. 39. № 10. P. 1069–1071. http s://doi.org/10.1246/cl.2010.1069
- Luza L., Gual A., Eberhardt D., Teixeira S.R., Chiaro S.S.X., Dupont J. // ChemCatChem. 2013. V. 5. № 8. P. 2471–2478. http s://doi.org/10.1002/cctc.201300123
- Chang J.-B., Liu C.-H., Liu J., Zhou Y.-Y., Gao X., Wang S.-D. // Nano-Micro Lett. 2015. V. 7. № 3. P. 307–315. http s://doi.org/10.1007/s40820-015-0044-6
- Liu C.-H., Liu J., Zhou Y.-Y., Cai X.-L., Lu Y., Gao X., Wang S.-D. // Carbon. 2015. V. 94. P. 295–300. http s://doi.org/10.1016/j.carbon.2015.07.003
- Kashin A.S., Prima D.O., Arkhipova D.M., Ananikov V.P. // Small. 2023. V. 19. № 43. P. 2302999. http s://doi.org/10.1002/smll.202302999
- Lee C.-F., Liu Y.-C., Badsara S.S. // Chem. – Asian J. 2014. V. 9. № 3. P. 706–722. http s://doi.org/10.1002/asia.201301500
- Lee C.-F., Basha R.S., Badsara S.S. // Top. Curr. Chem. 2018. V. 376. № 3. P. 25. http s://doi.org/10.1007/s41061-018-0203-6
- Beletskaya I.P., Ananikov V.P. // Chem. Rev. 2022. V. 122. № 21. P. 16110–16293. http s://doi.org/10.1021/acs.chemrev.1c00836
- Kashin A.S., Arkhipova D.M., Sahharova L.T., Burykina J.V., Ananikov V.P. // ACS Catal. 2024. V. 14. № 8. P. 5804–5816. http s://doi.org/10.1021/acscatal.3c06258
补充文件

注意
Represented by Academician of the RAS V.P. Ananikov