Quantum-chemical study of energies of maleimide and itaconimide isomeric derivatives
- 作者: Panov A.A.1
-
隶属关系:
- Gause Institute of New Antibiotics
- 期: 卷 99, 编号 4 (2025)
- 页面: 605-610
- 栏目: СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ
- ##submission.dateSubmitted##: 14.06.2025
- ##submission.dateAccepted##: 14.06.2025
- ##submission.datePublished##: 15.06.2025
- URL: https://j-morphology.com/0044-4537/article/view/684399
- DOI: https://doi.org/10.31857/S0044453725040098
- EDN: https://elibrary.ru/FPBPJR
- ID: 684399
如何引用文章
详细
For 38 pairs of the isomeric derivatives of maleimide and itaconimide, the Gibbs free energies were calculated using the density functional theory (DFT) and domain-based local pair natural orbital (DLPNO) methods. The effects of the solvent and of substituents in positions 1, 3, and 4 of the maleimide ring on the energy difference of the isomers were studied. Depending on the substituents and conditions, the equilibrium can shift toward the maleimide or itaconimide form. Further migration of the double bond and cis-trans- isomerism were also considered wherever possible.
全文:

作者简介
A. Panov
Gause Institute of New Antibiotics
编辑信件的主要联系方式.
Email: 7745243@mail.ru
俄罗斯联邦, Moscow, 119021
参考
- Ravasco J.M.J.M., Faustino H., Trindade A., Gois P.M.P. // Chem. Eur. J. 2019. V. 25. P. 43.
- Elschner T., Obst F., Heinze T. // Macromol. Biosci. 2018. V. 18. P. 1800258.
- Wei K., Wen G., Zhao Y. et al. // J. Mater. Chem. C. 2016. V. 41(4). P. 9804.
- Oz Y., Sanyal A. // Chem. Rec. 2018. V. 18. P. 570.
- Aqueveque P., Anke T., Sterner O. // Zeitschrift für Naturforschung C. 2002. V. 57(3—4). P. 257.
- Yuan C., Yang H., Gong Q., et al. // Adv. Synth. Catal. 2021. V. 363. P. 3336.
- Askri S., Edziri H., Hamouda M.B. et al. // J. Molec. Struc. 2022. V. 1250. P. 131688.
- Albakhit S.D.Y., Mutlaq D.Z., Al-Shawi A.A.A. // Chem. Africa. 2023. V. 6. P. 2933.
- Gherbovet O., Garcia Alvarez M.C., Bignon J., Roussi F. // J. Med. Chem. 2016. V. 59(23). P. 10774.
- Galanti M.C., Galanti A.V. // J. Org. Chem. 1982. V. 47(8). P. 1572.
- Paramonova P., Sharonova T., Kalinin S., et al. // Mendeleev Commun. 2022. V. 32(2). P. 176.
- Haval K.P., Argade N.P. // J. Org. Chem. 2008. V. 73. P. 6936.
- Inyutina A., Kantin G., Dar′in D., Krasavin M. // J. Org. Chem. 2021. V. 86. P. 13673.
- Laha D., Meher K.B., Bankar O.S., et al. // Asian J. Org. Chem. 2022. V. 11, e202200062.
- Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. V. 2. P. 73.
- Weigend F., Ahlrichs, R. // Phys. Chem. Chem. Phys. 2005. V. 7. P. 3297.
- Weigend F. // Phys. Chem. Chem. Phys. 2006. V. 8. P. 1057.
- Barone V., Cossi M. // J. Phys. Chem. A. 1998. V. 102(11). P. 1995.
- Riplinger C., Sandhoefer B., Hansen A., Neese F. // J. Chem. Phys. 2013. V. 139. P. 134101.
- Huang X., Sha F. // J. Org. Chem. 2008. V. 73. P. 1173.
- Chupakhin E., Gecht M., Ivanov A. et al. // Synthesis. 2021. V. 53(07). P. 1292.
- Панов А.А. // Докл.РАН. Химия, науки о материалах. 2023. Т. 508(1). С. 111. [Panov A.A. // Doklady Phys. Chem. 2023. V. 508(2). P. 28.]
- Chupakhin E., Kantin G., Dar’in D., Krasavin M. // Mendeleev Commun. 2022. V. 32. P. 382.
- Inyutina A., Dar’in D., Kantina G., Krasavin M. // Org. Biomol. Chem. 2021. V. 19. P. 5068.
补充文件
